• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 9
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 18
  • 12
  • 11
  • 11
  • 8
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Modelos preditivos para LGD / Predictive models for LGD

Silva, João Flávio Andrade 04 May 2018 (has links)
As instituições financeiras que pretendem utilizar a IRB (Internal Ratings Based) avançada precisam desenvolver métodos para estimar a componente de risco LGD (Loss Given Default). Desde a década de 1950 são apresentadas propostas para modelagem da PD (Probability of default), em contrapartida, a previsão da LGD somente recebeu maior atenção após a publicação do Acordo Basileia II. A LGD possui ainda uma literatura pequena, se comparada a PD, e não há um método eficiente em termos de acurácia e interpretação como é a regressão logística para a PD. Modelos de regressão para LGD desempenham um papel fundamental na gestão de risco das instituições financeiras. Devido sua importância este trabalho propõe uma metodologia para quantificar a componente de risco LGD. Considerando as características relatadas sobre a distribuição da LGD e na forma flexível que a distribuição beta pode assumir, propomos uma metodologia de estimação da LGD por meio do modelo de regressão beta bimodal inflacionado em zero. Desenvolvemos a distribuição beta bimodal inflacionada em zero, apresentamos algumas propriedades, incluindo momentos, definimos estimadores via máxima verossimilhança e construímos o modelo de regressão para este modelo probabilístico, apresentamos intervalos de confiança assintóticos e teste de hipóteses para este modelo, bem como critérios para seleção de modelos, realizamos um estudo de simulação para avaliar o desempenho dos estimadores de máxima verossimilhança para os parâmetros da distribuição beta bimodal inflacionada em zero. Para comparação com nossa proposta selecionamos os modelos de regressão beta e regressão beta inflacionada, que são abordagens mais usuais, e o algoritmo SVR , devido a significativa superioridade relatada em outros trabalhos. / Financial institutions willing to use the advanced Internal Ratings Based (IRB) need to develop methods to estimate the LGD (Loss Given Default) risk component. Proposals for PD (Probability of default) modeling have been presented since the 1950s, in contrast, LGDs forecast has received more attention only after the publication of the Basel II Accord. LGD also has a small literature, compared to PD, and there is no efficient method in terms of accuracy and interpretation such as logistic regression for PD. Regression models for LGD play a key role in the risk management of financial institutions, due to their importance this work proposes a methodology to quantify the LGD risk component. Considering the characteristics reported on the distribution of LGD and in the flexible form that the beta distribution may assume, we propose a methodology for estimation of LGD using the zero inflated bimodal beta regression model. We developed the zero inflated bimodal beta distribution, presented some properties, including moments, defined estimators via maximum likelihood and constructed the regression model for this probabilistic model, presented asymptotic confidence intervals and hypothesis test for this model, as well as selection criteria of models, we performed a simulation study to evaluate the performance of the maximum likelihood estimators for the parameters of the zero inflated bimodal beta distribution. For comparison with our proposal we selected the beta regression models and inflated beta regression, which are more usual approaches, and the SVR algorithm, due to the significant superiority reported in other studies.
22

Modelos de regressão beta inflacionados / Inflated beta regression models

Ospina Martinez, Raydonal 04 April 2008 (has links)
Nos últimos anos têm sido desenvolvidos modelos de regressão beta, que têm uma variedade de aplicações práticas como, por exemplo, a modelagem de taxas, razões ou proporções. No entanto, é comum que dados na forma de proporções apresentem zeros e/ou uns, o que não permite admitir que os dados provêm de uma distribuição contínua. Nesta tese, são propostas, distribuições de mistura entre uma distribuição beta e uma distribuição de Bernoulli, degenerada em zero e degenerada em um para modelar dados observados nos intervalos [0, 1], [0, 1) e (0, 1], respectivamente. As distribuições propostas são inflacionadas no sentido de que a massa de probabilidade em zero e/ou um excede o que é permitido pela distribuição beta. Propriedades dessas distribuições são estudadas, métodos de estimação por máxima verossimilhança e momentos condicionais são comparados. Aplicações a vários conjuntos de dados reais são examinadas. Desenvolvemos também modelos de regressão beta inflacionados assumindo que a distribuição da variável resposta é beta inflacionada. Estudamos estimação por máxima verossimilhança. Derivamos expressões em forma fechada para o vetor escore, a matriz de informação de Fisher e sua inversa. Discutimos estimação intervalar para diferentes quantidades populacionais (parâmetros de regressão, parâmetro de precisão) e testes de hipóteses assintóticos. Derivamos expressões para o viés de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros, possibilitando a obtenção de estimadores corrigidos que são mais precisos que os não corrigidos em amostras finitas. Finalmente, desenvolvemos técnicas de diagnóstico para os modelos de regressão beta inflacionados, sendo adotado o método de influência local baseado na curvatura normal conforme. Ilustramos a teoria desenvolvida em um conjuntos de dados reais. / The last years have seen new developments in the theory of beta regression models, which are useful for modelling random variables that assume values in the standard unit interval such as proportions, rates and fractions. In many situations, the dependent variable contains zeros and/or ones. In such cases, continuous distributions are not suitable for modeling this kind of data. In this thesis we propose mixed continuous-discrete distributions to model data observed on the intervals [0, 1],[0, 1) and (0, 1]. The proposed distributions are inflated beta distributions in the sense that the probability mass at 0 and/or 1 exceeds what is expected for the beta distribution. Properties of the inflated beta distributions are given. Estimation based on maximum likelihood and conditional moments is discussed and compared. Empirical applications using real data set are provided. Further, we develop inflated beta regression models in which the underlying assumption is that the response follows an inflated beta law. Estimation is performed by maximum likelihood. We provide closed-form expressions for the score function, Fishers information matrix and its inverse. Interval estimation for different population quantities (such as regression parameters, precision parameter, mean response) is discussed and tests of hypotheses on the regression parameters can be performed using asymptotic tests. We also derive the second order biases of the maximum likelihood estimators and use them to define bias-adjusted estimators. The numerical results show that bias reduction can be effective in finite samples. We also develop a set of diagnostic techniques that can be employed to identify departures from the postulated model and influential observations. To that end, we adopt the local influence approach based in the conformal normal curvature. Finally, we consider empirical examples to illustrate the theory developed.
23

Modelos de mistura beta mistos sob abordagem bayesiana / Mixture of beta mixed models: a Bayesian approach

Zerbeto, Ana Paula 14 December 2018 (has links)
Os modelos de mistura são muito eficazes para analisar dados compostos por diferentes subpopulações com alocações desconhecidas ou que apresentam assimetria, multimodalidade ou curtose. Esta tese propõe relacionar a distribuição de probabilidade beta e a técnica de ajuste de modelos mistos à metodologia de modelos de mistura para que sejam adequados na análise de dados que assumem valores em um intervalo restrito conhecido e que também são caracterizados por possuírem uma estrutura de agrupamento ou hierárquica. Foram especificados os modelos de mistura beta mistos linear, com dispersão constante e variável, e não linear. Foi considerada uma abordagem bayesiana com uso de métodos de Monte Carlo via Cadeias de Markov (MCMC). Estudos de simulação foram delineados para avaliar os resultados inferenciais destes modelos em relação à acurácia da estimação pontual dos parâmetros, ao desempenho de critérios de informação na seleção do número de elementos da mistura e ao diagnóstico de identificabilidade obtido com o algoritmo data cloning. O desempenho dos modelos foi muito promissor, principalmente pela boa acurácia da estimação pontual dos parâmetros e por não haver evidências de falta de identificabilidade. Três bancos de dados reais das áreas de saúde, marketing e educação foram estudados por meio das técnicas propostas. Tanto nos estudos de simulação quanto na aplicação a dados reais se obtiveram resultados muito satisfatórios que evidenciam tanto a utilidade dos modelos desenvolvidos aos objetivos tratados quanto a potencialidade de aplicação. Ressaltando que a metodologia apresentada também pode ser aplicada e estendida a outros modelos de mistura. / Mixture models are very effective for analyzing data composed of different subpopulations with unknown allocations or with asymmetry, multimodality or kurtosis. This work proposes to link the beta probability distribution and the mixed models to the methodology of mixture models so that they are suitable to analyse data with values in a restricted and known interval and that also are characterized by having a grouping or hierarchical structure. There were specified the linear beta mixture models with random effects, with constant and varying dispersion, and also the nonlinear one with constant dispersion. It was considered a Bayesian approach using Markov Chain Monte Carlo (MCMC) methods. Simulation studies were designed to evaluate the inferential results of these models in relation to the accuracy of the parameter estimation, to the performance of information criteria in the selection of the number of elements of the mixture and to the diagnosis of identifiability obtained with the algorithm data cloning. The performance of the models was very promising, mainly due to the good accuracy of the point estimation of the parameters and because there was no evidence of lack of identifiability of the model. Three real databases of health, marketing and education were studied using the proposed techniques. In both the simulation studies and the application to real data had very satisfactory results that show both the usefulness of the models developed to the treated objectives and the potentiality of application. Note that the presented methodology can also be applied and extended to other mixing models.
24

Modelos de regressão estáticos e dinâmicos para taxas ou proporções: uma abordagem bayesiana / Regression of static and dynamic models for proportions or rates: a Bayesian approach

Leandro Tavares Correia 01 June 2015 (has links)
Este trabalho apresenta um estudo de dados com resposta em intervalos limitados, mais especificamente no intervalo [0,1], como no caso de taxas e proporções. Em diversos casos práticos esta estrutura de dados apresenta uma quantidade não negligenciável de valores extremos (0 e 1) e que modelos usuais não são adequados para sua análise. Para esta situação propomos, por meio de um enfoque Bayesiano, modelos de regressão beta inflacionado de zeros e uns (BIZU) e modelos de regressão Tobit duplamente censurado adaptados nesse intervalo. Técnicas de diagnóstico e qualidade do ajuste também são discutidas. Apresentamos a análise desta estrutura de dados no contexto de série de tempo por meio da abordagem Bayesiana de modelos dinâmicos. Estudos de comportamento e previsão de séries de tempo foram explorados utilizando técnicas de Monte Carlo sequencial, conhecidas como filtro de partículas. Particularidades e competitividade entre as duas classes de modelos também foram discutidas. / This paper presents a study focused on observations in a limited interval , more specifically in [0,1] , such as rate and proportion data. In many practical cases this data structure has a considerable amount of extreme values (0 and 1) and usual classical models are not suitable for this type of data set. We propose two class of regression models to deal with this context: beta inflated of zeros and ones (BIZU) models and Tobit doubly censored models adapted in this interval. Fit quality and diagnostic techniques are also discussed. Time series of proportions are also developed through Bayesian dynamic models. Forecasting and behavioral analysis were explored using sequential Monte Carlo techniques, known as particle filters. Particularities and competitiveness between the two classes of models were also discussed as well.
25

A Study of Gamma Distributions and Some Related Works

Chou, Chao-Wei 11 May 2004 (has links)
Characterization of distributions has been an important topic in statistical theory for decades. Although there have been many well known results already developed, it is still of great interest to find new characterizations of commonly used distributions in application, such as normal or gamma distribution. In practice, sometimes we make guesses on the distribution to be fitted to the data observed, sometimes we use the characteristic properties of those distributions to do so. In this paper we will restrict our attention to the characterizations of gamma distribution as well as some related studies on the corresponding parameter estimation based on the characterization properties. Some simulation studies are also given.
26

Development of novel Classical and Quantum Information Theory Based Methods for the Detection of Compensatory Mutations in MSAs

Gültas, Mehmet 18 September 2013 (has links)
Multiple Sequenzalignments (MSAs) von homologen Proteinen sind nützliche Werkzeuge, um kompensatorische Mutationen zwischen nicht-konservierten Residuen zu charakterisieren. Die Identifizierung dieser Residuen in MSAs ist eine wichtige Aufgabe um die strukturellen Grundlagen und molekularen Mechanismen von Proteinfunktionen besser zu verstehen. Trotz der vielen Anzahl an Literatur über kompensatorische Mutationen sowie über die Sequenzkonservierungsanalyse für die Erkennung von wichtigen Residuen, haben vorherige Methoden meistens die biochemischen Eigenschaften von Aminosäuren nicht mit in Betracht gezogen, welche allerdings entscheidend für die Erkennung von kompensatorischen Mutationssignalen sein können. Jedoch werden kompensatorische Mutationssignale in MSAs oft durch das Rauschen verfälscht. Aus diesem Grund besteht ein weiteres Problem der Bioinformatik in der Trennung signifikanter Signale vom phylogenetischen Rauschen und beziehungslosen Paarsignalen. Das Ziel dieser Arbeit besteht darin Methoden zu entwickeln, welche biochemische Eigenschaften wie Ähnlichkeiten und Unähnlichkeiten von Aminosäuren in der Identifizierung von kompensatorischen Mutationen integriert und sich mit dem Rauschen auseinandersetzt. Deshalb entwickeln wir unterschiedliche Methoden basierend auf klassischer- und quantum Informationstheorie sowie multiple Testverfahren. Unsere erste Methode basiert auf der klassischen Informationstheorie. Diese Methode betrachtet hauptsächlich BLOSUM62-unähnliche Paare von Aminosäuren als ein Modell von kompensatorischen Mutationen und integriert sie in die Identifizierung von wichtigen Residuen. Um diese Methode zu ergänzen, entwickeln wir unsere zweite Methode unter Verwendung der Grundlagen von quantum Informationstheorie. Diese neue Methode unterscheidet sich von der ersten Methode durch gleichzeitige Modellierung ähnlicher und unähnlicher Signale in der kompensatorischen Mutationsanalyse. Des Weiteren, um signifikante Signale vom Rauschen zu trennen, entwickeln wir ein MSA-spezifisch statistisches Modell in Bezug auf multiple Testverfahren. Wir wenden unsere Methode für zwei menschliche Proteine an, nämlich epidermal growth factor receptor (EGFR) und glucokinase (GCK). Die Ergebnisse zeigen, dass das MSA-spezifisch statistische Modell die signifikanten Signale vom phylogenetischen Rauschen und von beziehungslosen Paarsignalen trennen kann. Nur unter Berücksichtigung BLOSUM62-unähnlicher Paare von Aminosäuren identifiziert die erste Methode erfolgreich die krankheits-assoziierten wichtigen Residuen der beiden Proteine. Im Gegensatz dazu, durch die gleichzeitige Modellierung ähnlicher und unähnlicher Signale von Aminosäurepaare ist die zweite Methode sensibler für die Identifizierung von katalytischen und allosterischen Residuen.
27

Alternative regression models to beta distribution under bayesian approach / Modelos de regressão alternativos à distribuição beta sob abordagem bayesiana

Paz, Rosineide Fernando da 25 August 2017 (has links)
Submitted by Aelson Maciera (aelsoncm@terra.com.br) on 2017-09-27T18:09:58Z No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5) / Approved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-10T18:16:14Z (GMT) No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5) / Approved for entry into archive by Ronildo Prado (producaointelectual.bco@ufscar.br) on 2017-10-10T18:16:22Z (GMT) No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5) / Made available in DSpace on 2017-10-10T18:23:04Z (GMT). No. of bitstreams: 1 TeseRFP.pdf: 2142415 bytes, checksum: 8dcd8615da0b442e9f1b52f35364715b (MD5) Previous issue date: 2017-08-25 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / The Beta distribution is a bounded domain distribution which has dominated the modeling the distribution of random variable that assume value between 0 and 1. Bounded domain distributions arising in various situations such as rates, proportions and index. Motivated by an analysis of electoral votes percentages (where a distribution with support on the positive real numbers was used, although a distribution with limited support could be more suitable) we focus on alternative distributions to Beta distribution with emphasis in regression models. In this work, initially we present the Simplex mixture model as a flexible model to modeling the distribution of bounded random variable then we extend the model to the context of regression models with the inclusion of covariates. The parameters estimation is discussed for both models considering Bayesian inference. We apply these models to simulated data sets in order to investigate the performance of the estimators. The results obtained were satisfactory for all the cases investigated. Finally, we introduce a parameterization of the L-Logistic distribution to be used in the context of regression models and we extend it to a mixture of mixed models. / A distribuição beta é uma distribuição com suporte limitado que tem dominado a modelagem de variáveis aleatórias que assumem valores entre 0 e 1. Distribuições com suporte limitado surgem em várias situações como em taxas, proporções e índices. Motivados por uma análise de porcentagens de votos eleitorais, em que foi assumida uma distribuição com suporte nos números reais positivos quando uma distribuição com suporte limitado seira mais apropriada, focamos em modelos alternativos a distribuição beta com enfase em modelos de regressão. Neste trabalho, apresentamos, inicialmente, um modelo de mistura de distribuições Simplex como um modelo flexível para modelar a distribuição de variáveis aleatórias que assumem valores em um intervalo limitado, em seguida estendemos o modelo para o contexto de modelos de regressão com a inclusão de covariáveis. A estimação dos parâmetros foi discutida para ambos os modelos, considerando o método bayesiano. Aplicamos os dois modelos a dados simulados para investigarmos a performance dos estimadores usados. Os resultados obtidos foram satisfatórios para todos os casos investigados. Finalmente, introduzimos a distribuição L-Logistica no contexto de modelos de regressão e posteriormente estendemos este modelo para o contexto de misturas de modelos de regressão mista.
28

Modelos preditivos para LGD / Predictive models for LGD

João Flávio Andrade Silva 04 May 2018 (has links)
As instituições financeiras que pretendem utilizar a IRB (Internal Ratings Based) avançada precisam desenvolver métodos para estimar a componente de risco LGD (Loss Given Default). Desde a década de 1950 são apresentadas propostas para modelagem da PD (Probability of default), em contrapartida, a previsão da LGD somente recebeu maior atenção após a publicação do Acordo Basileia II. A LGD possui ainda uma literatura pequena, se comparada a PD, e não há um método eficiente em termos de acurácia e interpretação como é a regressão logística para a PD. Modelos de regressão para LGD desempenham um papel fundamental na gestão de risco das instituições financeiras. Devido sua importância este trabalho propõe uma metodologia para quantificar a componente de risco LGD. Considerando as características relatadas sobre a distribuição da LGD e na forma flexível que a distribuição beta pode assumir, propomos uma metodologia de estimação da LGD por meio do modelo de regressão beta bimodal inflacionado em zero. Desenvolvemos a distribuição beta bimodal inflacionada em zero, apresentamos algumas propriedades, incluindo momentos, definimos estimadores via máxima verossimilhança e construímos o modelo de regressão para este modelo probabilístico, apresentamos intervalos de confiança assintóticos e teste de hipóteses para este modelo, bem como critérios para seleção de modelos, realizamos um estudo de simulação para avaliar o desempenho dos estimadores de máxima verossimilhança para os parâmetros da distribuição beta bimodal inflacionada em zero. Para comparação com nossa proposta selecionamos os modelos de regressão beta e regressão beta inflacionada, que são abordagens mais usuais, e o algoritmo SVR , devido a significativa superioridade relatada em outros trabalhos. / Financial institutions willing to use the advanced Internal Ratings Based (IRB) need to develop methods to estimate the LGD (Loss Given Default) risk component. Proposals for PD (Probability of default) modeling have been presented since the 1950s, in contrast, LGDs forecast has received more attention only after the publication of the Basel II Accord. LGD also has a small literature, compared to PD, and there is no efficient method in terms of accuracy and interpretation such as logistic regression for PD. Regression models for LGD play a key role in the risk management of financial institutions, due to their importance this work proposes a methodology to quantify the LGD risk component. Considering the characteristics reported on the distribution of LGD and in the flexible form that the beta distribution may assume, we propose a methodology for estimation of LGD using the zero inflated bimodal beta regression model. We developed the zero inflated bimodal beta distribution, presented some properties, including moments, defined estimators via maximum likelihood and constructed the regression model for this probabilistic model, presented asymptotic confidence intervals and hypothesis test for this model, as well as selection criteria of models, we performed a simulation study to evaluate the performance of the maximum likelihood estimators for the parameters of the zero inflated bimodal beta distribution. For comparison with our proposal we selected the beta regression models and inflated beta regression, which are more usual approaches, and the SVR algorithm, due to the significant superiority reported in other studies.
29

Estudo de expansões assintóticas, avaliação numérica de momentos das distribuições beta generalizadas, aplicações em modelos de regressão e análise discriminante

BRITO, Rejane dos Santos 20 March 2009 (has links)
Submitted by (ana.araujo@ufrpe.br) on 2016-08-10T13:00:13Z No. of bitstreams: 1 Rejane dos Santos Brito.pdf: 1642561 bytes, checksum: 084711a62c79f703133a032643c8d19f (MD5) / Made available in DSpace on 2016-08-10T13:00:13Z (GMT). No. of bitstreams: 1 Rejane dos Santos Brito.pdf: 1642561 bytes, checksum: 084711a62c79f703133a032643c8d19f (MD5) Previous issue date: 2009-03-20 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / We make a review about Edgeworth, Lugannani-Rice, Daniels and Cordeiro-Ferrari asymptotic approximations. We use the Cordeiro-Ferrari asymptotic approximation to approximate the gamma distribution G(m;f ) by the exponential distribution with mean a. In a further application, based on the statistical proposed by them, we approximate the t-Student distribution with n degrees of freedom using the normal standard distribution. Moreover, we realize a study about the functionalities of the beta generalized distributions. We obtain moments of the generalized beta distributions using the Lauricella and Kampé de Fériet generalized functions. Beyond this, we propose a new generalized beta distribution called beta power. Finally, we realize some applications in regression models by logistic regression and further more using discriminant analysis. / Inicialmente, realiza-se uma revisão literária sobre as expansões assintóticas de Daniels, Edgeworth, Lugannani-Rice e Cordeiro-Ferrari. Mediante uso da expansão de Cordeiro- Ferrari, torna-se possível realizar um estudo correspondente a aproximação da distribuição gama G(m;f ) em função da distribuição exponencial com média a. E, ainda, numa outra aplicação, faz-se a aproximação da distribuição t-Student com n graus de liberdade em função da distribuição normal padrão. Além disso, apresenta-se um estudo correspondente às funcionalidades das distribuições beta generalizadas e, ainda, a obtenção dos momentos das distribuições beta generalizadas mediante as funções de Lauricella e generalizada de Kampé de Fériet. Propõe-se, ainda, a generalização da distribuição power como sendo uma nova distribuição beta generalizada. Por fim, realizam-se algumas aplicações em modelos de regressão, mediante regressão logística, bem como em modelos de análise discriminante.
30

Modelos de regressão beta inflacionados / Inflated beta regression models

Raydonal Ospina Martinez 04 April 2008 (has links)
Nos últimos anos têm sido desenvolvidos modelos de regressão beta, que têm uma variedade de aplicações práticas como, por exemplo, a modelagem de taxas, razões ou proporções. No entanto, é comum que dados na forma de proporções apresentem zeros e/ou uns, o que não permite admitir que os dados provêm de uma distribuição contínua. Nesta tese, são propostas, distribuições de mistura entre uma distribuição beta e uma distribuição de Bernoulli, degenerada em zero e degenerada em um para modelar dados observados nos intervalos [0, 1], [0, 1) e (0, 1], respectivamente. As distribuições propostas são inflacionadas no sentido de que a massa de probabilidade em zero e/ou um excede o que é permitido pela distribuição beta. Propriedades dessas distribuições são estudadas, métodos de estimação por máxima verossimilhança e momentos condicionais são comparados. Aplicações a vários conjuntos de dados reais são examinadas. Desenvolvemos também modelos de regressão beta inflacionados assumindo que a distribuição da variável resposta é beta inflacionada. Estudamos estimação por máxima verossimilhança. Derivamos expressões em forma fechada para o vetor escore, a matriz de informação de Fisher e sua inversa. Discutimos estimação intervalar para diferentes quantidades populacionais (parâmetros de regressão, parâmetro de precisão) e testes de hipóteses assintóticos. Derivamos expressões para o viés de segunda ordem dos estimadores de máxima verossimilhança dos parâmetros, possibilitando a obtenção de estimadores corrigidos que são mais precisos que os não corrigidos em amostras finitas. Finalmente, desenvolvemos técnicas de diagnóstico para os modelos de regressão beta inflacionados, sendo adotado o método de influência local baseado na curvatura normal conforme. Ilustramos a teoria desenvolvida em um conjuntos de dados reais. / The last years have seen new developments in the theory of beta regression models, which are useful for modelling random variables that assume values in the standard unit interval such as proportions, rates and fractions. In many situations, the dependent variable contains zeros and/or ones. In such cases, continuous distributions are not suitable for modeling this kind of data. In this thesis we propose mixed continuous-discrete distributions to model data observed on the intervals [0, 1],[0, 1) and (0, 1]. The proposed distributions are inflated beta distributions in the sense that the probability mass at 0 and/or 1 exceeds what is expected for the beta distribution. Properties of the inflated beta distributions are given. Estimation based on maximum likelihood and conditional moments is discussed and compared. Empirical applications using real data set are provided. Further, we develop inflated beta regression models in which the underlying assumption is that the response follows an inflated beta law. Estimation is performed by maximum likelihood. We provide closed-form expressions for the score function, Fishers information matrix and its inverse. Interval estimation for different population quantities (such as regression parameters, precision parameter, mean response) is discussed and tests of hypotheses on the regression parameters can be performed using asymptotic tests. We also derive the second order biases of the maximum likelihood estimators and use them to define bias-adjusted estimators. The numerical results show that bias reduction can be effective in finite samples. We also develop a set of diagnostic techniques that can be employed to identify departures from the postulated model and influential observations. To that end, we adopt the local influence approach based in the conformal normal curvature. Finally, we consider empirical examples to illustrate the theory developed.

Page generated in 0.1064 seconds