• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 18
  • 11
  • 8
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 25
  • 20
  • 16
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 10
  • 10
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Compact Trench-Based Silicon-on-Insulator Rib Waveguide 90-Degree and 105-Degree Bend and Splitter Design

Song, Jiguo 16 July 2008 (has links) (PDF)
This thesis presents a theoretical and numerical investigation of silicon-on-insulator trench based passive optical components, bend and splitter, respectively. Compact 90 degree and 105 degree bend and splitter are designed with high index-contrast rib waveguide at wavelength 1550nm and serve as building blocks of splitting network in micro-cantilever biosensing application. The main characteristic of trench based bend and splitter structures is their miniature size and their low radiation loss due to the strong light confinement in high index-contrast systems. Thus large scale, high density optical integrated splitting network becomes possible with the associated advantages of compactness. With FDTD simulation, we show that single-mode trench based bends and splitters exhibit around 16000nm X 16000nm overall size with low loss for different bending angle. Total efficiency is about 92.9% (90 degree bend), 89.3% (105 degree bend), 92% (90 degree splitter) and 84% (90 degree splitter) respectively.
62

Compact Trench Based Bend and Splitter Devices for Silicon-on-Insulator Rib Waveguides

Qian, Yusheng 13 March 2009 (has links) (PDF)
Bends and splitters are typically the fundamental limiting waveguide components in reducing the size of planar lightwave circuits (PLCs) based on waveguides that have a low core/clad refractive index contrast, such as silicon-on-insulator (SOI) rib waveguides. This dissertation presents a solution to this problem in the form of trench-based bends (TBBs) and trench-based splitters (TBSs). Emphasis is placed on experimental demonstration of these components and their integration into practical devices exhibiting significant size reduction. First, a compact and low loss silicon-on-insulator rib waveguide 90◦ TBB is demonstrated based on an etched vertical interface and total internal reflection (TIR) realized by a trench filled with SU8. The measured loss for TE polarization is 0.32 dB ± 0.02 dB/bend at a wavelength of 1.55 μm, which is the best reported in literature. Next, 90◦ TBSs are reported in which each splitter occupies an area of only 11 μm x 11 μm. These components require fabrication of trenches with a nearly 10:1 aspect ratio. A variety of single TBSs are fabricated having different trench widths. The relative amount of power directed into the transmission and reflection arms of the splitters is measured. The TBS reflection and transmission ratio agrees with three dimensional (3D) finite difference time domain (FDTD) predictions. An 82 nm wide trench filled with index matching fluid is experimentally shown to have a reflection/transmission splitting ratio of 49/51 at a wavelength of 1550 nm. To increase the fabrication yield of TBSs, the splitter angle is modified from 90◦ to 105◦, which permits the trench width to be increased to 116 nm for a 50/50 splitter using SU8 as the trench fill material. The fabrication and measurement of compact 105◦ TBBs and TBSs are reported followed by their integration into 1 x 4, 1 x 8, and 1 x 32 trench-based splitter networks (TBSNs). The measured total optical loss of the 1 x 32 TBSN is 9.15 dB. Its size is only 700 μm x 1600 μm for an output waveguide spacing of 50 μm. Finally, a compact SOI trench-based ring resonator (TBRR) composed of 90◦ TBBs, TBSs, and rib waveguides is demonstrated. A TBRR with a ring circumference of 50 μm occupies an area of 20 x 20 μm. The free spectral range (FSR) is as large as 14 nm. By changing the trench fill material from SU8 (n = 1.57) to index fluid (n = 1.733), the peak wavelength can be shifted ∼2 nm. Fabricated TBSNs and TBRRs demonstrate that large size reductions are possible for devices based on TBBs and TBSs. The net result is bend and splitter configurations with a size that is essentially independent of core/clad refractive index contrast. The approach developed in this dissertation is applicable to a wide range of waveguide material systems that have small core/clad refractive index contrast.
63

Effects of Low Velocity Impact on the Flexural Strength of Composite Sandwich Structures

Carter, Jeffrey Scott 01 October 2014 (has links) (PDF)
The use of composite sandwich structures is rapidly increasing in the aerospace industry because of their increased strength-to-weight and stiffness-to-weight characteristics. The effects of low velocity impacts on these structures, however, are the main weakness that hinders further use of them in the industry because the damages from these loadings can often be catastrophic. Impact behavior of composite materials in general is a crucial consideration for a designer but can be difficult to describe theoretically. Because of this, experimental analysis is typically used to attempt to describe the behavior of composite sandwiches under impact loads. Experimental testing can still be unpredictable, however, because low velocity impacts can cause undetectable damage within the composites that weaken their structural integrity. This is an important issue with composite sandwich structures because interlaminar damage within the composite facesheets is typical with composites but the addition of a core material results in added failure modes. Because the core is typically a weaker material than the surrounding facesheet material, the core is easily damaged by the impact loads. The adhesion between the composite facesheets and the core material can also be a major region of concern for sandwich structures. Delamination of the facesheet from the core is a major issue when these structures are subjected to impact loads. This study investigated, through experimental and numerical analysis, how varying the core and facesheet material combination affected the flexural strength of a composite sandwich subjected to low velocity impact. Carbon, hemp, aramid, and glass fiber materials as facesheets combined with honeycomb and foam as core materials were considered. Three layers of the same composite material were laid on the top and bottom of the core material to form each sandwich structure. This resulted in eight different sandwich designs. The carbon fiber/honeycomb sandwiches were then combined with the aramid fiber facesheets, keeping the same three layer facesheet design, to form two hybrid sandwich designs. This was done to attempt to improve the impact resistance and post-impact strength characteristics of the carbon fiber sandwiches. The two and one layer aramid fiber laminates on these hybrid sandwiches were always laid up on the outside of the structure. The sandwiches were cured using a composite press set to the recommended curing cycle for the composite facesheet material. The hybrid sandwiches were cured twice for the two different facesheet materials. The cured specimens were then cut into 3 inch by 10 inch sandwiches and 2/3 of them were subjected to an impact from a 7.56 lbf crosshead which was dropped from a height of 38.15 inches above the bottom of the specimen using a Dynatup 8250 drop weight machine. The impacted specimen and the control specimen (1/3 of the specimens not subjected to an impact) were loaded in a four-point bend test per ASTM D7250 to determine the non-impacted and post-impact flexural strengths of these structures. Each sandwich was tested under two four-point bend loading conditions which resulted in two different extension values at the same 100 lbf loading value. The span between the two supports on the bottom of the sandwich was always 8 inches but the span between the two loading pins on the top of the sandwich changed between the two loading conditions. The 2/3 of the sandwiches that were tested after being impacted were subjected to bending loads in two different ways. Half of the specimens were subjected to four-point bending loads with the impact damage on the top facesheet (compressive surface) in between the loading pins; the other half were subjected to bending loads with the damage on the bottom facesheet (tensile surface). Theoretical failure mode analysis was done for each sandwich to understand the comparisons between predicted and experimental failures. A numerical investigation was, also, completed using Abaqus to verify the results of the experimental tests. Non-impacted and impacted four-point bending models were constructed and mid-span deflection values were collected for comparison with the experimental testing results. Experimental and numerical results showed that carbon fiber sandwiches were the best sandwich design for overall composite sandwich bending strength; however, post-impact strengths could greatly improve. The hybrid sandwich designs improved post-impact behavior but more than three facesheet layers are necessary for significant improvement. Hemp facesheet sandwiches showed the best post-impact bending characteristics of any sandwich despite having the largest impact damage sizes. Glass and aramid fiber facesheet sandwiches resisted impact the best but this resulted in premature delamination failures that limited the potential of these structures. Honeycomb core materials outperformed foam in terms of ultimate bending loads but post-impact strengths were better for foam cores. Decent agreement between numerical and experimental results was found but poor material quality and high error in material properties testing results brought about larger disagreements for some sandwich designs.
64

The Pressure Losses in 90° Bends of Rectangular Cross-section

Kacker, Suresh Chandra 10 1900 (has links)
<p> An experimental study of turbulent flow of air around a 90º bend is reported in this thesis. Four 90º bends of aspect ratio 1, 3, 5 & 10 and radius ratio 1.0 have been tested in the Reynolds number range of 1 × 10⁵ to 5 × 10⁵. The loss in total pressure across the bend (or elbow) is reported for two discharge conditions (1) and the elbow discharging to a plenum chamber through a constant area duct of a length equal to 4 hydraulic diameters; (2) the elbow discharging to the plenum chamber directly. A comparison of the experimental results is made with the curves given in NACA report L4F26 which have been reproduced in the recently published SAE Aero-Space Manual. </p> <p> Various other flow parameters, such as velocity profiles, turbulence levels and pressure distributions are also given in this thesis. </p> / Thesis / Master of Engineering (ME)
65

Mixing of Transverse Jets in Open Channel Bends

Schreiner, Helene Katherine 29 August 2023 (has links)
Water quality in river systems is an important issue, and relies on various factors including our ability to predict how effluents from outfalls mix with river water. However, predicting mixing in rivers, and especially in river bends, remains a difficult problem to solve. The goal of this project is to develop a comprehensive picture of the mixing mechanisms of an effluent jet in a river bend. This is done with experiments in both bend flumes in the University of Ottawa Water Resources Engineering Laboratory. The large bend flume is 1 m in width, and contains a single 135° bend of radius 1.5 m, and the small flume has a channel width of 0.2 m with a 135° bend of radius 0.3 m. The experiments in the large flume used acoustic Doppler velocimeters to measure velocity, and the experiments in the small flume used particle image velocimetry to track flow fields. Large eddy simulation (LES) were also completed using the same channel geometry as the small flume. To complete the parametric analysis on mixing of a neutrally buoyant effluent jet in a channel bend, 35 flow conditions, from seven channel aspect ratios and five momentum ratios, are modelled using LES. Each flow condition is also modelled without the jet present. Particle image velocimetry data from the small bend flume validates the LES models. Additionally, acoustic Doppler velocimeter tests were completed in the large bend flume under two different flume flow rates, two jet flow rates, and two aspect ratios. These models and measurements provide a broad range of the parameters under investigation. The experiments in the large bend flume establish the shape of the jet's trajectory within the channel bend, and how it differs from a trajectory in a straight crossflow. From these experiments, it is established that the centre position of the secondary circulation cell is an important parameter for determining the position of the jet. Through the LES models, more details of the 3D velocity and effluent distributions are available, allowing for a detailed analysis of how the secondary circulation develops and how the jet vortices change the development patterns. A method for clustering instantaneous vortices to separate sub-cells of secondary circulation is established, and is used to set a baseline for the development of secondary flow in a channel bend without a jet. The effect of an added jet was investigated in detail for a single flow condition, and then with machine learning techniques to develop a parametrical model incorporating both channel and jet flow conditions. The best performing machine learning model for the parametrisation of secondary flow cells with the jet is the ANFIS model coupled with a decision tree classifying the presence of each sub-cell; without the jet, the best-performing model is the ANFIS model without any additional classification. The effluent distribution is well-characterised using multiple linear regression. The addition of a jet changes the relative strengths of secondary circulation sub-cells and their circulation development and retention characteristics, though the total circulation in the bend is not strongly affected by the jet.
66

Extremal rays of smooth projective varieties

Occhetta, Gianluca 12 1900 (has links)
No abstract available
67

Control of Disclinations and Walls in New Types of Display Devices

Zhang, Yanli 28 November 2005 (has links)
No description available.
68

Characterization of Creases in Polymers for Adaptive Origami Engineering

Abbott, Andrew Carl 26 August 2014 (has links)
No description available.
69

Investigation of the Combined Effects of Simultaneous Heating and Bending of Silica Optical Fiber

Birri, Anthony 15 August 2018 (has links)
No description available.
70

TWIST BEND AND DOUBLE TWIST IN LIQUID CRYSTALS

Xiang, Jie 04 August 2016 (has links)
No description available.

Page generated in 0.0289 seconds