• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Hydrogénation sélective de l’acide lévulinique en phase aqueuse par catalyse hétérogène / Selective hydrogenation of levulinic acid in aqueous phase

Corbel-Demailly, Louis 17 October 2014 (has links)
L'enjeu de cette thèse est d'identifier des systèmes catalytiques, actifs, sélectifs et stables pour la transformation de l'acide lévulinique (LevA) en 1,4-pentanediol (1,4-PDO) en phase aqueuse. Dans un premier temps, des catalyseurs monométalliques à base de ruthénium (Ru), palladium (Pd), platine (Pt) supportés sur charbon (C) ou sur oxyde de titane (TiO2) sont préparés et testés. Ces premiers résultats ont montré l'importance de certains paramètres sur les performances catalytiques observées. Les catalyseurs à base de Ru se sont révélés les plus actifs et sélectifs en 1,4-PDO (rendement maximal de 50%). L'utilisation de ces catalyseurs monométalliques favorise la formation importante de sous-produits et de réactions de craquage d'où des pertes de carbone transférées en phase gaz. Par imprégnation de différentes teneurs de rhénium (Re) ou de molybdène (Mo) sur ces catalyseurs monométalliques, des catalyseurs bimétalliques Re-Ru et Mo-Ru ont été préparés. L'ajout d'un promoteur permet d'augmenter la vitesse de la réaction de transformation du LevA et améliore significativement la sélectivité en 1,4-PDO (90%). Les mécanismes réactionnels mis en jeu ont été étudiés notamment en s'appuyant sur une modélisation cinétique et sur des tests de réactivité de molécules modèles identifiées comme intermédiaires réactionnels ou produits de la conversion du LevA en 1,4-PDO / The aim of our research project is the hydrogenation of the levulinic acid in aqueous phase into 1,4-pentadeniol using noble metal catalysts (Ru, Pd, Pt) supported on C or TiO2. First results have shown the effect of the metal, the method of preparation or the supports on catalytic performances. Monometallic Ru catalysts are active and selective into 1,4-PDO (maximum yield 50%). By using monometallic catalysts, an important formation of by-products and loss of carbon by cracking reactions was observed. By impregnating various amount of Re or Mo, bimetallic catalysts were prepared. Adding promoter both allows enhancing the reaction rate of LevA hydrogenation and improved the selectivity to 1,4-PDO up to 90%. In order to understand the mechanism, a kinetic modeling and stability test on intermediates or products of the reaction were realized
12

Valorisation de polyols en phase aqueuse sur catalyseurs bimétalliques supportés pour la production d'hydrocarbures / Polyols valorization in aqueous phase on bimetallic supported catalysts for hydrocarbons production

Messou, Davina Gnamien-Bla 09 December 2016 (has links)
La biomasse végétale (source de carbone renouvelable) peut être utilisée pour fabriquer des carburants liquides et produits de base pour la chimie. Ainsi depuis environ une dizaine d'années, se développe le procédé APHDO (Aqueous Phase HydroDeOxygenation) de transformation directe en phase aqueuse de polyols d'origine lignocellulosique (comme le sorbitol) en alcanes valorisables (C5-C6). Ce procédé repose sur une catalyse hétérogène bifonctionnelle métal/acide et fait intervenir des ruptures compétitives de liaisons C-C et C-O. L'objectif de la thèse est de mettre au point des systèmes bimétalliques supportés actifs et sélectifs pour la transformation du sorbitol en hexane. La modification d'un catalyseur de référence Pt/SiO2-Al2O3 par ajout de Re, Ir, Pd, Rh et Ru est effectuée par trois techniques de synthèse : co-imprégnation, imprégnations successives et dépôt par réduction catalytique. Les performances des catalyseurs bimétalliques sont comparées à isoconversion de sorbitol à celles des catalyseurs monométalliques parents pour un test catalytique réalisé en autoclave, avec une solution aqueuse à 10% massique de sorbitol, à 240°C et 60 bar de pression totale sous H2. Les produits se répartissent en phase gaz (CO2, alcanes en C1-C6) et liquide (composés oxygénés). Le sorbitane et l'isosorbide sont majoritairement formés en phase liquide, le dernier étant un intermédiaire clé de la transformation du sorbitol dans cette étude. Les catalyseurs Pt-Ru/SiO2-Al2O3 s'avèrent les plus sélectifs pour la réaction, celui préparé par imprégnations successives conduisant à une plus forte proportion de C6 en phase gaz comparé aux deux monométalliques Pt/SiO2-Al2O3 et Ru/SiO2-Al2O3. / Plant Biomass (renewable source of carbon) can be used to make liquid fuels and basic products of chemistry. So, from about ten years, the APHDO (Aqueous Phase HydroDeOxygenation) process is developed for the direct transformation in aqueous phase of polyols from Biomass (such as sorbitol) into renewable alkanes (C5-C6). This process involves a metal/acid bifunctional heterogeneous catalysis and competitive C-O and C-C bond cleavages. The aim of the PhD work is to develop supported bimetallic systems active and selective for the transformation of sorbitol into hexane. The modification of a reference Pt/SiO2-Al2O3 catalyst by addition of Re, Ir, Pd, Rh and Ru is carried out by three synthesis methods: co-impregnation, successive impregnations and deposit by catalytic reduction. The performances of bimetallic catalysts are compared at sorbitol isoconversion to those of the parent monometallic catalysts for a catalytic test carried out in an autoclave with an aqueous solution of sorbitol (10 wt%) at 240°C and 60 bar total pressure under dihydrogen. The products are distributed in the gas phase (CO2, C1-C6 alkanes) and in the liquid phase (oxygenated compounds). Sorbitan and isosorbide are predominantly formed in the liquid phase, the latter being a key intermediate of sorbitol transformation in this study. Pt-Ru/SiO2-Al2O3 catalysts are the most selective for the reaction, the one prepared by successive impregnations leads to a higher proportion of C6 in gaseous phase compared to both monometallic Pt/SiO2-Al2O3 and Ru/SiO2-Al2O3 catalysts.
13

Mathematical and Molecular Modeling of Ammonia Electrolysis with Experimental Validation

Estejab, Ali 14 June 2018 (has links)
No description available.
14

Metal-Organic Framework (MOF) Compounds : Synthesis, Structure, Sensing and Catalytic Studies

Jana, Ajay Kumar January 2017 (has links) (PDF)
The metal-organic framework (MOF) compounds have witnessed rapid growth in the past decade and currently emerged as a highly unique area in the field of chemistry, materials science, and multiple branches of engineering. It presents applications in diverse fields such as gas sorption, catalysis, ionic conductivity, sensing etc. These compounds are built by the inorganic metal ions which are bridged by organic linkers to form extended structures. These compounds are mainly synthesized by either one-pot synthesis or in a sequential manner. In the former case, the inorganic metal ions and the respective organic linker are reacted together in a particular solvent or solvent mixture, whereas in the later case, a metalloligand is prepared by using the organic linker and the primary metal ion, which react with the secondary metal ion forming the desired structure. In this thesis, the synthesis of metal-organic framework compounds by one-pot synthesis as well as the sequential synthesis is presented. The structures of all the synthesized compounds have been determined by single crystal X-ray diffraction technique. The prepared compounds were employed in the study of sensing of nitroaromatic compounds, toxic metal ions and highly oxidizing anions. In addition, detailed studies of heterogeneous catalysis employing the prepared MOFs were investigated along with catalysis by metal nanoparticle incorporated within MOFs. In select cases, the labile nature of the lattice water molecules was established by performing in-situ single crystal to single crystal (SCSC) structural transformation studies. In addition, the proton conductivity and the magnetic behavior have also been studied. Chapter 1 of the thesis presents a brief overview on metal-organic framework compounds and summarizes its various important properties. In chapter 2, the synthesis, structure, and characterization of heterometallic metal-organic framework compounds using 2-mercaptonicotinic (H2mna) and Cu(I) / Ag(I) based two metalloligands, [Cu6(Hmna)6] and [Ag6(Hmna)2(mna)4](NH4)4 are presented. In chapter 3, we present the synthesis, structure and nitroaromatic sensing behavior of [Ag6(mna)6](NH4)6 metalloligand based heterometallic metal-organic framework compounds. In chapter 4, the synthesis, structure and Lewis acid catalytic behavior of 6-mercaptonicotinic acid based heterometallic metal-organic framework compounds are presented. In chapter 5, the stabilization of the palladium nanoparticles in the newly synthesized 1,10-phenanthroline based metal-organic framework compounds and their catalytic behavior is presented. In chapter 6, we present the synthesis, structure and the sensing behavior of hazardous chemicals such as toxic metal ions and highly oxidizing anions. In addition, the adsorption and desorption of synthetic dye molecules by the metal-organic framework compounds are also presented.
15

Stockage solide et génération d’hydrogène : du borohydrure de sodium NaBH4 à l’hydrazine borane N2H4BH3 : catalyse, cinétique et mécanismes / Solid-state hydrogen storage and generation : from sodium borohydride NaBH4 to hydrazine borane N2H4BH3 : catalysis, kinetic and mechanisms

Hannauer, Julien 12 December 2011 (has links)
Parmi les procédés de stockage d’hydrogène étudiés actuellement, le stockage solide de l’hydrogène dans les hydrures chimiques, associée à sa génération par une réaction de solvolyse, est une technologie prometteuse. La première partie de cette thèse s’articule donc autour de l’étude de la solvolyse de deux composés étudiés ces dernières années, le borohydrure de sodium NaBH4 et l’ammoniaborane NH3BH3. Le dégagement contrôlé d’hydrogène peut alors se faire par des réactions d’hydrolyse. La comparaison de la cinétique de la réaction d’hydrolyse du NaBH4 avec celle de la méthanolyse du NaBH4 nous a permis de décrire ces réactions avec le modèle de Langmuir-Hinshelwood. Concernant la réaction d’hydrolyse du NH3BH3, nos recherches se sont focalisées sur la préparation in situ de catalyseurs présentant de fortes activitéspar l’étude des hydrolyses spontanées et catalysées de mélanges NH3BH3-NaBH4. La seconde partie de la thèse est consacrée au développement d’un nouveau système N2H4BH3-eau pour la génération d’hydrogène. Les premiers essais, réalisés avec des métaux de transition comme catalyseur, nous ont permis de mettre en évidence que cette réaction se faisait en deux étapes catalytiques, l’hydrolyse de BH3, puis la décomposition de N2H4.Une faible sélectivité pour la décomposition complète de N2H4 étant atteinte dans ces conditions, la suite de l’étude a porté sur la préparation de catalyseurs sélectifs. La stratégie adoptée a été l’utilisation de matériaux bimétalliques Ni-Pt. La sélectivité de la réaction est alors dépendante de la teneur en Pt et une sélectivité maximum de 93 % pour la seconde étape de la réaction a été obtenue avec Ni0,89Pt0,11 / Hydrogen use as a potential alternative solution to fossil fuels is hindered by engineering problems, its storage being one of the most prominent. Various storage methods are under investigation but solid-state storage in chemical hydrides appears to be convenient with regards to their storage capacities, safety and cost. The first part of this thesis deals with the solvolysis reaction of two well known compounds, sodium borohydride NaBH4 and ammonia borane NH3BH3. The hydrogen can be easily released by hydrolysis at ambient temperature. We focused on understanding the kinetics and reaction mechanisms of NaBH4 hydrolysis. Thus, we compared this reaction with NaBH4 methanolysis, and found that the Langmuir-Hinshelwood model well captures the kinetics of the reaction. Concerning the NH3BH3 hydrolysis reaction, we concentrated our efforts on the in situ preparation of highly-active catalysts. This was achieved by studying the spontaneous and catalyzed hydrolysis of NaBH4-NH3BH3 mixtures. The second part of the thesis is dedicated to the development of the N2H4BH3-water system for hydrogen generation. Initial tests using transition metals as catalysts allowed us to determine that the reaction takes place in two steps, the hydrolysis of BH3 and the N2H4 decomposition. Since Rh as catalyst exhibits only a 29 % selectivity for the complete decomposition of N2H4, the strategy was set up to use Ni-Pt bimetallic nanoparticles. It has been found that the selectivity for the reaction is dependent on the Pt content in the Ni-Pt alloy and a selectivity of 93 % was reached in the presence of Ni0,89Pt0,11 nanoparticles
16

Investigation of multicomponent catalyst systems for type-selective growth of SWCNTs by CVD

Motaragheb Jafarpour, Saeed 25 February 2020 (has links)
Excellent electronic properties of semiconducting single-walled carbon nanotubes (sc-SWCNTs) motivated the investigation for using them in different application areas such as microelectronics, sensorics, MEMS and MOEMS. However, challenges arise from the lack of selectivity with respect to electronic type and chirality as well as ensuring high quality, high purity and well-aligned SWCNTs during fabrication process. Catalytic chemical vapour deposition (CCVD) has shown great potential in direct synthesis of high quality SWCNTs with chiral or type selectivity. This thesis addresses three important aspects for growth of sc-SWCNT covering method development for fast screening for complex catalyst systems, process development for type-selective growth of SWCNTs and transfer of processes to a specific CVD reactor capable to scale the processes up to 8-inches wafer embedded in the microtechnologic process line. Multi-wavelengths Raman spectroscopy is applied to analyze type and chiral compositions of SWCNTs. In addition, different microscopic techniques of SEM, TEM and AFM are utilized to analyze surface morphology of catalyst layers and size of the nanoparticles as well as structure-related properties of SWCNTs. Initially, systematic studies on monometallic Co and bimetallic Co-Mo systems with different bilayer thickness configurations and their influences on the properties of grown SWCNTs are conducted on chip level. It is shown by adjusting the catalyst deposition conditions of bilayer catalyst as well as optimization of gas environments in CCVD process, structure-related properties of SWCNTs are dramatically enhanced. Furthermore, by utilizing shutter-assisted sputter deposition of gradient layer catalyst, a fast and efficient method for screening different bilayer configurations of Co-Mo, Co-Ru and Ni-Ru has been developed. By utilizing gradient layer deposition with finely resolved catalyst thicknesses, random network SWCNT is grown on bimetallic Co-Mo system under certain process condition with 45% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of long and high quality SWCNT. In contrast, bimetallic Co-Ru system under certain process condition is developed to grow in-plane SWCNT with 85% (at 633 nm) and 75% (at 785 nm) semiconducting enrichment of short and low quality SWCNT. In addition, different configurations of the bimetallic Co-Ru system are prepared from salt precursors by spin-coating technique. For a mixture of cobalt (II) chloride and ruthenium (III) nitrosylacetate, random network SWCNT with 70% (at 633 nm) and 95% (at 785 nm) semiconducting enrichment of long SWCNTs with high quality is obtained on wafer level. Random network SWCNT with high degree of semiconducting enrichment is used as channel material for thin-film transistors fabrication that results in CNTFET with on/off ratio in the order of 10*3:Bibliographic description 3 Vorwort 9 List of abbreviations and symbols 11 1 Introduction 15 2 Fundamentals of carbon nanotubes 21 2.1 Chemical bonds in carbon structures 21 2.2 Different allotropes of carbon 22 2.3 History of carbon nanotubes research 23 2.4 Structure of carbon nanotubes 24 2.5 Electronic properties of carbon nanotubes 26 2.6 Synthesis of carbon nanotubes 27 2.7 Growth mechanism of carbon nanotubes by CCVD 29 2.8 Catalyst for CCVD synthesis of SWCNTs 31 2.8.1 Catalyst nanoparticle formation from thin film 32 2.8.2 Mechanism of solid state dewetting 33 2.9 CCVD synthesis of SWCNT 35 2.10 Selective synthesis of SWCNT 37 3 Experimental 39 3.1 Preparation of different catalyst/support systems 39 3.1.1 Homogenous layer of catalyst prepared by PVD 39 3.1.2 Gradient layer deposition of catalyst by IBSD 41 3.1.3 Homogenous layer of catalyst prepared by spin coating 45 3.2 CVD reactors for synthesis of SWCNT 46 3.2.1 R&D vertical flow CVD reactor with showerhead 46 3.2.2 Industrial vertical flow CVD reactor with showerhead 47 3.2.3 Horizontal flow tube CVD reactor 49 3.3 Methods for characterization 50 3.3.1 Atomic force microscopy 50 3.3.2 Raman spectroscopy 50 3.3.3 Spectroscopic ellipsometry 56 3.3.4 X-ray reflection 56 3.3.5 Scanning electron microscopy 56 3.3.6 Transmission electron microscopy 56 4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57 4.1 Monometallic Co catalyst supported on SiO2 57 4.1.1 Surface and morphological analysis of SiO2/Co 57 4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59 4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61 4.2 Monometallic Co catalyst supported on Al2O3 62 4.2.1 Surface and morphological analysis of Al2O3/Co 62 4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63 4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67 4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68 4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68 4.3.2 Effect of IBSD deposition parameters on NP formation 71 4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72 4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76 4.4 Comparison of SWCNT from different catalyst configurations 77 5 Growth of SWCNT using gradient layer of catalyst 79 5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79 5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80 5.2.1 Growth of SWCNT by utilizing shutter at position I 80 5.2.2 Growth of SWCNT by utilizing shutter at position II 82 5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83 6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87 6.1 SWCNT growth on gradient layer of monometallic catalyst 87 6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87 6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89 6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90 6.2 SWCNT growth on gradient layer of bimetallic catalyst 92 6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92 6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95 6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98 6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100 7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103 7.1 Effect of CCVD growth temperature on SWCNT properties 103 7.2 Effect of catalyst calcination temperature on SWCNT properties 103 7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105 7.3.1 Monolayer configuration of different Co precursors 105 7.3.2 Bilayer configuration of Co and Ru precursors 106 7.3.3 Trilayer configuration of Co and Ru precursors 107 7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109 7.3.5 Comparison of SWCNTs on different catalyst configurations 110 8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113 8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113 8.2 Effect of CVD reactor geometry on SWCNT properties 115 8.3 Effect of catalyst preparation technique on SWCNT properties 116 8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117 9 SWCNT-based device fabrication 119 9.1 Different approaches for SWCNT-based device fabrication 119 9.2 Growth-based technique for SWCNT-based device fabrication 121 9.2.1 FET fabrication on in-plane random network SWCNT 121 9.2.2 FET fabrication on out-of-plane random network SWCNT 123 10 Summary and outlook 127 Appendix 131 Bibliography 171 List of tables 183 List of figures 185 Versicherung 197 Theses 199 Curriculum vitae 201 List of publications 203 / Die hervorragenden elektronischen Eigenschaften von halbleitenden, einwandigen Kohlenstoff-Nanoröhren (sc-SWCNTs haben die Untersuchung dazu veranlasst, sie in verschiedenen Anwendungsbereichen wie der Mikroelektronik, Sensorik, MEMS und MOEMS einzusetzen. Herausforderungen ergeben sich jedoch aus dem Mangel an Selektivität bezüglich elektronischer Bauart und Chiralität sowie der Sicherstellung hoher Qualität, hoher Reinheit und gut aufeinander abgestimmter SWCNTs während des Herstellungsprozesses. Die Katalytische chemische Gasphasenabscheidung (CCVD) zeigt ein großes Potenzial bei der direkten Synthese von hochqualitativen SWCNTs mit Chiraler- oder Typenselektivität. Diese Dissertation behandelt drei wichtige Aspekte für das Wachstum von sc-SWCNT und deckt die Methodenentwicklung des schnellen Screenings für komplexe Katalysatorsysteme, die Prozessentwicklung für das typselektive Wachstum von SWCNTs und die Übertragung von Prozessen in einen spezifischen CVD-Reaktor ab. Der Reaktor, welcher eingebettet in die mikrotechnologische Prozesslinie ist, kann Wafer bis zu 8- Zoll verarbeiten. Raman-Spektroskopie mit mehreren Wellenlängen wird verwendet, um die Zusammensetzung von SWCNTs zu analysieren. Darüber hinaus werden verschiedene mikroskopische Techniken von REM, TEM und AFM verwendet, um die Oberflächenmorphologie von Katalysatorschichten und die Größe der Nanopartikel sowie die strukturbezogenen Eigenschaften von SWCNTs zu analysieren. Zunächst werden systematische Untersuchungen an monometallischen Co- und Bimetall-Co-Mo-Systemen mit unterschiedlichen Doppelschichtdickenkonfigurationen durchgeführt und deren Einfluss auf die Eigenschaften gewachsener SWCNTs auf Chipebene untersucht. Es wird gezeigt, dass durch Einstellung der Katalysatorabscheidungsbedingungen des Doppelschichtkatalysators sowie durch Optimierung der Gasumgebung im CCVD-Prozess die strukturbezogenen Eigenschaften von SWCNTs drastisch verbessert werden können. Darüber hinaus wurde durch die Verwendung eines Gradientenschichtkatalysators, welcher mittels einer Shutter-unterstützten Zerstäubungsabscheidung hergestellt wurde, ein schnelles und effizientes Verfahren zum Untersuchen verschiedener Doppelschichtkonfigurationen von Co-Mo, Co-Ru und Ni-Ru entwickelt. Unter Verwendung der Abscheidung einer Gradientenschicht mit einer fein aufgelösten Katalysatordicke wurden ungerichtete SWCNTs auf einem bimetallischen Co-Mo-System unter definierten Prozessbedingungen mit 45% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von langem und hochwertigem SWCNT gezüchtet. Im Gegensatz dazu wird das bimetallische Co-Ru-System unter definierten Prozessbedingungen entwickelt, um SWCNT in der Ebene mit 85% (bei 633 nm) und 75% (bei 785 nm) halbleitender Anreicherung von kurzer und geringer Qualität von SWCNT zu wachsen. Außerdem werden verschiedene Konfigurationen des Bimetall-Co-Ru-Systems aus Salzvorläufern durch Spin-Coating-Technik hergestellt. Es zeigt sich für die Bimetallkonfiguration, die durch Mischung von Cobalt (II) -chlorid und Ruthenium (III) -nitrosylacetat, ein zufälliges Netzwerk SWCNT zu 70% (bei 633 nm) und 95% (bei 785 nm) halbleitender Anreicherung langer SWCNTs mit hohem Anteil hergestellt wurde Qualität wird auf Waferebene gewachsen. Ein zufälliges Netzwerk-SWCNT mit einem hohen Grad an halbleitender Anreicherung wird als Kanalmaterial für die Herstellung von Dünnschichttransistoren verwendet, was zu einem CNTFET mit einem Ein / Aus-Verhältnis um 10*3 führte.:Bibliographic description 3 Vorwort 9 List of abbreviations and symbols 11 1 Introduction 15 2 Fundamentals of carbon nanotubes 21 2.1 Chemical bonds in carbon structures 21 2.2 Different allotropes of carbon 22 2.3 History of carbon nanotubes research 23 2.4 Structure of carbon nanotubes 24 2.5 Electronic properties of carbon nanotubes 26 2.6 Synthesis of carbon nanotubes 27 2.7 Growth mechanism of carbon nanotubes by CCVD 29 2.8 Catalyst for CCVD synthesis of SWCNTs 31 2.8.1 Catalyst nanoparticle formation from thin film 32 2.8.2 Mechanism of solid state dewetting 33 2.9 CCVD synthesis of SWCNT 35 2.10 Selective synthesis of SWCNT 37 3 Experimental 39 3.1 Preparation of different catalyst/support systems 39 3.1.1 Homogenous layer of catalyst prepared by PVD 39 3.1.2 Gradient layer deposition of catalyst by IBSD 41 3.1.3 Homogenous layer of catalyst prepared by spin coating 45 3.2 CVD reactors for synthesis of SWCNT 46 3.2.1 R&D vertical flow CVD reactor with showerhead 46 3.2.2 Industrial vertical flow CVD reactor with showerhead 47 3.2.3 Horizontal flow tube CVD reactor 49 3.3 Methods for characterization 50 3.3.1 Atomic force microscopy 50 3.3.2 Raman spectroscopy 50 3.3.3 Spectroscopic ellipsometry 56 3.3.4 X-ray reflection 56 3.3.5 Scanning electron microscopy 56 3.3.6 Transmission electron microscopy 56 4 Growth of SWCNT using PVD catalyst layer in vertical CVD reactor A 57 4.1 Monometallic Co catalyst supported on SiO2 57 4.1.1 Surface and morphological analysis of SiO2/Co 57 4.1.2 Analysis of CCVD grown SWCNT on SiO2/Co 59 4.1.3 Chirality and diameter analysis of SWCNTs on SiO2/Co 61 4.2 Monometallic Co catalyst supported on Al2O3 62 4.2.1 Surface and morphological analysis of Al2O3/Co 62 4.2.2 Analysis of CCVD grown SWCNT on Al2O3/Co 63 4.2.3 Chirality and diameter analysis of SWCNTs on Al2O3/Co 67 4.3 Bimetallic Co-Mo catalyst supported on Al2O3 68 4.3.1 Surface and Morphological analysis of Al2O3/Co-Mo 68 4.3.2 Effect of IBSD deposition parameters on NP formation 71 4.3.3 Analysis of CCVD grown SWCNT on Al2O3/Co-Mo 72 4.3.4 Chirality and diameter analysis of SWCNTs on Al2O3/Co-Mo 76 4.4 Comparison of SWCNT from different catalyst configurations 77 5 Growth of SWCNT using gradient layer of catalyst 79 5.1 Analysis of grown SWCNT on Co-Mo using step gradient A 79 5.2 Analysis of grown SWCNT on Co-Mo using step gradient B 80 5.2.1 Growth of SWCNT by utilizing shutter at position I 80 5.2.2 Growth of SWCNT by utilizing shutter at position II 82 5.2.3 Effect of vacuum breaking on CCVD growth of SWCNT 83 6 Growth of SWCNT using gradient layer catalyst in vertical CVD reactor B 87 6.1 SWCNT growth on gradient layer of monometallic catalyst 87 6.1.1 Analysis of CCVD grown SWCNT on gradient layer of Co 87 6.1.2 Analysis of CCVD grown SWCNT on gradient layer of Ni 89 6.1.3 Comparison of SWCNT properties for monometallic of Ni and Co 90 6.2 SWCNT growth on gradient layer of bimetallic catalyst 92 6.2.1 Analysis of CCVD grown SWCNT on gradient layer of Co-Mo 92 6.2.2 Analysis of CCVD grown SWCNT on gradient layer of Co-Ru 95 6.2.3 Comparison of SWCNTs on Co-Mo and Co-Ru catalyst systems 98 6.2.4 Analysis of CCVD grown SWCNTs on gradient layer of Ni-Ru 100 7 Growth of SWCNT using spin-coated catalyst precursor in horizontal CVD reactor 103 7.1 Effect of CCVD growth temperature on SWCNT properties 103 7.2 Effect of catalyst calcination temperature on SWCNT properties 103 7.3 Analysis of CCVD grown SWCNT on Co and Co-Ru 105 7.3.1 Monolayer configuration of different Co precursors 105 7.3.2 Bilayer configuration of Co and Ru precursors 106 7.3.3 Trilayer configuration of Co and Ru precursors 107 7.3.4 Monolayer configuration of Mixture Co and Ru precursors 109 7.3.5 Comparison of SWCNTs on different catalyst configurations 110 8 Growth of SWCNT using spin-coated catalyst precursor in vertical CVD reactor B 113 8.1 Growth of SWCNT on Mixture of Co and Ru precursors 113 8.2 Effect of CVD reactor geometry on SWCNT properties 115 8.3 Effect of catalyst preparation technique on SWCNT properties 116 8.4 Wafer-level growth of SWCNT on bimetallic Co-Ru 117 9 SWCNT-based device fabrication 119 9.1 Different approaches for SWCNT-based device fabrication 119 9.2 Growth-based technique for SWCNT-based device fabrication 121 9.2.1 FET fabrication on in-plane random network SWCNT 121 9.2.2 FET fabrication on out-of-plane random network SWCNT 123 10 Summary and outlook 127 Appendix 131 Bibliography 171 List of tables 183 List of figures 185 Versicherung 197 Theses 199 Curriculum vitae 201 List of publications 203

Page generated in 0.0749 seconds