• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 175
  • 39
  • 24
  • 23
  • 16
  • 12
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 583
  • 128
  • 85
  • 82
  • 78
  • 63
  • 61
  • 59
  • 54
  • 50
  • 49
  • 48
  • 46
  • 46
  • 45
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

BOM removal by biofiltration- Developing a quantitative basis for comparison

Shen,Dinghua (David) 14 June 2010 (has links)
Biological filtration (Biofiltration) processes have been used first in Europe and then in North America for decades, however currently there is not a good overall parameter to guide biofiltration design and operation except adopting parameters from traditional particle- removal filtration process. On the basis of the biofilm model developed by Rittmann and McCarty (1980a) and the pseudo-analytical solution for the model, Zhang and Huck (1996a) obtained an analytical solution for PF (plug flow) reactors (which can be used for biofilters approximately) after demonstrating that axial dispersion could be reasonably ignored and developed a new parameter, X*, which incorporates considerations of physical contact time, filter media particle size, kinetics, etc. A small-scale application on peers’ engineering/research data by Huck (1999) demonstrated it was a better indicator than other parameters for biofiltration performance. By collecting, screening and investigating literature on AOC, BDOC and odorous compounds removal by biofiltration process, this thesis applied the X* concept to the collected investigations to assess process performances among different target parameters, different filters and different investigations. To the author’s knowledge, this is the first such attempted comprehensive comparison of literature studies, interpreted in terms of a common parameter (X*). The wide ranges of particle sizes, EBCTs, temperatures and high diversity of pre-treatment and operation conditions for the collected cases were considered to be able to well represent biofiltration practices for studied removal targets. No significant relationship between EBCTs and removal percentages were found, indicating that EBCT alone is not able to guide biofiltration design and operation. Based on kinetics parameter comparison, BDOC removal-X* relationship was established. A new parameter, θα, was developed in this thesis to refer to estimated X* values only considering EBCT and particle size. θα parameter values were estimated by comparison of ratios of θα products ((θα)’) based on the properly chosen calculation bases. Distribution of the θα values for temperature-favored (i.e. temperature ≥15°C) AOC and BDOC removal biofiltration processes matched the established removal-X* relationship reasonably. Given the exploratory nature of this research and the complexity of attempting quantitations, fits were assessed based on visual comparison. With the assistance of supporting information and by adopting available temperature activity coefficients, temperature-adjustment coefficients for θα values were determined for the different temperature ranges. Temperature-adjusted AOC and BDOC removal-θα relationships were developed and temperature-adjusted θα parameter values for AOC and BDOC removal were also estimated. Comparisons were conducted, showing fair matches based on visual examinations, for most of the temperature ranges. No relationships were found between ozone dosages and AOC/BDOC removal percentages and the statistical analysis indicated there was significant difference of removal efficiencies between ozonated and non-ozonated influents for biofilters, suggesting ozonation may not only increase the amount of BOM for following biofilter and increase the biodegradability of bulk water; it may also increase the biodegradability of AOC and BDOC themselves. It may not be realistic to obtain the estimated θα values for MIB and geosmin removal by biofiltration. However, plotting θα product vs. removal percentage for the collected MIB and geosmin removal cases shows more positive co-relationships than EBCT-removal percentage relationships visually. A utilization factor η was proposed to guide biofilter design and operation and to assess “over-design” and “under-operated”. Biofilter over-design or under-operated is common for the collected cases. In general, examining X* (or θα, a parameter incorporating the physical components of X*) provided useful information in terms of evaluation and prediction of biodegradable organic compounds removal by biofiltration, which confirms that X* is a better parameter for biofiltration design and operation than other parameters, such as EBCT.
322

Biodegradable Polymers for Drug Delivery and Tissue Engineering

Natarajan, Janeni January 2017 (has links) (PDF)
Regeneration, a spontaneous response of bones in response to injuries, infections and fractures, is severely compromised in certain clinical circumstances. Unfortunately, several shortcomings are associated with the current treatment of bone grafting method such as donor shortage and immune response for allografts and donor morbidity for autografts. Thus, the development of clinical alternates is essential. One promising adjunct method is bone tissue engineering that includes the implantation of a scaffold containing the cells with the supplementation of suitable growth factors. Among the various classes of materials, biodegradable polymers are commonly preferred because their use does not necessitate a secondary surgery for their removal after the intended use. Commercially available polymers such as poly (lactic- co- glycolic acid) and polycaprolactone are expensive and degrade slowly. This motivates the development of novel synthetic biodegradable polymers that are affordable and can be tuned to tailor for specific biomedical applications. The primary aim of this thesis is to synthesize effective biodegradable polymers for drug delivery and bone tissue engineering. The properties of these polymers such as modulus, hydrophobicity and crosslinking etc. were tailored based on the variations in chemical bonds, chain lengths and the molar stoichiometric ratios of the monomers for specific clinical applications. Based on the above variations, degradation and release kinetics were tuned. The cytocompatibilty properties for these polymers were studied and suitable mineralization studies were conducted to determine their potential for bone regeneration.
323

Synthesis and characterization of a biocomposite derived from banana plants (Musa cavendish)

Paul, Vimla January 2015 (has links)
Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry, Durban University of Technology. Durban, South Africa, 2015. / Over decades synthetic composites have become an indispensable part of our lives with their various applications such as packaging, sporting equipment, agriculture, consumer products, medical applications, building materials, automotive industry, and aerospace materials among others. Although these polymers have the desired properties for the above applications, they are invariably costly. Furthermore, they cannot be easily disposed of at the end of their useful lives and simply pile up and cause significant damage to the environment. However, the dwindling supply of fossil fuel, increased oil prices, together with the growing public concern of greenhouse gas emissions and global warming, has forced scientists to search for new development of sustainable materials from renewable resources. Hence in recent years, there is an increased interest in biocomposite manufacturing with natural resources as environmental issues are addressed. The research work presented in this dissertation is to the best of the author’s knowledge a world-first overall investigation pertaining to the concept of synthesizing a banana sap based bio-resin (BSM) reinforced with banana fibres. In this work the chemical composition of banana sap was determined to investigate the chemical reactions taking place in the resin formulation. BSM was synthesized, characterized and proposed as a potential bio-resin to be used in the biocomposite manufacture for non-functional motor vehicle components. BSM, a hybrid bio-resin was synthesized with equimolar quantities of maleic anhydride and propylene glycol and 50% banana sap. A control resin without the banana sap was also synthesized for comparison purposes. It was proposed that the presence of sugars, esters and pthalates from the sap, determined by HPLC and GC-MS, contributed to the cross-linking of the polymer chain. The acid value and viscosity of BSM were determined and found to be within specification of an industry resin. The molecular weights of the BSM and control resins were 2179 and 2114 units respectively. These were within the required molecular weight of unsaturated polyester resins. The gel and cures times of the BSM were 60% lower than the control resin suggesting that the banana sap behaved as an accelerator for the curing process. The lower cure time meant that using the banana sap in the formulation was cost effective and time saving. The thermal properties of BSM showed improved degradation temperatures and degree of crystallinity compared to the control resin. A parametric study showed that increasing banana sap concentration in the resin formulation led to increased tensile and flexural properties with 50% being the optimum amount of sap to be added to the formulation. The synthesized bio-resin and control resin were applied to biocomposites and characterized in terms of physical, thermal, mechanical, morphological, chemical and biodegradable properties. Mechanical tests indicated a 15 % increase in tensile strength, 12 % improvement in tensile modulus and a 25 % improvement in the flexural modulus, when compared to structures produced without banana sap. Natural fibres present the challenge of poor adhesion to the matrix. Chemical treatment of the banana fibre was done to improve on the compatibility of resin to fibre. Fibre pull-out showed that treated fibres had a better bond than the untreated fibre. Parametric studies were also done to evaluate the effect of fortifying the BSM resin with nanoclay. A 5% clay loading resulted in a 24% increase in tensile strength and 28% increase in flexural properties. Finally biodegradation studies of the BSM bio-resin, BSM biocomposite, control resin and control composite were investigated and compared to a positive reference, cellulose. Results showed that over a period of 55 days the BSM biocomposite showed 17.6% biodegradation compared to 8% with the control composite. No difference in biodegradation between the BSM bio-resin and the control resin was recorded. BSM biocomposite was proposed as a potential replacement to synthetic composites that contribute to the environmental landfill problems. The main contribution of this research is the use of the reinforcement and matrix from the same natural source. An enriched understanding of the synthesis, characterization and performance of the banana sap based bio-resin and biocomposite for the use of non-functional motor vehicle components is the key outcome of this investigation.
324

Development of novel bio-derived polymer composites reinforced with natural fibres and mineral fillers

Shakoor, Abdul January 2013 (has links)
Biocomposites exhibit properties like many petrochemical-based polymers composites. They have the potentials be used in the automotive and decking industries and as biodegradable packaging. However, the high cost as well as, poor mechanical and thermal properties have restricted their widespread use. There are a number of technical issues that need to be addressed before bio-composites can be widely used. In this research Polylactic acid (PLA) composites, reinforced with natural fibres (wood, flax) and mineral fillers (talc) were investigated. The thermal and mechanical properties of the composites were studied by means of Differential Scanning Calorimetry (DSC), Tensile Testing and Dynamic Mechanical Analysis (DMA), while morphology and crystallization processes of the composites were studied by hot stage optical microscopy. The experimental results are also compared with different theoretical models of the response of the composites. PLA / wood composites were developed by mixing PLA with wood in different ratios using a melt compounding process. PLA/wood (90/10. 80/20, 60/40), PLA/wood/copolymers (85/10/05, 80/10/10, 75/20/05, 70/20/10, 55/40/05, 50/40/10) and PLA/wood/coupling agent (80/20/silane coating) were the three different composite systems that were developed. Adding increasing amount of wood into the PLA, the thermal properties remain unchanged but the mechanical properties increased significantly, bringing a stiffening effect to the composites. Tensile modulus increased from 4.1± 0.6 to 9.8 ± 1.2 (GPa) as the wood content increased from 0 to 40 (wt %), but the tensile strength at break reduced from 43.8 ± 3.1 to 31.8 ± 2.8 MPa. The experimental results of the PLA-wood composites were modelled according to the Halpin-Tsai equation. The addition of copolymer affected the thermal properties considerably by decreasing the glass transition temperature of the composite. The glass transition temperature dropped from 54 ± 0.7 (0C) to 48 ± 0.36 (0C) when the content of copolymer was increased from 0 to 10 (wt %). The cold crystallization temperature also decreased from 127 ± 1.41 (0C) to 103 ± 2.58 (0C) when the copolymer was incorporated into the PLA/wood composites. The significant aspect was the occurrence of a double peak in the melting endotherm. The degree of crystallinity also increased from 2 ± 0.83 (%) to 11 ± 1.23 (%) when the amount of copolymer was increased to 10 (wt %). PLA, flax and expoidizied natural rubber (ENR) composites were also developed using a melt compounding process. The mechanical properties were affected significantly when the flax fibres were mixed with PLA in the ratios of 10, 20 and 30 (wt %). Addition of flax fibres increased the elastic modulus significantly but reduced the tensile strength and strain at break. To improve the toughness of the PLA- Flax composites, ENR was incorporated into the PLA- Flax composites. In order to balance the modulus of the reinforcement and the matrix, the PLA- Flax and ENR composites were annealed above the glass transition temperature and the degree of crystallinity increased from 2 to 35 (%). The integral blending of PLA, Flax and ENR did not affect the brittle fracture but introducing a masterbatch of flax fibres and ENR into the PLA matrix during melt processing had a considerable effect on the fracture behaviour of the composites. The elastic modulus of the composites decreased due to the elastomeric content in the composites and there was an increase in elongation-to-break. The effect of talc on the crystallinity and mechanical properties of a series of polylactic acid (PLA) / talc composites was investigated. PLA talc composites were developed by incorporating different types of the talc into the PLA in the ratios of 10, 20 and 30 (wt %). The composites were prepared by melt blending followed by compression moulding. It was found that talc acted as a nucleating agent and increased the crystallinity of the PLA from 2% to 25%. There was significant improvement in Young s modulus of the composites with increasing talc addition and these results were found to fit the Halpin Tsai model. Thermo-mechanical tests confirmed that the combination of increased crystallinity and storage modulus leads to improvement in the heat distortion properties.
325

BIODEGRADABLE HYDROGELS AND NANOCOMPOSITE POLYMERS: SYNTHESIS AND CHARACTERIZATION FOR BIOMEDICAL APPLICATIONS

Hawkins, Ashley Marie 01 January 2012 (has links)
Hydrogels are popular materials for biological applications since they exhibit properties like that of natural soft tissue and have tunable properties. Biodegradable hydrogels provide an added advantage in that they degrade in an aqueous environment thereby avoiding the need for removal after the useful lifetime. In this work, we investigated poly(β-amino ester) (PBAE) biodegradable hydrogel systems. To begin, the factors affecting the macromer synthesis procedure were studied to optimize the reproducibility of the resulting hydrogels made and create new methods of tuning the properties. Hydrogel behavior was then tuned by altering the hydrophilic/hydrophobic balance of the chemicals used in the synthesis to develop systems with linear and two-phase degradation profiles. The goal of the research was to better understand methods of controlling hydrogel properties to develop systems for several biomedical applications. Several systems with a range of properties were synthesized, and their in vitro behavior was characterized (degradation, mechanical properties, cellular response, etc.). From these studies, materials were chosen to serve as porogen materials and an outer matrix material to create a composite scaffold for tissue engineering. In most cases, a porous three dimensional scaffold is ideal for cellular growth and infiltration. In this work, a composite with a slow degrading outer matrix PBAE with fast degrading PBAE microparticles was created. First, a procedure for developing porogen particles of controlled size from a fast-degrading hydrogel material was developed. Porogen particles were then entrapped in the outer hydrogel matrix during polymerization. The resulting composite systems were degraded and the viability of these systems as tissue engineering scaffolds was studied. In a second area of work, two polymer systems, one PBAE hydrogel and one sol-gel material were altered through the addition of iron oxide nanoparticles to create materials with remote controlled properties. Iron oxide nanoparticles have the ability to heat in an alternating magnetic field due to the relaxation processes. The incorporation of these nanoscale heating sources into thermosensitive polymer systems allowed remote actuation of the physical properties. These materials would be ideal for use in applications where the system can be changed externally such as in remote controlled drug delivery.
326

Synthèse et étude des propriétés physico-chimiques des poly(butylène succinate)s linéaire et branché / Synthesis and study of the physico-chemical properties of the linear and branched poly(butylene succinate)s

Garin, Matthieu 03 December 2012 (has links)
Le poly(butylène succinate) (PBS) est un polyester aliphatique biodégradable dont les propriétés en font un bon candidat pour le remplacement des polyoléfines. De plus, ses deux monomères, l'acide succinique et le butane-1,4-diol, peuvent être issus de la biomasse via un procédé de fermentation de sucres. L'étude réalisée ici a été séparée en deux grandes parties : le PBS linéaire d'une part et le PBS branché d'autre part. La première partie montre que la cinétique de synthèse du PBS suit bien le modèle d'estérification établi par Flory. Par la suite, l'étude des propriétés physico-chimiques du PBS a permis de remonter à des paramètres comme la masse molaire critique d'enchevêtrement, le module du plateau caoutchoutique, l'énergie d'activation du PBS fondu ou encore les paramètres de l'équation Mark-Houwink-Sakurada. Une étude sur ses propriétés thermiques a permis de décrire l'évolution de son comportement en fonction de sa masse molaire. Enfin, le profil d'énergie potentielle de l'estérification entre l'acide succinique et le butane-1,4-diol a été tracé en utilisant un outil de chimie quantique. La seconde partie traite de l'étude de PBS branchés obtenus en employant des agents de branchement (polyols) pouvant être issus de la biomasse comme l'huile de ricin, le glycérol et le polyglycérol. La stratégie adoptée a été le couplage entre un oligomère PBS fonctionnalisé acide carboxylique et les agents de branchement. L'étude en présence d'huile de ricin a mis en avant les relations entre la structure, déterminée en SEC-Triple Détection, et les propriétés physico-chimiques du PBS branché. L'optimisation de la synthèse en présence de glycérol ou de polyglycérol a été abordée à partir de la méthode des plans d'expériences. Comparé à la méthode « un facteur à la fois », des résultats prometteurs et semblables à ce qui est rapporté dans la littérature ont été obtenus pour l'étude du PBS branché en présence de glycérol. / Poly(butylene succinate) (PBS) is a biodegradable aliphatic polyester whose properties make it a promising polymer for the replacement of polyolefins. Moreover, its two monomers, succinic acid and 1,4-butanediol, can be produced via a fermentation process of sugars. This study has been separated into two great parts: linear PBS on the one hand and branched PBS on the other hand. In the first part, kinetics of the PBS synthesis showed a good agreement with the esterification model of Flory. We determined some fundamental parameters of PBS like critical molecular weight of entanglement, the rubbery plateau modulus, the energy of activation of melt PBS and parameters of the Mark-Houwink-Sakurada relationship. We have also realized a study on the influence of the molecular weight on the thermal properties of PBS. Finally, we constructed the potential energy profile of the esterification between succinic acid and 1,4-butanediol through a quantum chemistry study. The second part dealt with the study of branched PBS in the presence of biosourced polyols like castor oil, glycerol and polyglycerol. These syntheses were realized between an acid-functionalized PBS oligomer and the branching agents. We put forward the relationships between the structure, determined by SEC-Triple Detection, and the physicochemical properties of branched PBS in presence of castor oil. Syntheses of branched PBS in presence of glycerol or polyglycerol were optimized with design of experiments technique. Promising and similar results from the literature were obtained in the case of branched PBS in presence of glycerol compared to the method of “one parameter at a time”.
327

Analýza nakládání s biologicky rozložitelným komunálním odpadem města Zlína / Analysis of biodegradable communal waste disposal system in the city of Zlín

Přikrylová, Jana January 2010 (has links)
This thesis discusses the disposal of the biodegradable communal waste (hereinafter BRKO) in the city of Zlín. In the beginning it introduces the general terms and keywords and legal regulations concerning waste disposal. It mentions environmental effects of the BRKO dump, and also ways of collecting and further treatment of BRKO. The main part of the thesis describes the current BRKO management system in the city of Zlín and based on the projects that have been completed up until now it analyses management efficiency. The thesis shows an expected progression in the total amount of BRKO in the following years due to the new limits placed on BRKO dump by the Plan of Waste Management Program. Based on the collected data, this thesis proposes an optimal solution for waste collection and waste treatment in the city of Zlín and evaluates the environmental and economic benefits of the suggested waste management system.
328

Estudo da farmacocinética vítrea e toxicidade da ciclosporina intravítrea em olhos de coelhos / Pharmacokinetic and toxicity study of intravitreal cyclosporine in rabbits eyes.

Almeida, Felipe Piacentini Paes de 16 July 2012 (has links)
O tratamento de pacientes com doenças inflamatórias oculares crônicas frequentemente implica no uso prolongado de drogas anti-inflamatórias sistêmicas como, corticosteroides e outros imunossupressores, podendo acarretar efeitos colaterais importantes. O uso local destas drogas pode contribuir para aumentar seus efeitos desejáveis e reduzir os efeitos colaterais. Implantes intraoculares biodegradáveis são capazes de disponibilizar o fármaco diretamente na cavidade vítrea em doses terapêuticas por período prolongado. O copolímero do ácido lático e glicólico (PLGA) é um clássico exemplo entre os polímeros sintéticos biodegradáveis aplicados em sistemas de liberação de fármacos devido à sua biocompatibilidade e ausência de toxicidade em testes in vivo. A ciclosporina A (CsA) é um imunossupressor largamente usado na clínica médica, e também tem sido empregada no tratamento de várias doenças inflamatórias intraoculares. O objetivo deste estudo foi avaliar a farmacocinética vítrea da CsA, quando aplicada por meio de implante biodegradável de PLGA intravítreo na concentração de 350 µg em olhos de coelhos, assim como avaliar a ocorrência de toxicidade retiniana causada pela presença intraocular do sistema de liberação de fármacos por meio de eletrorretinografia (ERG) e histopatologia. Dos sessenta coelhos que foram utilizados neste estudo, 38 receberam o implante intravítreo de PLGA contendo CsA e 22 somente os veículos. Somente o olho direito dos coelhos foi analisado na pesquisa. O estudo teve duração de oito semanas. Quatro coelhos do grupo CsA e dois do grupo controle foram sacrificados semanalmente para a coleta do vítreo e posterior estudo farmacocinético. Quatro animais de cada grupo foram escolhidos para terem a pressão intraocular aferida semanalmente. Seis coelhos foram submetidos a ERG no início e ao final do estudo, sendo então sacrificados, e os olhos processados para estudos histológicos da retina. O período inferido de permanência da CsA na cavidade vítrea foi de 17 semanas. Nos dois grupos, com e sem CsA, não foram observadas alterações histológicas na retina, entretanto houve importante redução da onda b nas fases escotópicas da ERG no grupo CsA, indicando toxicidade na via dos bastonetes após as oito semanas de seguimento. Em resumo, estes resultados mostraram que a CsA aplicada por meio de implantes oculares de PLGA na dose de 350 µg não causa alterações histológicas da retina, mas provoca um padrão exclusivo de diminuição da onda b. Em estudos futuros, seria interessante avaliar os efeitos de implantes contendo concentrações inferiores a 350 µg de CsA, e também, veículos que permitam que sua liberação seja mais lenta, evitando-se, assim, a toxicidade observada nos ERGs e confirmar sua aplicabilidade clínica como alternativa interessante para o tratamento de doenças oculares inflamatórias crônicas. / Treatment of patients with chronic inflammatory ocular diseases often involves the use of systemic anti-inflammatory drugs such as corticosteroids and other immunosuppressive agents for a long period of time, which may cause significant systemic side effects. Intraocular use of these drugs may help to improve their local beneficial effects and reduce systemic adverse effects. Biodegradable intraocular implants are able to deliver drugs directly into the vitreous cavity in therapeutic doses for an extended period of time. Poly-lactic-co-glycolic acid (PLGA) is a good example of synthetic biodegradable polymers used in ocular drug delivery systems due to its biocompatibility and absence of toxicity. Cyclosporine A (CsA) is a largely used immunossupressor, and it has also been employed for treatment of various intraocular inflammatory diseases. The objective of this work was to evaluate the pharmacokinetics of CsA, when applied in biodegradable PLGA intravitreal implants in rabbit eye and its retina toxicity by electroretinography and histopathology. Right eyes of sixty rabbits were used on this study, 38 received the PLGA implant containing 350 µg of CsA, and 22 the implant without the drug and were followed during 8 weeks. Four animals of CsA group and 2 of control group were sacrificed weekly to have their vitreous samples collected for subsequent pharmacokinetic study. Four animals from each group were chosen to have intraocular pressure measured weekly. Six animals of each group underwent electroretinography tests at baseline and at the end of the study. Then they were sacrificed and had their eyes processed for histological studies of the retina. It was hypothetically calculated that CsA would take 17 weeks to be completely delivery by this system. Histologically the retina did not show alterations in both groups, but there was a significant reduction in the b wave of the scotopic ERG phases in the CsA group indicating toxicity of the rods pathway after 8 weeks of follow-up. In summary, PLGA implants with 350 µg of CsA does not cause retinal histological changes, but decreases b wave amplitude. In future studies it would be interesting to test lower concentrations of CsA using this delivery system to decrease possible toxicity and to guarantee its clinical applicability.
329

Adição de ingredientes antimicrobianos em filmes biodegradáveis à base de fécula de mandioca. / Addition of antimicrobial ingredients to biodegradable films based on cassava starch.

Kechichian, Viviane 16 April 2007 (has links)
Neste trabalho, ingredientes naturais antimicrobianos foram adicionados em filme biodegradável (biofilme) à base de fécula de mandioca tendo como plastificantes sacarose e açúcar invertido. A seleção dos ingredientes antimicrobianos (cravo em pó, canela em pó, pimenta vermelha em pó, óleo essencial de laranja, café em pó, mel e extrato de própolis) foi conduzida por meio de um delineamento experimental (fatorial fracionado 27-3) e os biofilmes foram analisados quanto às suas propriedades de barreira (permeabilidade ao vapor de água e taxa de permeabilidade ao vapor de água) e propriedades mecânicas (resistência máxima à tração e porcentagem de alongamento na ruptura). Os biofilmes apresentaram valores inferiores aos apresentados pelo biofilme controle quanto às propriedades mecânicas. Em geral, a taxa de permeabilidade ao vapor de água nos biofilmes antimicrobianos manteve-se estatisticamente igual ao do controle. Na segunda etapa do trabalho, a otimização dos ingredientes selecionados foi realizada através de delineamento experimental, com somente adição de cravo e canela em pó, que apresentaram resultados mais promissores na etapa anterior. Foi constatado que a adição de cravo e canela em pó alterou as propriedades mecânicas, porém as alterações foram menos intensas com a adição da canela em pó do que com o cravo em pó, o que pode ser justificado pela diferença de granulometria entre eles. A taxa de permeabilidade diminuiu até certa concentração dos ingredientes (0,34% para a canela em pó e 0,20% para o cravo em pó). O efeito antimicrobiano dos biofilmes foi investigado como embalagem de fatias de pão tipo forma e foi constatado que a atividade de água dos biofilmes aumentou após 7 dias de contato. É provável que os biofilmes tenham se tornado meios propícios para o desenvolvimento de bolores e leveduras visto que estes microrganismos cresceram de forma similar ou mais intensa nas fatias de pão na presença do que na ausência dos biofilmes. A partir dos resultados obtidos, não é possível avaliar de forma clara, o efeito antimicrobiano dos ingredientes incorporados na matriz dos biofilmes contra o crescimento de bolores e leveduras em fatias de pão tipo forma. / In this work, natural antimicrobial ingredients were added to biodegradable film (biofilm) based on cassava starch with sucrose and inverted sugar as plasticizers. The selection of the antimicrobial ingredients (clove powder, cinnamon powder, red pepper powder, orange essencial oil, coffee powder, honey and propolis extract) was carried out applying an experimental design (incomplete factorial 27-3) and the barrier properties (water vapour permeability and water vapour permeability rate) and mechanical properties (tensile strength and elongation at break) of the biofilms were determined. The biofilms presented lower data regarding mechanical properties when compared to biofilm control. In general, the water vapour permeability rate of the antimicrobial biofilms was statistically equal to the control. In the second phase of the work, the optimization of the selected ingredients was carried out applying an experimental design, with the addition of only clove and cinnamon powder due to the fact that they showed the most promissing results at the previous phase. The addition of clove and cinnamon powder modified the mechanical properties but the modifications resulted by the addition of cinnamon powder were less intense tha n the ones resulted by the addition of clove powder, which can be justified by the particle size differences between them. The water vapour permeability rate decreased by specific ingredients concentration (0.34% for the cinnamon in powder and 0.20% for the clove in powder). The biofilms antimicrobial effect was investigated as packaging of pan bread slices and it was verified that the biofilms water activity increased after 7 days of contact. Probably, the biofilms became suitable substrates for yeast and mold development due to the fact that these microorganisms grew equally or more intensely in the pan bread slices when the biofilms were present in comparison to the cases of its absence. According to the results, it is not possible to evaluate clearly the antimicrobial effect of the added ingredients to the biofilm matrix against yeast and mold development in pan bread slices.
330

Alfa-oxidação de propionato está envolvida na redução da produção de plástico biodegradável em Burkholderia sacchari? / Is propionate alfa-oxidation involved in the reduction of biodegradable plastic production in Burkholderia sacchari?

Cintra, Ana Carolina Suzuki Dias 09 May 2008 (has links)
Burkholderia sacchari é uma nova espécie bacteriana do solo brasileiro que tem a capacidade de crescer em sacarose e acumular grânulos intracelulares de poliésteres pertencentes à família dos polihidroxiaIcanoatos (PHA). Quando cultivado em sacarose, o homopolímero poli-3¬hidroxibutirato é acumulado por esta bactéria, que é usado como um plástico biodegradável e biocompatível. Quando sacarose e ácido propiônico são fornecidos como fontes de carbono, as células de B. sacchari acumulam o copolímero poli-3-hidroxibutirato-co-3-hidroxivalerato (P3HB-co-3HV). Entretanto, uma pequena porcentagem do ácido propiônico fornecido é convertido a unidades 3HV devido à eficientes vias catabólicas que convertem este substrato preferencialmente a biomassa, CO2 e água, reduzindo portanto a eficiência da produção do polímero. Ao menos duas vias do catabolismo de propionato foram previamente propostas em B. sacchari: a-oxidação e ciclo do 2-metilcitrato (2MCC), sendo somente a última confilmada no nível molecular. Mutantes UV, obtidos anteriormente, foram incapazes de crescer em propionato (prp) e também apresentaram fenótipo afetado no crescimento em intermediários da a-oxidação. No presente trabalho, após uma busca em bibliotecas genômicas de B. sacchari, uma delas construída também no presente trabalho, três diferentes fragmentos de DNA presentes nos clones AI, PI e P2 foram capazes de restaurar o fenótipo prp+ aos mutantes. Experimentos quantitativos revelaram que AI somente restaurou parcialmente a conversão de propionato a unidades 3HV aos mutantes. PI foi capaz de restaurar a capacidade de crescimento em propionato, e em outros intermediários da a-oxidação, a um dos mutantes. Um DNA de 1.2 Kb, subfragmento de PI, ainda capaz de complementar mutantes prp, foi subclonado e seqüenciado, demonstrando similaridade a seqüências de DNA codificadoras de reguladores transcricionais do tipo LysR de várias bactérias, incluindo espécies de Bllrkholderia. Regiões adjacentes a LysR em diferentes genomas de Burkholderia são anotados como codificadores de acil-CoA desidrogenases, ao lado de proposta acil-CoA transferases/carnitina desidrogenases e de uma permease do facilitador maior da superfamília MFS-l. Após confirmação das mesmas regiões adjacentes em B. sacchari e também a sua específica deleção, será possível provar a presença da via do catabolismo de propionato indicada neste trabalho. / Burkholderia sacchari is a new bacterial species from brazilian soil, able to grow in sucrose, accumulating intracellular granules of polyester belonging to the polyhydroxyalkanoate family (PHA). When cultivated on sucrose, the homopolymer poly-3-hydroxybutyrate is accumulated by this bacterium, which is used as biodegradable and biocompatible plastic. When sucrose and propionic acid are supplied as carbon sources, B. sacchari cells accumulate the copolymer poly-3-hydroxybutyrate-co-3-hydroxyvalerate (P3HB-co-3HV). However, a small percentage ofthe propionic acid supplied is converted to 3HV units, because efficient catabolic pathways convert this substrate preferentially to biomass, CO2 and water, thus reducing the efficiency of polymer production. At least two propionate catabolic pathways have been previously indicated in B. sacchari: a-oxidation and the 2-methylcitric acid (2MCC), the latter confirmed at molecular leveI. UV mutants previously obtained were unable to grow in propionate (prp) and also showed the phenotype affected concerning grow on intermediates of propionate a-oxidation. In the present work, after a screening in B. sacchari genomic libraries, one ofthem constructed also in the present work, the prp + phenotype was restored to the mutants by three different DNA fragments harbored by dones A), PI and P2. Quantitative experiments revealed that AI restored only partially the quantitative conversion of propionate to 3HV units to the mutants. PI restored the ability to grow in propionate and in other intermediates of a-oxidation to one prp mutant. A DNA 1.2 Kb subfragment of PI, still able to complement prp mutants, was subcloned and sequenced, showing similarity to DNA sequences encoding to LysR-type transcriptional regulators of various bacteria, including BlIrkholderia species. Adjacent regions to LysR in different genomes of BlIrkholderia are annotated as encoding to acyl-CoA dehydrogenases, neighboring a predicted acyl-CoA transferases/carnitine dehydratase and a permease ofthe major facilitator superfamily MFS-1. After confirmation ofthe same adjacent regions in B. sacchari and also their especific deletion, it will be possible to prove the presence of the pathway indicated here in the catabolism of propionate.

Page generated in 0.075 seconds