Spelling suggestions: "subject:"biocapteurs."" "subject:"biocapteur.""
61 |
Optical detection of (bio)molecules / Détection optique des (bio)moléculesJia, Kun 10 December 2013 (has links)
Les biocapteurs optiques ont connu une évolution sans précédent au cours des dernières années, principalement en raison de la forte interaction entre la biotechnologie, l’optique et la chimie des matériaux. Dans cette thèse, deux différentes plates-formes de biocapteurs optiques ont été conçues pour la détection sensible et spécifique des biomolécules. Plus précisément, le premier système de détection optique est construit sur la base de la bioluminescence de cellules bactériennes d'Escherichia coli génétiquement modifiées. L’émission de lumière induite par cette interaction peut donc être utilisée pour la détection des substances toxiques. Le second système utilise des nanoparticules de métaux précieux (or et argent) aux propriétés plasmoniques accordables qui permettent de sonder les interactions des biomolécules spécifiques à l'interface nano-bio par la résonance plasmonique de surface (LSPR). Ces nanoparticules ont été obtenues par traitement thermique à haute température d’un film métallique déposé sur du verre à l’aide d’une grille de TEM ou déposé sur une couche de bactéries fixée sur le verre. Après une optimisation appropriée des nanostructures métalliques en termes de morphologie et de fonctionnalisation, une sensibilité élevée et une grande spécificité peuvent être simultanément obtenues avec ces immunocapteurs plasmonique. Ces deux plateformes ont été utilisées pour détecter des pesticides comme le carbofuran et l’atrazine / Optical biosensors have witnessed unprecedented developments over recent years, mainly due to the lively interplay between biotechnology, optical physics and materials chemistry. In this thesis, two different optical biosensing platforms have been designed for sensitive and specific detection of (bio)molecules. Specifically, the first optical detection system is constructed on the basis of bioluminescence derived from engineered Escherichia coli bacterial cells. Upon stressed by the toxic compounds, the bacterial cells produce light via a range of complex biochemical reactions in vivo and the resulted bioluminescent evolution thus can be used for toxicant detection. The bacterial bioluminescent assays are able to provide competitive sensitivity, while they are limited in the specificity. Therefore, the second optical detection platform is built on the localized surface plasmon resonance (LSPR) immunosensors. In this optical biosensor, the noble metal (gold and silver) nanoparticles with tunable plasmonic properties are used as transducer for probing the specific biomolecules interactions occurred in the nano-bio interface. These nanoparticles were obtained after a high temperature thermal treatment of an initially thin-metallic film deposited on a glass substrate through a TEM grid or on a bacteria layer fixed on the glass. After appropriate optimization on metal nanostructures morphology and surface biomodification, the applicable sensitivity and specificity can be both guaranteed in this LSPR immunosensor
|
62 |
Etude, caractérisation et optimisation expérimentales de nano-capteurs plasmoniques / Experimental study, characterization and optimization of plasmonic nanosensorsProust, Julien 22 January 2014 (has links)
Venir sonder de faibles quantités de molécules nécessite des capteurs ultra-sensibles. Il a été démontré que les capteurs plasmoniques pouvaient remplir ce rôle. Toutefois, même après trente ans de recherches, beaucoup de questions restent sans réponses. Dans cette étude nous tentons d'y répondre : que se passe-t-il lorsqu'une molécule s'adsorbe sur la surface d'une nanoparticule ? Lorsqu'une monocouche de molécule s'adsorbe ? Et que se passe-t-il pour les molécules suivantes ? Peut-on améliorer simplement la sensibilité et la lisibilité des nano-capteurs plasmoniques? Nous démontrons expérimentalement un comportement singulier lorsque la quantité de molécules dans le champ proche des nanoparticules est très faible, typiquement de quelques zeptogrammes. Afin de mesurer cette infime quantité de matière, des solutions d'amplification des signaux sont étudiées comme l'intégration de capteurs sur des micro-lentilles axicon, ou encore sur des nano-cavités de type Fabry-Perot. Nous avons développé les micro-lentilles axicon afin de palier la faible intensité du signal émanant de nanoparticules uniques. Elles ont pour but de redistribuer le champ électromagnétique, en faisceau de Bessel de faible ouverture numérique, donc facilement mesurable. Les nano-cavités optiques ont, quant à elles, étaient développées afin de diminuer l'amortissement des résonances plasmon et ainsi affiner les résonances et augmenter la lisibilité des capteurs.Toutes ces études ont un même but : détecter in-situ les marqueurs de maladies à des concentrations infinitésimales afin de traiter les patients avant les premiers symptômes / Ultra sensitive sensors are required to probe very low concentrations of molecules. It has been shown that plasmonic nano-sensors could play this role. Nevertheless, even after thirteen years of research, a lot of questions remain unanswered.We will try to answer them in this study: what happens when a single molecule is adsorbed on a nanoparticle surface? In a monolayer? And what happens for the next layer of molecules? Can we easily enhance the sensitivity and the readability of sensors? We demonstrate experimentally a singular behavior when the quantity of molecules in the near-field region is very low, typically in the zeptogram level. To measure the low quantity of matter, different techniques to enhance the signal are studied: integration of sensor on axicon micro-lenses of Fabry-Perot like nano-cavities. We developed axicon micro-lenses to increase the intensity of unique nanoparticle signal. They redistribute the electromagnetic field into a Bessel beam with low numerical aperture, allowing an easy collection in far field. Nano-cavities have been designed to decrease the damping and refine the plasmonic resonance to increase the readability of the sensors. All these studies have the same target: to detect in-situ disease markers at very low concentrations in order to treat the patients before the first symptoms
|
63 |
Développement de nouveaux outils bio-analytiques pour la détection de biotoxines aquatiquesCatanante, Gaelle 11 December 2014 (has links)
Ces dernières décennies, la dégradation continue de la qualité des eaux a engendré une augmentation des blooms algaux toxiques en zones côtières. Les biotoxines libérées de façon ubiquitaire lors de ces blooms, représentent un danger épidémique important pour l’homme et l’animal. Afin de limiter les risques de contamination et les pertes économiques, les organismes compétents ont mis en place des programmes de surveillance et ont établi des seuils de toxicité (OMS: 1 µg de MC-LR/L ; EFSA : 160 µg éq OA /kg de chair de coquillage). Cependant, les méthodes d’analyse préconisées sont longues et coûteuses, il est donc nécessaire de développer des nouvelles techniques d’analyse. Dans ce contexte, l’objectif de cette thèse a été de concevoir des outils analytiques rapides, fiables et adaptables sur le terrain afin de détecter la présence des toxines les plus nocives: les microcystines (MCs) et l’acide okadaïque (OA). En premier lieu, des bioessais colorimétriques basés sur l’inhibition des protéines phosphatases par ces toxines ont été développés. Les limites de détection obtenues ont été très inférieures aux limites maximales autorisées. Par conséquence, les tests mis au point sur microplaques ont été adaptés pour élaborer des biocapteurs électrochimiques. Les seuils de sensibilités obtenus sont conformes aux normes imposées et les tests pourront être ainsi utilisés in situ. Du fait de leurs nombreux avantages, les aptamères sont devenus depuis peu des éléments de reconnaissance alternatifs aux anticorps et aux enzymes. Afin d’améliorer la sensibilité et la stabilité des outils proposés, un aptacapteur sans marquage et réutilisable pour la détection de l’OA a été finalement conçu. / The past decades have witnessed water quality degradation due to overwhelming anthropic activities. In this context, production of biotoxins in response to increasing harmful algal blooms is a point of vital concern for human and animal health. In order to overcome bio-contamination and related economic losses, relevant authorities have established toxicity levels and monitoring program for ubiquitous toxins. However, current analysis are expensive and time consuming, so it is necessary to develop fast, reliable and field adaptable methods to assure food and water safety. Based on above described consequences, the objective of the research was to design inexpensive biotools for the detection of most toxic and widespread toxins including: microcystins (MCs) and okadaïc acid (OA).The first approach was to perform colorimetric enzymatic bioassays based on the inhibition of commercial and genetically modified proteins phosphatase by toxins. The obtained detection limit (LOD) were many folds lower than maximum limit defined by WHO (1 µg of MC-LR/L) and EFSA (160 µg eq OA/kg in shellfish meat). Subsequently, developed colorimetric methodology was adapted to design electrochemical biosensors for toxins detection. Electrochemical transduction was performed by Differential Pulse Voltammetry, showed a good LOD with the possibility of being used as a field portable device.With many advantages over antibody and enzyme, aptamers have recently emerged as powerful class of nucleic acids able to recognize specific targets. To further improve the analytical figure of merit, aptamers were used to design reusable label-free biosensors for OA detection.
|
64 |
Extraction et caractérisation biochimique des polyphénol oxydases de champignons et leur application en biocatalyse supportée / Extraction and biochemical caracterization of polyphenol oxidases from mushrooms and their application in biocatalysisGouzi, Hicham 06 June 2014 (has links)
Ce travail concerne l'extraction d'enzymes de la famille des polyphénol oxydases à partir de champignons, leur caractérisation biochimique et leur immobilisation dans des matrices solides. Ces enzymes ont tout d'abord été extraites du champignon de Paris (Agaricus bisporus) puis partiellement purifiées. Une étude de leur activité enzymatique, de leur domaine de stabilité et de leur comportement thermique a été effectuée, ainsi que l'identification d'inhibiteurs. Cette approche a été étendue à la polyphénol oxydase de la truffe de désert (Terfezia leonis Tul.). Ces deux enzymes ont ensuite été piégées dans des gels de silice pour le dosage de la dopamine par un biocapteur optique et dans un gel d'alginate pour la dégradation du phénol. / This work is devoted to the extraction of enzymes belonging to the polyphenol oxidase family from mushrooms, their biochemical characterization and their immobilization in solid hosts. These enzymes were first extracted from Paris mushrooms (Agaricus bisporus) and partially purified. A study of their enzymatic activity, stability conditions and thermal behavior was performed, together with the identification of inhibitors. A similar approach was applied to polyphenol oxidase extracted from desert truffle (Terfezia leonis Tul.). These enzymes were then trapped in silica gels for dopamine determination using an optical biosensor and in an alginate gel for phenol degradation.
|
65 |
Bio-inspired protein nanowire : electrical conductivity and use as redox mediator for enzyme wiring / Nanofils bio-inspirés constitués de protéines : conductivité électrique et utilisation comme médiateur redoxAltamura, Lucie 27 January 2015 (has links)
Nous avons développé un nano-fil conducteur, constitué uniquement de protéines et bio-inspiré des nano-fils bactériens conducteurs. Pour cela, une protéine chimère a été créée par l'association d'une protéine prion capable de s'auto-assembler en fibre et d'une métalloprotéine, une rubrédoxine, capable d'effectuer des transferts d'électrons. Comme montré par des techniques de microscopies et de spectroscopies (absorbance UV-visible et RPE), la protéine chimère est capable de former des fibres à la surface desquelles on retrouve les rubrédoxines. Les propriétés électroniques des nano-fils ont été caractérisées par des mesures courant-tension sur des échantillons secs et par électrochimie. Les mesures courant-tension ont montré que la conduction se faisait par plusieurs mécanismes. Les acides aminés aromatiques présents au centre du domaine prion semblent impliqués dans un des mécanismes de conduction. Les mesures électrochimiques ont quant à elles montré une conduction par sauts entre rubrédoxines. De plus, nous avons utilisé les nano-fils comme interface entre une enzyme, la laccase, et une électrode. Un courant électrocatalytique dû à la réduction de l'oxygène a été obtenu prouvant ainsi la capacité de nos nano-fils à agir comme médiateurs d'électrons. Les nano-fils conducteurs faits de protéines sont une structure intéressante pour comprendre le transport de charges dans les systèmes biologiques et sont également très prometteurs pour le développement de la bioélectronique et plus particulièrement de biocapteurs et de biopiles enzymatiques / The discovery of bacterial nanowires able to transport electrons on long range within biofilms and transfer them to electrodes is very promising for the development of bioelectronics and bio-electrochemical interfaces. However, their assembling process, their molecular composition and the electron transport mechanism are not fully understood yet. We took inspiration from bacterial nanowires to design conductive protein nanowires. We fused the sequence of a rubredoxin, an electron transfer iron-sulfur protein, to the sequence of HET-s(218-289), a prion domain that forms amyloid fibril by self-assembling under well-defined conditions. The resulting chimeric protein forms amyloid fibrils and displays redox proteins organized on the surface as shown by microscopy techniques and UV-Vis and EPR spectroscopy. Electron transfer mechanisms were studied in “dry state” current-voltage (I-V ) measurements and as hydrated film by electrochemistry. Dry state measurements allowed to evidence several conduction pathways with a possible role of aromatic residues in the conduction. Electrochemistry revealed electron transport by hopping between adjacent redox centers. This property allowed the use of our protein as mediator between a multicopper enzyme (laccase) and an electrode for electrocatalytic reduction of oxygen. These protein nanowires are interesting structures for the study of charge transport mechanisms in biological systems but are also very promising for the design of biosensors and enzymatic biofuel cells.
|
66 |
Imagerie SPR optimisée en résolution pour l'étude et la détection de bactéries / Resolution optimized SPR imaging for the study and detection of bacteriaBoulade, Marine 18 April 2019 (has links)
L’étude, la détection et l’identification de pathogènes est une problématique majeure pour la sécurité alimentaire et la médecine. Cependant, les pathogènes bactériens présents à de faibles concentrations nécessitent souvent une période de plus de 36h pour être identifiés par les méthodes standards. Ce délai est extrêmement contraignant pour des domaines où la rapidité du diagnostic est un facteur clé. Il y a donc une forte demande pour le développement d’outils pour mieux comprendre le comportement bactérien et ainsi développer des techniques de détection plus rapides et plus performantes.Les systèmes d’imagerie SPR sont largement utilisés pour l’analyse d’interactions moléculaires, car ils permettent une mesure en parallèle, en temps réel et sans marquage, tout en étant faciles d’utilisation et compatibles avec des milieux complexes. Cette technique a montré son efficacité pour l'étude et la détection de bactéries en utilisant les interactions moléculaires avec les anticorps, mais les délais de détection restent pénalisants.Dans ce contexte, un nouveau système d’imagerie permettant l’étude et la détection spécifique de pathogènes bactériens performant est développé en mettant à profit les avancées récentes en imagerie SPR optimisée en résolution. Notre système permet d'améliorer les temps de détection de pathogènes en milieux modèles grâce à sa capacité à détecter des bactéries individuelles. Il peut également être utilisé pour l'étude de l'interaction entre bactéries et surfaces spécifiques. Des premiers tests montrent que notre instrument est capable de caractériser le comportement bactérien de plusieurs souches bactériennes en interaction avec des surfaces fonctionnalisées par des espèces chimiques différentes / The study, detection and identification of pathogens is a major issue for food safety and medicine. However, bacterial pathogens present at low concentrations often require a period of more than 36 hours to be identified by standard methods. This delay is extremely constraining for areas where rapid diagnosis is a key factor. There is therefore a strong demand for the development of tools to better understand bacterial behavior and thus develop faster and more efficient detection techniques.SPR imaging systems are widely used for the analysis of molecular interactions, as they allow parallel, real-time and unlabeled measurement, while being easy to use and compatible with complex media. This technique has proven effective in the study and detection of bacteria using molecular interactions with antibodies, but detection times remain penalizing.In this context, a new imaging system allowing the study and specific detection of high-performance bacterial pathogens is being developed, taking advantage of recent advances in SPR imaging optimized in resolution. Our system improves pathogen detection times in model environments through its ability to detect individual bacteria. It can also be used to study the interaction between bacteria and specific surfaces. Initial tests show that our instrument is capable of characterizing the bacterial behaviour of several bacterial strains in interaction with surfaces functionalized by different chemical species.
|
67 |
Développement et caractérisation d'un biocapteur basé sur une nanoparticule multicouche et un transducteur polymérique pour des applications de génotypage rapideBrouard, Danny 19 April 2018 (has links)
La détection d'ADN par fluorescence est un sujet chaud au cours des dernières années. Un bon nombre de méthodes sont aujourd'hui instaurées et jouent un rôle important dans divers domaines tels que les sciences judiciaires, le diagnostique de maladies infectieuses, l'identification de mutations génétiques ou encore la détection d'agents pathogènes biologiques pour n'en nommer que quelques uns. Dans la majorité des cas, le nombre de séquences cible est si faible qu'il faut avoir recours à l'amplification enzymatique (PCR) avant ou encore pendant le processus analytique afin d'amener la concentration de Panalyte au delà du seuil de détectabilité. Pour contourner la PCR, plusieurs méthodes alternatives ont été développées mettant plutôt l'emphase sur une amplification du signal analytique généré lors d'événements de reconnaissance. L'exaltation plasmonique de la fluorescence (MEF) se distingue au sein de ces nouvelles stratégies. En positionnant un fluorophore à proximité d'une nanoparticule métallique, il est possible de rehausser son efficacité d'excitation mais également d'améliorer son taux d'émission radiative. De plus, le temps de vie de l'état excité est diminué, ce qui conduit à une photostabilité améliorée mais surtout à une meilleure détectabilité optique de l'espèce luminescente. L'objectif principal de cette thèse est de combiner la plasmonique à un polymère transducteur de la réaction d'hybridation, afin de développer un biocapteur ultra sensible pour des applications de détection d'ADN et de génotypage. La première partie de ce document est consacrée à la présentation des différents concepts théoriques retrouvés dans cette thèse soient la fluorescence, les mécanismes de transfert énergétiques intermoléculaires, le génotypage et la plasmonique. Ensuite suit la section expérimentale, dans laquelle les principales techniques instrumentales utilisées dans le cadre de ce projet y compris celles dédiées à la caractérisation de systèmes nanoparticulaires sont présentées. Pour finir, les résultats obtenus pour le développement, la caractérisation et l'utilisation d'un nouveau biocapteur nanoparticulaire combinant le MEF et un polymère transducteur sont détaillés dans trois articles publiés récemment.
|
68 |
Développement de nanoparticules plasmoniques pour le marquage cellulaire et la détection de micro-ARNsLambert, Marie-Pier 24 April 2018 (has links)
Les nouvelles stratégies pour la conception de nanomatériaux ont créé de nouvelles opportunités pour la recherche biomédicale et les applications cliniques. En raison de leur taille, les nanoparticules présentent des propriétés physiques et chimiques distinctives comparativement aux matériaux macroscopiques. Ces propriétés intéressantes ont poussé l’utilisation des nanotechnologies dans plusieurs applications biomédicales telles que l’imagerie cellulaire et la détection de molécules biologiques d’intérêt. Le marquage multiplex d’échantillons biologiques pour des expériences d’imagerie et de décompte cellulaire représente un avantage substantiel pour le diagnostic de maladies et d’infections. Dans le premier volet de ce projet, l’identification de différentes cellules a été réalisée par imagerie optique grâce à l’utilisation de nanocapteurs ayant des signatures spectrales distinctives. Les nanoparticules hybrides constituées d'un noyau métallique (Ag, Au ou In) entouré d’une coquille de silice fluorescente permettent une détection bimodale en produisant simultanément une signature de diffusion et un effet de couplage appelé « fluorescence exaltée par un métal ». Grâce à cette architecture composite, l’absorptivité, la luminosité et la photostabilité des chromophores organiques sont grandement améliorées. Par la suite, des anticorps spécifiques à un récepteur cellulaire d’intérêt ont été greffés à la surface des nanoparticules et la discrimination de différents nanocapteurs dans le même échantillon biologique a été réalisée. Dans le deuxième volet du projet, des nanoparticules or-silice ont été utilisées comme outil de diagnostic afin d’évaluer la qualité des produits sanguins. Le métabolisme des globules rouges demeurant actif pendant l’entreposage, des lésions précoces peuvent survenir et la qualité des produits utilisés pour de fins de transfusion peut en être affectée. De récentes études suggèrent que la prévalence de certains micro-ARNs serait modulée par les conditions d’entreposage des produits sanguins. Ainsi, le développement de nanocapteurs exploitant les micro-ARNs en tant que biomarqueurs pourrait permettre le suivi de la qualité des produits sanguins pendant leur entreposage. / Recent advances in the design of nanomaterials have created new opportunities in biomedical research and clinical applications. Due to their size, nanoparticles exhibit new physical and chemical properties compared to macroscopic materials. These remarkable properties have prompted the use of nanotechnologies in several biomedical applications such as cellular imaging and the detection of biological molecules. Multiplex cells labeling of biological media represents a substantial advantage for the diagnosis of diseases, infections, and cell abnormalities. In the first part of this project, the identification of different cells in biological products was achieved by optical imaging through the use of nanosensors having different spectral signatures. These hybrid nanoparticles composed of a metallic core (Ag, Au or In) surrounded by a fluorescent silica shell simultaneously provide a scattering signature and a coupling effect called “metal-enhanced fluorescence”. In this metallic architecture, the absorptivity, brightness and photostability of organic chromophores are greatly enhanced. Specific blood cells antibodies were conjugated onto the surface of the nanoparticles and different nanosensors were discriminated in the same biological sample by optical imaging. In the second part of this project, biocompatible gold-silica nanoparticles were used as a diagnostic tool to evaluate the quality of blood products. Since the metabolism of labile blood products, such as globular pellets, platelet concentrate and plasma, remains active during storage, early lesions as well as changes in the structure and the function of the products are directly related to their quality. Recent studies suggest that the prevalence of some micro-RNAs is modulated by the storage conditions of blood products. The development of biocompatible nanosensors exploiting micro-RNAs as biomarkers would allow the facile monitoring of the quality of labile blood products.
|
69 |
Microsonde optique et électrique pour l'enregistrement de neurones unitaires in vivoLeChasseur, Yoan 18 April 2018 (has links)
Le système nerveux central (SNC) est composé d'une population hétérogène de neurones. L'étude de leurs propriétés fonctionnelles à l'intérieur du SNC est indispensable afin de parvenir à comprendre leur rôle dans l'intégration du signal à l'intérieur d'un réseau. Pour accéder à ces informations, il est essentiel de pouvoir enregistrer de manière électrophysiologique des cellules identifiées dans le tissu intact. Ce type d'enregistrement ciblé est un défi, spécialement pour les circuits locaux de neurones. Pour prendre pleinement avantage des récentes techniques de marquages fluorescents, l'habilité à enregistrer des cellules individuelles électrophysiologiquement doit être combinée à un système de détection optique. Ce système doit être lui aussi capable de détecter les neurones sur une base individuelle profondément dans le SNC. Cette thèse fait la description d'une nouvelle microsonde optique et électrique basée sur une fibre optique à deux cœurs : un cœur optique permettant d'excitation local de la fluorescence de cellules marquées par un fluorophore et permettant aussi de collecter la fluorescence émise, et un cœur creux remplis d'électrolytes permettant l'enregistrement électrophysiologique unitaire de manière extracellulaire. Cette nouvelle approche permet la production de microsondes ayant suffisamment de résolution spatiale optique pour détecter une cellule unique : la microsonde peut être étirée pour obtenir un diamètre de pointe allant jusqu'à 6 µm, ce qui est plus petit que les corps cellulaires de la plupart des populations neuronales. La thèse présente l'évolution des différents designs de microsonde et du montage expérimental. Pour caractériser les propriétés optiques des sondes, une série d'expériences in vitro (sur des tranches cérébrales de rat) ont été réalisées ainsi qu'une série de simulations numériques. Par la suite, des expériences in vivo (sur le SNC de rat et souris) ont été faites pour identifier et enregistrer des neurones spinothalamique unitaires marqués au DiI ainsi que des neurones cérébraux de souris génétiquement modifiés pour exprimer de la GFP dans leurs cellules GABAergiques. Cette thèse présente aussi un critère spatial optique et électrophysiologique afin de confirmer la co-détection de cellules unitaire. Cette nouvelle microsonde ouvre de larges possibilités pour les enregistrements électrophysiologiques in vivo en donnant accès, en parallèle, aux signaux optiques unicellulaires. / The central nervous system is composed of heterogeneous populations of neurons. Studying their functional properties in the intact central nervous system (CNS) is key to be able to understand their respective role in signal processing within entire networks. To achieve this, it is essential to be able to record electrophysiologically from identified neurons in the intact tissue. Recording from identified cells types in vivo has remained a challenge, especially for local circuit neurons. Novel fluorescent labeling techniques open new possibilities on that front. To take full advantage of these recent developments, the ability to record electrophysiological signals from single neurons must be combined with optical detection of individual cells deep into CNS tissue. Here it describe the development of a novel microprobe based on a dual core optical fiber: an optical core that excites locally fluorescent labeled cells and collects back the fluorescence, and an electrolyte filled hollow core that performs classical extracellular single unit electrophysiological measurements. In contrast to previous solutions, this novel design allows production of microprobes with sufficient optical resolution for single cell detection: the microprobes could be pulled down to tips sizes of 6 µm, which is smaller than the cell body diameter of most neuron populations. It is presented the evolution of the microprobe design and the experimental setup. To characterize the optical properties of the probes, it is showed a series of in vitro experiments and numerical simulations. Then, it is presented in vivo experiment to identify and record single spinal neurons labeled retrogradely with fluorescent dyes as well as single GABAergic interneurons expressing GFP in the brain of transgenic mice. It's also established a spatial criterion to correlate optical and electrophysiological signals, confirming co-detection of single cells. This novel microprobe vastly expands possibilities for in vivo electrophysiological recording by providing parallel access to single cell optical monitoring.
|
70 |
Développement d'un instrument de comptage de particules dans un écoulement laminaire par encodage spatialLavoie, Félix-Antoine 30 November 2018 (has links)
La mise au point de nouvelles stratégies de détection de biomolécules rapides et ultrasensibles est largement présente dans la littérature scientifique. L’émergence des nanotechnologies et la compréhension grandissante des phénomènes nanoscopiques ajoutent de nouveaux outils aux coffres des chercheurs. L’interaction lumière-matière menant à la création de plasmons de surface et leur effet sur la signature spectroscopique des molécules avoisinantes a permis aux scientifiques de révolutionner ce domaine en mettant à profit ces propriétés uniques des nano-objets. L’utilisation et le déploiement de ces technologies sont limités, en partie, par le fait que les instruments analytiques courants ne sont pas adaptés à la mesure de nanoparticules. Il y a donc un besoin criant pour le développement de plateformes flexibles permettant la détection de divers biocapteurs nanométriques. Une approche de mesure en flux permet généralement d’obtenir plus d’informations statistiques sur l’échantillon analysé tout en offrant une cadence analytique élevée, avantages indéniables pour une utilisation sur le terrain. La plateforme développée utilise un écoulement laminaire et l’encodage spatial du signal pour assurer robustesse, simplicité et sensibilité. En effet, le grand volume sondé des techniques d’encodage spatial permet la mesure de beaucoup de photons pour chaque particule tout en permettant la discrimination de particules adjacentes par corrélation croisée. De plus, cela diminue les requis d’alignement et le nombre de pièces optiques nécessaires. L’appareil mis au point utilise un capillaire carré dont l’intérieur est recouvert d’or à l’aide d’une méthodologie de placage sélectif unique qui permet la fabrication d’un code-barres interne robuste et qui rend le dispositif d’encodage et le système fluidique solidaire. Les performances d’encodage et de comptage seront présentées ainsi que l’applicabilité de la plateforme à la mesure d’un biocapteur d’ADN basé sur une nanoparticule d’argent. L’algorithme de traitement de données et les outils d’analyse de signal seront aussi présentés. / Finding new fast and ultra-sensitive ways of detecting biomolecules is the target of numerous researchers and is largely present in the scientific literature. The emergence of nanotechnology and the continously growing comprehension of nanoscopic phenomena add new tools to the scientist’s toolbox. Light-matter interactions that give rise to surface plasmons and their effect on the spectroscopic signature of surrounding molecules are key factors for the current revolution of this domain. The use of these new technologies for real world analysis is limited in part because traditional analytical instruments are not adapted to the detection of nanoparticles. This explains the need for flexible detection platforms that can measure a range of nanometric biosensors. Measuring single particles in a flow usually give more information on the distribution of the sample and a higher analytical throughput than static measurements, which are undeniable advantages for usage in the field. The detection platform described in this thesis uses laminar flow and spatial encoding of the signal to ensure robustness, simplicity and sensitivity. The large probed volume offered by spatial encoding gives particles a long transit time which translates into high photon counts while enabling the differentiation of adjacent particles by cross-correlation. Moreover, the platform requires less stringent optical alignment and less optical components The particle counter uses a square capillary whose interior is coated using a unique selective gold coating methodology. This coating method allows the creation of a barcoded region that will become the probed volume. This inner coating is protected from mechanical damage and marries the fluidic system and the encoding device. The encoding performance as well as counting efficiencies will be discussed. Preliminary results of DNA detection using a silver nanoparticle-based biosensor will be exposed. The data treatment algorithm and the signal analysis tools developed will also be presented
|
Page generated in 0.0299 seconds