• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Catalytic Transformations of Oxygenated Compounds Derived from Biomass Aqueous Effluents into High-Value Products

Fernández-Arroyo Naranjo, Alberto 10 October 2018 (has links)
[ES] La valorización de biomasa lignocelulósica y de sus derivados supone una alternativa sostenible frente a la utilización de fuentes fósiles para la producción de combustibles y productos químicos. En este contexto, el aprovechamiento de compuestos oxigenados presentes en efluentes acuosos derivados de tratamientos primarios de la biomasa (vía pirólisis rápida), tras un proceso de separación de fases, es fundamental en el esquema actual de bio-refinería. La estrategia consiste en transformar estos compuestos orgánicos en mezclas de hidrocarburos y compuestos aromáticos de utilidad como componentes y/o aditivos en combustibles líquidos. Los materiales catalíticos comúnmente estudiados para este tipo de procesos deben su actividad a sus propiedades multifuncionales. Sin embargo, su actividad en mezclas acuosas complejas y su estabilidad bajo condiciones de reacción más próximas a la realidad industrial continúan siendo un desafío en vistas a su futura aplicación. La presente Tesis Doctoral se centra en el diseño de nuevos catalizadores heterogéneos que sean activos y resistentes en reacciones de condensación consecutivas en fase acuosa de mezclas de compuestos oxigenados ligeros (C1-C4) bajo condiciones de reacción moderadas. En este sentido, este trabajo difiere de los estudios habituales que emplean compuestos modelo de manera individual y en ausencia de agua. En primer lugar, óxidos mixtos (incluyendo CexZr1-xO e hidrotalcitas), que han sido ampliamente utilizados en reacciones de condensación y cetonización, muestran buenos resultados catalíticos en la condensación en fase acuosa, pero graves problemas de estabilidad debido principalmente al leaching de la fase activa de estos materiales. Esto demuestra la necesidad de desarrollar nuevos catalizadores ácidos capaces de operar en sistemas complejos en presencia de agua y ácidos orgánicos, bajo condiciones de reacción moderadas. En este sentido, la adición de HF durante la síntesis de catalizadores basados en TiO2, permite obtener materiales donde se expone mayoritariamente el plano {001}, que es catalíticamente más activo. Además, los sitios ácidos de Lewis presentes en estos materiales de TiO2 facetados, presentan una gran estabilidad en reacciones de condensación, especialmente en presencia de ácidos y grandes cantidades de agua. Esta estrategia permite desarrollar materiales con mejor actividad catalítica y estabilidad que otros catalizadores comerciales basados en TiO2. Por otra parte, la síntesis hidrotermal de óxidos metálicos basados en Nb y W-Nb permite obtener materiales cuya estructura cristalina, propiedades texturales y propiedades ácidas pueden ser modificadas controlando la composición y las condiciones de calcinación aplicadas. Esto permite obtener catalizadores optimizados respecto a los empleados en literatura, que muestran gran actividad y elevada estabilidad en reacciones de condensación de compuestos oxigenados en fase acuosa. Por último, se han desarrollado nuevos materiales basados en óxidos mixtos de estaño, titanio y/o niobio (SnxTiyNbzO) preparados por co-precipitación que presentan mayoritariamente la estructura tipo rutilo del SnO2, la cual posee características hidrófobas. El control de la composición y las condiciones de calcinación permite obtener óxidos con estructuras cristalinas uniformes, altas áreas superficiales y mayor densidad de sitios ácidos de Lewis respecto a los respectivos óxidos comerciales. Estos materiales son catalizadores activos y muy resistentes en la valorización de compuestos oxigenados presentes en efluentes acuosos derivados de distintos tratamientos de la biomasa. / [EN] The valorisation of lignocellulosic biomass and its derivatives has become a sustainable alternative to the use of fossil sources for the production of fuels and chemicals. In this context, the conversion of light oxygenated compounds present in aqueous effluents derived from primary treatments of biomass (i.e. fast pyrolysis), after a phase separation process via water addition is a key step in the actual bio-refinery scheme processes. The strategy is based on the transformation of these low-value water-soluble oxygenated compounds into a mixture of hydrocarbons and aromatics useful for blending with automotive fuels. In general, the activity of the catalysts employed in these processes is based on their bifunctional character. Nonetheless, their activity in complex aqueous mixtures and their stability under faithful operating conditions close to industrial scenarios are critical challenges to be further applied. This thesis comprises a detailed work in the design of new solid catalysts with high activity and stability in consecutive aqueous-phase condensation reactions of light oxygenated compounds (C1-C4) mixtures under moderated process conditions. In this sense, this work differs from usual probe molecules studies performed even in the absence of water. Firstly, mixed oxides (including CexZr1-xO and hydrotalcite-derived materials) were employed as they have been widely studied in condensation and ketonization reactions. These materials show good catalytic results in the liquid-phase condensation of light oxygenates, but strong catalysts deactivation was observed due to the active phase partial leaching. Therefore, new heterogeneous acid catalysts must be developed in order to meet these new process requirements: complex aqueous environments with high contents of organic acids and moderated reaction conditions. In this sense, the addition of aqueous HF during TiO2 catalysts synthesis is essential to selectively control the preferential growth of catalytic more reactive {001} TiO2 facets. Moreover, Lewis acid sites on faceted TiO2 materials have great stability in condensation reactions, especially in the presence of organic acids and high water contents. Thus, this strategy allows obtaining materials that show better catalytic results and stability than other commercial titanium oxides. Moreover, hydrothermal synthesized Nb- and WNb-mixed oxides have shown the advantage of having crystalline structure, area and acid properties modified by tailoring their composition and post-synthesis heat-treatments conditions. Optimized NbOx and WNbO materials show higher activity and stability in the aqueous-phase condensation of oxygenated compounds than other commercial samples, commonly employed in literature Finally, new acid catalysts prepared via co-precipitation based on tin, titanium and niobium (SnxTiyNbzO) mixed oxides have been developed. These materials mainly present SnO2 rutile-phase crystalline structure, which has been claimed to have interesting hydrophobic characteristics. Tailoring of composition and calcination conditions allows obtaining mixed oxides with uniform crystalline structures, enhanced surface areas and a higher concentration of Lewis acid sites compared to analogous commercial catalysts. These materials show high activity and stability in the valorisation of oxygenated compounds present in aqueous effluents derived from different biomass processes. / [CA] La valorització de biomassa lignocel·lulòsica i dels seus derivats suposa una alternativa sostenible enfront de la utilització de fonts fòssils per a la producció de combustibles i productes químics. En aquest context, l'aprofitament de compostos oxigenats presents en efluents aquosos derivats de tractaments primaris de la biomassa (via piròlisi ràpida), després d'un procés de separació de fases, és fonamental en l'esquema actual de bio-refineria. L'estratègia consisteix a transformar aquests compostos orgànics en mescles d'hidrocarburs i compostos aromàtics d'utilitat com a components o additius en combustibles líquids. Els materials catalítics comunament estudiats per a aquest tipus de processos deuen l'activitat a les seues propietats multifuncionals; no obstant això, la seua activitat en mescles aquoses complexes i la seua estabilitat sota condicions de reacció més pròximes a la realitat industrial continuen sent un desafiament amb vista a la seua futura aplicació. La present tesi doctoral se centra en el disseny de nous catalitzadors heterogenis que siguen actius i resistents en reaccions de condensació consecutives en fase aquosa de mescles de compostos oxigenats lleugers (C1-C4) sota condicions de reacció moderades. En aquest sentit, aquest treball difereix dels estudis habituals, que empren compostos model de forma individual i en absència d'aigua. En primer lloc, òxids mixts (inclosos CexZr1-xO i hidrotalcites), que han sigut àmpliament utilitzats en reaccions de condensació i cetonització, mostren bons resultats catalítics en la condensació en fase aquosa, però greus problemes d'estabilitat a causa principalment de la lixiviació de la fase activa d'aquests materials. Això demostra la necessitat de desenvolupar nous catalitzadors àcids capaços d'operar en sistemes complexos en presència d'aigua i àcids orgànics, sota condicions de reacció moderades. En aquest sentit, l'addició d'HF durant la síntesi de catalitzadors basats en TiO2, permet obtenir materials on s'exposa majoritàriament el plànol {001}, que és catalíticament més actiu. A més, els llocs àcids de Lewis presents en aquests materials de TiO2 facetats, presenten una gran estabilitat en reaccions de condensació, especialment en presència d'àcids i grans quantitats d'aigua. Aquesta estratègia permet desenvolupar materials amb millor activitat catalítica i estabilitat que altres catalitzadors comercials basats en TiO2. D'altra banda, la síntesi hidrotermal d'òxids metàl·lics basats en Nb i W-Nb permet obtenir materials l'estructura cristal·lina, les propietats texturals i les propietats àcides dels quals poden ser modificats controlant la composició i les condicions de calcinació aplicades. Això permet obtenir catalitzadors optimats respecte als emprats en la literatura, que mostren gran activitat i elevada estabilitat en reaccions de condensació de compostos oxigenats en fase aquosa. Finalment, s'han desenvolupat nous materials basats en òxids mixts d'estany, titani o niobi (SnxTiyNbzO) preparats per coprecipitació, que presenten majoritàriament l'estructura tipus rútil del SnO2, la qual té característiques hidròfobes. El control de la composició i les condicions de calcinació permeten obtenir òxids amb estructures cristal·lines uniformes, altes àrees superficials i major densitat de llocs àcids de Lewis respecte als respectius òxids comercials. Aquests materials són catalitzadors actius i molt resistents en la valorització de compostos oxigenats presents en efluents aquosos derivats de diferents tractaments de la biomassa. / Fernández-Arroyo Naranjo, A. (2018). CATALYTIC TRANSFORMATIONS OF OXYGENATED COMPOUNDS DERIVED FROM BIOMASS AQUEOUS EFFLUENTS INTO HIGH-VALUE PRODUCTS [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/110080
2

Pyrolyse flash de biomasse lignocellulosique : comment catalyser la désoxygénation au cours des mécanismes primaires et secondaires ? / Flash Pyrolysis of lignocellulosic biomass : is it possible to catalyse deoxygenation reactions during primary or secondary mechanisms ?

Eibner, Simon 14 December 2015 (has links)
La pyrolyse flash est un procédé attrayant pour convertir la biomasse lignocellulosique en bio-huiles, intermédiaires énergétiques potentiellement valorisables en biocarburants et/ou intermédiaires chimiques. L’émergence d’une telle filière requiert la mise au point d’une stratégie catalytique efficace et innovante qui permette de diminuer la teneur en oxygène des bio-huiles. Les mécanismes de pyrolyse ont lieu à la fois au sein de la biomasse - mécanismes primaires - et en phase gazeuse - mécanismes secondaires-. Par conséquent, notre démarche a consisté à tester si l’imprégnation d’un précurseur catalytique dans la biomasse permet d’agir sur les mécanismes primaires afin de favoriser la désoxygénation. Puis, nous avons cherché à favoriser le craquage catalytique des vapeurs de pyrolyse en utilisant un catalyseur hétérogène.Nos travaux montrent que la pyrolyse de biomasse imprégnée avec des sels de nitrates - Mn, Fe, Co, Ni, Cu, Zn et Ce - favorise principalement la dépolymérisation de la cellulose aux dépens de sa fragmentation. En outre, la présence d’anions nitrate catalyse la formation d’anhydrosaccharides déshydratés, employés pour synthétiser des molécules complexes. Après pyrolyse, un support carboné contenant des nanoparticules métalliques est obtenu et peut être valorisé pour catalyser la désoxygénation de molécules modèles en phase vapeur. Néanmoins, l’activité catalytique de ces charbons est limitée par leur faible surface spécifique, comme le montre la comparaison avec un charbon actif commercial contenant des nanoparticules métalliques. Parmi les métaux testés, le catalyseur à base de cérine s’avère très efficace pour réduire l’acidité des bio-huiles et catalyser la formation de dérivés phénoliques. De plus, ce catalyseur de craquage catalytique permet de réduire la teneur en oxygène de l’huile de pyrolyse et d’augmenter sa densité énergétique. Ce résultat encourageant suggère que le craquage catalytique pourrait être mis en œuvre en complément de l’hydrodésoxygénation dans une filière de production de biocarburants. Cette alternative permet de réduire le coût de l’hydrodésoxygénation et notamment la consommation de dihydrogène. / Flash pyrolysis of biomass is seen as a new way to produce bio-oils which can be converted to biofuels and chemicals. However, development of such pyrolysis processes requires implementation of an efficient and innovative catalytic strategy to deoxygenate bio-oils. Pyrolysis mechanisms involve both biomass degradation reactions - primary mechanisms - and gas phase reactions - secondary mechanisms -. As a consequence, our work has been directed along two research lines. First, we tested whether impregnating a catalyst precursor in the biomass can act on the primary pyrolysis mechanisms in order to promote deoxygenation. Then we sought to enhance the catalytic cracking of pyrolysis vapours using a heterogeneous catalyst.Pyrolysis experiments of impregnated biomass show that metal nitrate salts - Mn, Fe, Co, Ni, Cu, Zn and Ce – mainly enhance cellulose depolymerisation at the expense of its fragmentation. Moreover, nitrate anions inserted in biomass promote the production of dehydrated anhydrosugars which can be used to synthesize value-added molecules. Pyrolysis of impregnated biomass also results in the formation of a catalytically active charcoal containing metal nanoparticles. Those charcoals were successfully employed to catalyse the deoxygenation of model vapour phase compounds. However, it was found that the catalytic activity of these charcoals was limited by their low specific surface area, in comparison with the measured performance measured for commercially available activated charcoal containing metal nanoparticles. Among the tested metals, the ceria-based catalyst was found both to efficiently reduce bio-oil acidity and to enhance phenol yields. Additionally, this catalytic cracking catalyst reduces the oxygen content in the pyrolysis bio-oil and increases its heating value. This encouraging result suggests that catalytic vapour cracking could be integrated in a hydrodeoxygenation-based process to produce biofuels. This option should reduce the cost of hydrodeoxygenation and in particular the hydrogen consumption.
3

Synthesis and properties of the Ni-based catalysts for the valorization of ethanol and glycerol via steam reforming reaction for hydrogen production / Synthèse et propriétés de catalyseurs à base de Ni pour la valorisation d'éthanol et de glycérol par vaporeformage catalytique pour la production d'hydrogène

Arapova, Marina 01 November 2017 (has links)
Les trois familles catalytiques à base de perovskites contenant du Ni: massives [[LnFe1-x-yNiyMxO3-δ] (Ln=La, Pr; B=Co, Mn, Ru), sur support [mLnNi0.9Ru0.1О3/nMg-γ-Al2O3] (Ln = La, Pr) et structuré [mLaNi0.9Ru0.1О3/nMg-γ-Al2O3/mousses structurées] ont été synthétisés, caractérisés et testés dans les réactions de vaporeformage de l'éthanol et de glycérol. Les effets de la composition chimique et de la méthode de synthèse sur les propriétés structurelles et texturales, ainsi que sur la réductibilité des échantillons initiaux ont été évalués. L'utilisation préférentielle de Pr, Ni et Ru dans la composition de catalyseur a été démontrée pour toutes les familles. Le rôle essentiel de la modification du support γ-Al2O3 avec ≥ 10%mass de Mg introduit par imprégnation humide pour le catalyseur supporté a également été prouvé. Des catalyseurs de la composition optimale fournissant une activité élevée dans le vaporeformage de l'éthanol et du glycérol à T = 650 °C ont été trouvés: le meilleur catalyseur massif à base du précurseur PrFe0.6Ni0.3Ru0.1O3 fournit une activité élevée pendant au moins 7 h, grâce à la facilité de leur réduction et les propriétés d'oxydoréduction de l'oxyde de praséodyme formé. Les catalyseurs sur support 10-20% PrNi0.9Ru0.1O3/10-15%Mg-γ-Al2O3 fournissent le meilleur rendement en hydrogène (~ 90%) et la stabilité pendant ~ 20 heures. Le catalyseur structuré optimisé à base de la plaquette Ni-Al métallique fournit le rendement stable en hydrogène 80-87% dans l’oxy-vaporeformage d'éthanol dans les mélanges concentrés (concentration d'éthanol de 30%) dans un réacteur pilote pendant 40 heures. Les résultats obtenus rendent ces systèmes catalytiques structurés très prometteurs à utiliser dans les générateurs électrochimiques à base de piles à combustible avec l'utilisation de ressources renouvelables peu coûteuses comme bio-huile. / The three catalytic families based on Ni-containing perovskites: massive [LnFe1-x-yNiyMxO3-δ] (Ln=La, Pr; B=Co, Mn, Ru), supported [mLnNi0.9Ru0.1О3/nMg-γ-Al2O3] (Ln = La, Pr) and structured [mLaNi0.9Ru0.1О3/nMg-γ-Al2O3/structured foams] were synthesized, characterized and tested in the reactions of the ethanol and glycerol steam reforming. The effects of the chemical composition and synthesis method on the structural and textural properties, as well as on reducibility of initial samples were evaluated. The preferred use of Pr, Ni and Ru in the catalyst composition was shown for all families. The essential role of the effective γ-Al2O3 support modification with the ≥10 % wt. of Mg introduced by wetness impregnation for the supported catalyst was also proved. Catalysts of the optimal composition providing a high activity in steam reforming of both ethanol and glycerol at T= 650 °С were found: the best massive catalyst based on the PrFe0.6Ni0.3Ru0.1O3 precursor provides high activity for at least 7 hours, which is explained by the ease of their reduction and the oxidation-reduction properties of the praseodymium oxide formed. Supported 10-20% PrNi0.9Ru0.1O3/10-15%Mg-γ-Al2O3 provide the greatest yield of hydrogen (~ 90%) and stability for ~ 20 hours. Structured catalyst based on the metal Ni-Al platelet provides the yield of hydrogen 80-87% in oxy-steam and steam reforming of ethanol in the concentrated mixtures (ethanol concentration of 30%) in a pilot reactor for 40 hours. The results obtained make these structured catalytic systems very promising to use in electrochemical generators based on fuel cells with the use of inexpensive renewable resource – bio-oil.
4

Implications of Bio-modification on Moisture Damage Mechanisms in Asphalt Binder Matrix

January 2020 (has links)
abstract: Bio-modification of asphalt binder brings significant benefits in terms of increasing sustainable and environmental practices, stabilizing prices, and decreasing costs. However, bio-modified asphalt binders have shown varying performance regarding susceptibility to moisture damage; some bio-oil modifiers significantly increase asphalt binder's susceptibility to moisture damage. This variability in performance is largely due to the large number of bio-masses available for use as sources of bio-oil, as well as the type of processing procedure followed in converting the bio-mass into a bio-oil for modifying asphalt binder. Therefore, there is a need for a method of properly evaluating the potential impact of a bio-oil modifier for asphalt binder on the overall performance of asphalt pavement, in order to properly distinguish whether a particular bio-oil modifier increases or decreases the moisture susceptibility of asphalt binder. Therefore, the goal of this study is a multi-scale investigation of bio-oils with known chemical compositions to determine if there is a correlation between a fundamental property of a bio-oil and the resulting increase or decrease in moisture susceptibility of a binder when it is modified with the bio-oil. For instance, it was found that polarizability of asphalt constituents can be a promising indicator of moisture susceptibility of bitumen. This study will also evaluate the linkage of the fundamental property to newly developed binder-level test methods. It was found that moisture-induced shear thinning of bitumen containing glass beads can differentiate moisture susceptible bitumen samples. Based on the knowledge determined, alternative methods of reducing the moisture susceptibility of asphalt pavement will also be evaluated. It was shown that accumulation of acidic compounds at the interface of bitumen and aggregate could promote moisture damage. It was further found that detracting acidic compounds from the interface could be done by either of neutralizing active site of stone aggregate to reduce affinity for acids or by arresting acidic compounds using active mineral filler. The study results showed there is a strong relation between composition of bitumen and its susceptibility to moisture. This in turn emphasize the importance of integrating knowledge of surface chemistry and bitumen composition into the pavement design and evaluation. / Dissertation/Thesis / Doctoral Dissertation Civil, Environmental and Sustainable Engineering 2020
5

In-situ Catalytic Upgrading of Pyrolysis Vapor

Guda, Vamshi Krishna 09 December 2011 (has links)
The rising fuel prices, environmental concerns over the emission of greenhouse gases, and the limited availability of fossil fuels led to the current focus on developing alternative fuel sources that are sustainable and environmentally benign. Lignocellulosic biomass, due to its high carbon value, abundance and for being greenhouse gas neutral, is a promising alternative energy resource. Fast pyrolysis of lignocellulosic biomass produces high energy density liquid fuel, called bio-oil, which has the potential as transportation fuel. But, crude bio-oils are chemically complex liquids with high oxygen contents (40 % oxygen content), high viscosity, low pH, low thermal stability, and poor heating values (20 MJ/Kg). Therefore, bio-oils must be substantially upgraded (de-oxygenated) to highly stable, non-corrosive, and high calorific value liquid fuels prior to their use as transportation fuels. This research was conducted to investigate the efficiency of various acid catalysts in upgrading (cracking) the oxygenated pine wood pyrolysis vapors to high quality liquid fuel. Initial catalyst screening studies proved that zeolite acidity and pore structure is essential for effective cracking of pyrolysis vapors. Low space velocities and moderate temperatures were found to be favorable for the deoxygenation of pyrolysis vapors. Various zeolites were tested, of which HZSM-5 with low Si/Al ratio was found to be an effective cracking catalyst. But the use of zeolites resulted in poor liquid yields. Zeolites were promoted with transition metal ions in order to inhibit the secondary cracking reactions occurring on Brönsted acid sites. The metal-promoted biunctional catalysts were found to be the most effective catalysts, among all the catalysts employed in this research, in promoting hydrocarbon forming reactions without adversely affecting the liquid yields. Catalyst coking was unavoidable but the addition of metal ions to zeolites lowered the extent of coking. TG analysis of used catalysts indicated that the catalysts can be regenerated by calcining at 600-650 °C.
6

Pyrolyse de la biomasse en réacteur cyclone - Recherche des conditions optimales de fonctionnement / Biomass pyrolysis in a cyclone reactor - Research of the optimal operating conditions

Ndiaye, Fatou Toutie 11 March 2008 (has links)
Les procédés conventionnels de transformation thermique de la biomasse sont conçus pour la production d’huiles ou de gaz riches en CO, CO2, H2 et hydrocarbures légers à des fins énergétiques ou chimiques. Le pilote de pyrolyse rapide utilisé dans cette étude comporte un réacteur cyclone, chauffé à ses parois, et capable de mettre en oeuvre la pyroliquéfaction ou la pyrogazéification par le simple jeu des conditions opératoires. Les produits de réaction (charbon, huiles et gaz) sont récupérés et analysés. Les bilans de matière massiques et élémentaires (C, H, O) bouclent de façon très satisfaisante. Les basses températures de paroi et faibles débits de gaz vecteur favorisent la pyroliquéfaction. La production d’huiles augmente avec le débit de biomasse. La taille des particules a une faible influence sur les sélectivités en gaz, liquides et charbon. Un modèle de fonctionnement du cyclone est établi en tenant compte de l’hydrodynamique des phases gaz et solide ainsi que des lois de transferts de chaleur paroi-gaz et paroi-solides dans le cyclone. Ce modèle inclut également un schéma cinétique de pyrolyse rapide intégré dans un modèle de décomposition de la particule, ainsi qu’un modèle de craquage des vapeurs. Validé successivement sur la cellulose puis sur le bois, il permet de prédire les variations des sélectivités en fonction des conditions opératoires. Le modèle montre que les réactions de craquage se déroulent majoritairement dans une mince couche limite proche des parois chaudes. On propose deux lois générales (pyrogazéification et pyroliquéfaction) regroupant les différents paramètres opératoires contrôlant les performances du réacteur / The usual processes of biomass thermal upgrading are designed for the production of bio-oils or of gases rich in CO, CO2, H2 and light hydrocarbons for energy or chemical productions. The laboratory-scaled set-up used in this study includes a cyclone reactor, heated at its walls and able to carry out the fast pyroliquefaction or pyrogazeification by simply changing the operating conditions. The reaction products (charcoal, liquids and gases) are recovered and analyzed. The masses and elementary (C, H, O) balances closures are very accurate. Pyroliquefaction conditions are favoured by low walls temperatures and small carrier gas flowrates. The bio-oils fractions increase with the biomass flowrate. The particles size has only a weak influence on gas, liquids and charcoal selectivities. A model representing the cyclone behaviour is established by taking into account the hydrodynamics of the gases and solids, and the wall-gas and wall-solids heat transfer laws inside the cyclone. This general model includes also a model of particle decomposition (scheme of fast pyrolysis in competition with heat transfers) and a model of vapours cracking. Validated successively with cellulose and then with wood, it allows to predict the variations of the selectivities according to the operating conditions. The model shows that the cracking reactions occur mainly inside a thin boundary layer close to the hot walls. Two laws (pyrogazeification and pyroliquefaction) gathering the various operational parameters that control the performances of the reactor are finally proposed
7

Extraction de composés phénoliques à partir d’une bio-huile de lignine / Extraction of phenolic compounds from lignin bio-oil

Cesari, Laëtitia 09 October 2017 (has links)
La biomasse ligno-cellulosique est principalement constituée de cellulose, d’hémicellulose et de lignine. Par conversion thermochimique, la lignine se transforme en bio-huile riche en composés phénoliques. Ces composés phénoliques sont généralement récupérés à l’aide de plusieurs étapes d‘extractions liquide-liquide consécutives impliquant des solvants aqueux et organiques. À l’aide d’une approche multi-échelle, nous avons étudié, la faisabilité et l’efficacité d’un liquide ionique, la [Choline][NTf2], pour l’extraction liquide-liquide de ces composés. En effet, l’utilisation de ce solvant permettrait d’améliorer l’efficacité d’extraction, tout en diminuant la toxicité et les coûts liés à l’utilisation de solvants organiques classiques. Des calculs quantiques ont été effectués afin de mieux comprendre les interactions régissant les systèmes clés de ces extractions. Les structures des composés phénoliques dans leur état isolé ou en présence de solvant montrent que les conformations sont stabilisées par la présence de liaisons hydrogène. De plus, la détermination des énergies d’interaction indique que la [Choline][NTf2] est efficace pour l’extraction de composés phénoliques présents en solution aqueuse. Par ailleurs, la détermination des diagrammes de phases des systèmes binaires {eau-composé + phénolique} et des systèmes ternaires {eau + composé phénolique + [Choline][NTf2]} montre que l’extraction des composés est également possible à une échelle macroscopique. Les paramètres NRTL issus de ces expériences ont permis de simuler l’extraction de trois composés phénoliques majoritairement présents dans les bio-huiles, i.e. le phénol, le guaiacol et le syringol, et ce, à moindre coût. Enfin, l’extraction de ces composés à partir d’une bio-huile obtenue par pyrolyse rapide de lignine a également été particulièrement efficace avec le liquide ionique [Choline][NTf2]. De ce fait, cette étude multi-échelle a permis de montrer que la [Choline][NTf2] est un excellent solvant pour la récupération des composés phénoliques. Enfin, l’étude des propriétés anti-oxydantes témoigne de la valeur ajoutée de ces composés, notamment à travers leur pouvoir réducteur et leur propriété anti-radicalaire / The lignocellulosic biomass is mostly composed of cellulose, hemicellulose and lignin. Upon thermal conversion of lignin, a bio-oil rich in phenolic compounds is obtained. These latter are then generally recovered through several liquid-liquid extraction involving aqueous and organic solvents. In this work we investigated, by a multi-scale study, the feasibility and the efficiency of the ionic liquid [Choline][NTf2] for the extraction of these phenolic compounds by liquid-liquid extraction. Indeed, such a solvent could improve the extraction efficiency and at the same time, reduce the toxicity and the cost of the classic organic solvents. Quantum calculations were performed in order to better understand the interaction governing the key systems of these extractions. The structures of the phenolic compounds in their isolated forms and in contact with solvents show that the conformations are stabilized by the presence of hydrogen bonds. More, the determination of the interaction energies indicates that the [Choline][NTf2] ionic liquid is efficient for the extraction of phenolic compounds present in aqueous solution. Furthermore, the study of phase diagrams of binary systems {water-phenolic compound} and ternary systems {water-phenolic compound-[Choline][NTf2]} show that the extraction of these compounds is also possible at a macroscopic scale. Then, the NRTL parameters coming from these experiments allowed the simulation of the extraction of three compounds mostly present in the bio-oils, namely phenol, guaiacol and syringol, as so at low cost. Finally, the extraction of these compounds from bio-oil obtained from lignin fast pyrolysis was also particularly efficient with the [Choline][NTf2] ionic liquid. Therefore, this multi-scale study demonstrated that [Choline][NTf2] is an excellent solvent for the recovery of phenolic compounds. Lastly, the study of the antioxidant properties testify the added-value of these compounds, especially through their reducing power and their radical scavenging capacity
8

High resolution mass spectrometry for molecular characterization of bio-oils produced by pyrolysis of lignocellulosic biomass / Étude par spectrométrie de masse à haute résolution de bio-huiles issues de la pyrolyse de la biomasse lignocellulosique

Hertzog, Jasmine 23 October 2017 (has links)
Les produits de la pyrolyse de la biomasse lignocellulosique présentent un potentiel important dans le cadre des ressources renouvelables. Cependant, leur utilisation directe est réduite en raison de leur importante complexité et de leur teneur élevée en oxygène. Il est nécessaire de leur faire subir des traitements de désoxygénation et/ou de craquage. Afin de déterminer quels sont les traitements les mieux adaptés, il est indispensable de connaitre aussi précisément que possible leur composition. Les travaux menés dans le cadre de cette thèse portent sur la mise en place de méthodologies d’analyse robustes pour obtenir la description la plus exhaustive possible des bio-huiles. Pour cela, la spectrométrie de masse à résonance cyclotronique d’ions à transformée de Fourier (FT-ICR MS) a été employée en couplage avec différentes sources d’ionisation. L’électronébulisation (ESI), dans des conditions contrôlées d’ionisation, permet d’observer plus particulièrement les composés dérivés de la cellulose et de l’hémicellulose ainsi que des lipides et des dérivés de la lignine. La photoionisation à pression atmosphérique (APPI) et la désorption-ionisation par laser (LDI) sont plus spécifiques des espèces relatives à la lignine. Celles qui sont alors observées sont plus insaturées qu’en ESI. La complémentarité des différentes techniques d’analyse a été établie et a permis la description détaillée de bio-huiles. Cette méthodologie a été appliquée à des bio-huiles avant et après traitement de désoxygénation/cracking sur zéolithes. L’analyse par ESI FT-ICR MS a mis en évidence la sélectivité de ces catalyseurs envers les dérivés cellulosiques alors que l’étude par APPI et LDI a permis de déterminer la nature des composés obtenus après traitement catalytique. Ceux-ci présentent une diminution de la teneur en oxygène et résultent, pour une partie d’entre eux, du craquage catalytique sur les composés de la bio-huile originelle / The products of lignocellulosic biomass pyrolysis are potential sources of renewable materials such as bio-fuels, biochars, and chemicals. However, their ready-to-use capacity is limited by their high chemical complexity and their high oxygen content. Therefore, they have to be upgraded by different treatments such as deoxygenation and/or cracking. In order to assess the most suited upgrading process, it is necessary to obtain an extensive composition description of the raw pyrolysis products. The works carried out during this PhD thesis are dealing with the development of though analytical methods to reach the most detailed composition description of bio-oils. This study was performed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) using different ionization sources. The electrospray ionization (ESI), in controlled-conditions, ensures to ionize the cellulose and the hemicellulose derived compounds as well as the lipids and the lignin derivatives. The atmospheric pressure photoionisation (APPI) and the laser desorption/ionization (LDI) allow specifically to detect more unsaturated pyrolytic lignin species. The combination of the different results ensures to obtain an extensive bio-oil description. The established methodology was applied to raw and upgraded (catalytic deoxygenation/cracking treatment on different zeolites) bio-oils. The ESI FT-ICR MS measurements evidenced the selectivity of the used catalysts on sugaric compounds whereas the APPI and LDI highlighted the nature of the resulting compounds which are less oxygenated and produced, for a part of them, by catalytic cracking

Page generated in 0.0303 seconds