Spelling suggestions: "subject:"biomimétiques"" "subject:"biomimétique""
1 |
Development of biomimetic systems for the study of molecular motor oscillations / Développement de systèmes biomimétiques pour l'étude des oscillations des moteurs moléculairesLee Tin Wah, Jonathan 28 November 2012 (has links)
Pas de résumé en français / Recent studies have suggested that minimal actomyosin systems have the intrinsic property to oscillate whensubjected to an elastic load. A similar situation can be found in various biological systems, leading, both in-vivoand in-vitro, to spontaneous oscillations. In particular, muscular systems as well as mechanosensitive hair-cellbundles in the inner ear have been shown to oscillate spontaneously as the result of active force production by anacto-myosin protein complex. We attempt to shed light on the mechanism behind the oscillatory activity of theacto-myosin system, in particular by determining the parameters that control the frequency and amplitude ofoscillation. The stiffness of the system, the total force developed by the motors and the type of motors have beenproposed as being influential in this respect. To investigate this effect, we make use of a modified motility assayconsisting of a motor-driven stiff polarized actin bundle subjected to an elastic load provided by opticaltweezers. During the course of this work, we also characterized auto-assembled magnetic bead columns andassessed their viability as molecular force sensors to study the oscillations. The fact that they can easily beorganized into large arrays makes them interesting as potential ‘high-throughput’ force sensors
|
2 |
Study of the Metastatic Process of Circulating Tumour Cells by Organ-on-a-Chip In Vitro Models / Développement de systèmes biomimétiques microfluidiques pour l’étude du processus métastatique à partir de cellules tumorales circulantesAhmad-Cognart, Hamizah 14 September 2018 (has links)
90% de la mortalité par cancer provient de tumeurs disséminées, ou métastases. Ces métastases se forment à partir de cellules tumorales qui s'échappent d'une tumeur primaire, circulent dans le sang, puis quittent les vaisseaux sanguins pour enfin aller nicher dans des organes distants et former des tumeurs secondaires. Les processus par lesquels ces cellules circulantes envahissent les organes distants, remodèlent leur environnement pour créer une «niche micrométastatique», prolifèrent pour produire des métastases macroscopiques, sont mal connus, principalement en raison d'un manque de modèles expérimentaux. En effet ces événements sont rares, se produisent à une échelle microscopique et à des localisations à priori inconnues. La perte d'adhérence cellulaire des cellules tumorales se détachant des tissus tumoraux primaires est associée à un phénomène de transformation connu sous le nom de transition épithéliale-mésenchymateuse (EMT) conduisant à la perte des caractéristiques épithéliales. Dans ce travail, nous avons souhaité aborder la question du processus métastatiques par l'étude de l'influence de l'étape de circulation dans le flux sanguin sur différentes caractéristiques de cellules tumorales. Pour cela, des modèles microfluidiques contenant des constrictions mécaniques afin d'imiter la microcirculation sanguine ont été conçus et fabriqués. Nous avons soumis des cellules provenant de tumeurs primaires du sein dans des situations de confinement périodiques à l'intérieur de ces canaux microfluidiques en utilisant un système de contrôle de flux. Nous avons étudiés l'impact des déformations induites par les constrictions des canaux microfluidiques sur l'expression génétique des marqueurs EMT, la morphologie ainsi que la dynamique des changements morphologiques. Nous montrons que ces paramètres cellulaires sont touchés par la déformation mécanique imposée sous flux, suggérant que l'étape de circulation des cellules tumorales dans le sang a un rôle important dans la capacité de celles-ci à produire des métastases. / 90% of cancer mortality arises from metastases, due to cells that escape from a primary tumor, circulate in the blood as circulating tumor cells (CTCs), leave blood vessels and nest in distant organs. The processes by which CTCs invade distant organs, remodel their environment to create a “micrometastatic niche”, the eventual triggering of a proliferation leading to a macroscopic metastases, are poorly known, mostly because of a lack of experimental models. These events are rare; occur in the body at unknown places and on a microscopic scale. The loss of cell adhesion of tumor cells detaching from the primary tumor tissues will undergo a transformation phenomenon known as epithelial-to mesenchymal transition (EMT) leading to the loss of epithelial characteristics with different expression patterns of EMT markers (E-cadherin, N-cadherin, Vimentin, Snail1/2, Twist1/2, ZEB1/2). The changes in mechanical and physical properties of interacting cells during morphological and malignant transformation are investigated and their quantifications measured. Here, microfluidic models containing mechanical constrictions in order to mimic the blood microcirculation have been designed and fabricated. Metastatic breast cancer cells are subjected and confined to the microfluidic channels using a flow control system. These cells are circulated under optimal culture conditions, and monitored in the channels for the observance of biophysical occurrences from continuous mechanical cellular deformations. The biophysical effects of circulation and confinement on tumor cell morphogenesis will be investigated.
|
3 |
Studies of the impact of core-shell polystyrene nanoparticles on cell membranes and biomimetic models / Étude des interactions de nanoparticules "coeur-enveloppe" avec des cellules et des membranes biomimétiquesMaximilien, Jacqueline 10 April 2015 (has links)
L’objectif de ce projet est d’étudier l’interaction de nanoparticules polymères avec les membranes, soit directement sur des cellules entières ou grâce à des modèles membranaires biomimétiques, dans l’optique de valider leur utilisation dans le cadre d’applications biologiques. Des nanoparticules (NPs) polymères cœur/enveloppe avec un diamètre inférieur à 100 nm ont été synthétisés. Cette taille a été choisie afin de leur permettre de pénétrer à travers les membranes plasmiques. Des nanoparticules ayant la même composition chimique mais avec un diamètre hydrodynamique supérieur, de l’ordre de 250 nm, ont été également préparées afin de mettre en évidence l’effet de la taille des particules sur le processus d’internalisation cellulaire. Dans cette thèse, une méthode innovante de synthèse monotope a été développée pour obtenir des NPs coeur-enveloppe, compatibles en milieu aqueux et présentant à leur surface des résidus iniferter. Le coeur est composé de polystyrène avec une taille d’environ 30 nm. Un large éventail de fonctionnalités peut être greffé sur la surface du coeur par polymérisation radicalaire contrôlée en faisant varier différents types de monomères. L’épaisseur de l’enveloppe peut être ajustée en fonction de la concentration en monomère et du temps de polymérisation. Les nanoparticules synthétisées ont été caractérisées par diffusion dynamique de la lumière, par spectroscopie infrarouge à transformée de Fourier, par analyse micro-élémentaire et par microcopie à transmission électronique. Les interactions des NPs à coeur polystyrène et avec des enveloppes de charge neutre et négative ont été étudiées avec des cellules kératinocytes épidermiques humaines néonatales (NHEK), des fibroblastes primaires humains et les cellules HACaT de kératinocytes humains. Les études de cytotoxicité réalisées en utilisant un marquage à l’iodure de propidium et un test à la lactate déshydrogénase n’ont relevé aucune toxicité sur les lignées testées. Cependant, le suivi de la prolifération cellulaire par impédance électrique de substrats cellulaires a indiqué que les nanoparticules anioniques induisent une forte diminution de la prolifération des kératinocytes. L’internalisation cellulaire des NPs a été confirmée par microscopie confocale qui n’indique pas leur colocalisation avec les endosomes précoces, les lysosomes et l’actine. De plus, les données obtenues par triage cellulaire par cytofluorométrie soutiennent qu’un mécanisme énergétiquement-dépendant est mis en œuvre pour l’internalisation des NP neutres, ce qui semble être moins le cas pour les nanoparticules négatives. Les membranes biomimétiques ont été employées afin d’étudier les spécificités des interactions entre nanoparticules et lipides dans des conditions contrôlées. L’étude sur des modèles de vésicules géantes couplée à de la spectroscopie de fluorescence a révélé que les nanoparticules coeur/enveloppe sont capables d’interagir profondément dans la région hydrophobe de la membrane, mais uniquement quand la bicouche lipide est en phase fluide désordonnée. Le mode de pénétration des NPs au travers de la bicouche des vésicules semblent engendrer la formation de pores. Un effet plus prononcé de rigidification de la bicouche a pu être observé lors de l’interaction de nanoparticules chargées négativement avec les bicouches de phosphatidycholines. Cet effet pourrait être attribué à un changement de l’orientation des têtes phosphocholines du à des interactions électrostatiques. En conclusion, les nanoparticules polymère que nous avons synthétisées apparaissent être des outils polyvalents pour les études d’interaction cellulaire et d’imagerie. Ces nanomatériaux peuvent être éventuellement être employés pour la délivrance de médicaments en incorporant les molécules actives dans une enveloppe polymère thermosensible par exemple. / This project’s aim was to study polymeric nanoparticle-membrane interactions using both live cells and biomimetic models with the idea to validate such nanoparticles for use in bio-applications. Core-shell polymeric nanoparticles below 100 nm, as this small size is capable of penetrating plasma membranes, were synthesised. Nanoparticles (NPs) with the same chemical composition but with hydrodynamic diameters of ~250 nm, were also prepared in an effort to highlight any effect of NP size on cell internalisation. In this thesis, an innovative method is presented for the synthesis of water-compatible, iniferter-bound polystyrene core shell NPs (~30 nm) using a one-pot synthetic method. A plethora of functionalities could be added to the nanoparticles via shell grafting from the surface of the polystyrene core in the presence of additional monomers via controlled living radical polymerisation. Shell thickness could be tuned as a function of monomer’s concentration and polymerisation time. The nanoparticles were fully characterised by dynamic light scattering, Fourier transform infra-red spectroscopy, microelemental analysis and transmission electron microscopy. Further, the interactions of polystyrene core NPs possessing neutral and anionic shells were investigated using neonatal human epidermal keratinocytes (NHEK), human primary fibroblasts and HaCaT cells. Cytotoxicity studies performed using propidium iodide and lactate dehydrogenase indicated no evidence of cytotoxicity in either cell line. However, cell proliferation monitored by electric cell substrate impedance sensing (ECIS) protocols indicated that anionic nanoparticles induced a dramatic decrease in cell proliferation in keratinocytes. The cellular internalisation of NPs was confirmed by confocal microscopy and no co-localisation was found with early endosomes, lysosomes or actin. Additionally, fluorescence activated cell sorting (FACS) data support the theory that an energy-dependent mechanism is employed for neutral NP internalisation but less so for negatively charged NPs. Biomimetic membrane models were used to investigate specific nanoparticle-lipid interactions under controlled conditions. Employing giant vesicles coupled with fluorescent spectroscopy techniques revealed that core-shell nanoparticles interact deep in the hydrophobic region of bilayers only when the membrane is in the fluid phase. Their mode of entering artificial cells (i.e giant vesicles) appears to cause the formation of pores. Anionic nanoparticles interact with the choline moiety of phosphatidylcholine and confer a rigidifying effect on phosphocholine containing bilayers. Therefore we conclude that the polymeric nanoparticles that we synthesized are versatile tools for cell interaction and imaging studies. These nanomaterials could eventually be applied to drug delivery studies by incorporation of the drug in for instance a thermoresponsive polymeric shell. Furthermore, it is clear that NPs coated with anionic and neutral polymeric shells present a lower toxicity profile than previously reported cationic nanoparticles. Both nanoparticles increase the order lipid bilayer vesicles composed of POPC (the most common glycerophospholipid) in animal and plants. Anionic nanoparticles in particular exhibit a rigidifying effect on POPC lipid bilayers and their mode of entry into cells may be due to the formation of pores which was determined to not induce cell death.
|
4 |
Auto-organisation de whiskers de cellulose en suspension dans l'eau ou dans les solvants organiques apolairesElazzouzi, Samira 21 April 2006 (has links) (PDF)
L'hydrolyse de microfibrilles de cellulose par l'acide sulfurique permet d'obtenir des suspensions stables de microcristaux aussi appelés "whiskers". Des whiskers de géométrie et de charge de surface différentes ont été préparés à partir de cellulose d'origines diverses (coton, Avicel, betterave et tunicier) et caractérisés par microscopie optique et électronique ainsi que par diffusion des rayons X aux petits et grands angles. L'influence de la géométrie des whiskers et de paramètres physico-chimiques sur leurs propriétés d'auto-organisation dans l'eau et dans des solvants organiques apolaires a ensuite été étudiée et les diagrammes de phases déterminés pour les deux types de systèmes. Des matériaux nanostructurés reproduisant les organisations hélicoïdales observées dans les organismes vivants ont été préparés à partir de whiskers de cellulose organisés en phase cholestérique, dispersés dans un solvant/monomère photopolymérisable.
|
5 |
Modèle bio-inspiré pour le clustering de graphes : application à la fouille de données et à la distribution de simulations / Bio-inspired models for clustering graphs : applications for data mining and distribution of simulationsMasmoudi, Nesrine 06 January 2017 (has links)
Dans ce travail de thèse, nous présentons une méthode originale s’inspirant des comportements des fourmis réelles pour la résolution de problème de classification non supervisée non hiérarchique. Cette approche créée dynamiquement des groupes de données. Elle est basée sur le concept des fourmis artificielles qui se déplacent en même temps de manière complexe avec les règles de localisation simples. Chaque fourmi représente une donnée dans l’algorithme. Les mouvements des fourmis visent à créer des groupes homogènes de données qui évoluent ensemble dans une structure de graphe. Nous proposons également une méthode de construction incrémentale de graphes de voisinage par des fourmis artificielles. Nous proposons deux méthodes qui se dérivent parmi les algorithmes biomimétiques. Ces méthodes sont hybrides dans le sens où la recherche du nombre de classes, de départ, est effectuée par l’algorithme de classification K-Means, qui est utilisé pour initialiser la première partition et la structure de graphe. / In this work, we present a novel method based on behavior of real ants for solving unsupervised non-hierarchical classification problem. This approach dynamically creates data groups. It is based on the concept of artificial ants moving complexly at the same time with simple location rules. Each ant represents a data in the algorithm. The movements of ants aim to create homogenous data groups that evolve together in a graph structure. We also propose a method of incremental building neighborhood graphs by artificial ants. We propose two approaches that are derived among biomimetic algorithms, they are hybrid in the sense that the search for the number of classes starting, which are performed by the classical algorithm K-Means classification, it is used to initialize the first partition and the graph structure.
|
6 |
Bio-conjugaison de la fibronectine sur surface de téflon pour applications dans le domaine vasculaireByad, Michaël 24 April 2018 (has links)
Depuis trente ans, des efforts ont été menés dans le domaine de l'ingénierie des matériaux afin de concevoir des appareils médicaux pouvant être en contact avec les tissus humains. Néanmoins l'interaction entre la surface du matériau et l'environnement physiologique entraine la plupart du temps des complications. Le laboratoire d'ingénierie des surfaces est spécialisé dans l'élaboration de surfaces biomimétiques capables d'interagir de manière proactive avec leur environnement. Pour des applications cardiovasculaires, une des stratégies consiste à utiliser des protéines de la matrice extracellulaire, comme la fibronectine, connue pour la promotion de l'adhésion des cellules endothéliales. Dans ce contexte, parce que la bioactivité de la fibronectine est fortement liée à sa conformation, l'objectif est de comparer différentes stratégies d'immobilisation en caractérisant la quantité de fibronectine immobilisée ainsi que son activité biologique. Les précédentes études menées au laboratoire ont souligné le fait que la fibronectine immobilisée par les cystéines présente une meilleur bioactivité que lorsque celle-ci est immobilisée par les groupements lysines qu'elle contient. L'actuel projet porte sur l'étude de l'influence de l'utilisation d'un bras d'ancrage hydrophile ou hydrophobe entre la protéine et la surface sur la bioactivité de la protéine. Les résultats ont d'une part montré l'efficacité des bras d'ancrage dans l'immobilisation de la fibronectine et d'autre part les limites de leur utilisation pour une étude comparative portant sur la quantification et la bioactivité de la protéine.
|
7 |
Impact d'un substrat à rigidité ou à composition biomimétique sur la formation des jonctions intercellulaires de cellules endothéliales cornéennes en cultureSasseville, Samantha 21 October 2024 (has links)
L'endothélium cornéen est une monocouche de cellules endothéliales cornéennes (CECs) situé sur la face postérieure de la cornée. Il crée une barrière perméable, en partie grâce aux jonctions intercellulaires. Une atteinte à cette monocouche mène à un œdème cornéen et à une perte de vision. Le seul traitement est la greffe de cornée provenant de donneur. Une alternative serait de multiplier les CECs en culture et recréer un endothélium cornéen sur un biomatériau biocompatible. Cela permettrait de traiter plusieurs patients à partir des cellules d'une seule cornée. Par contre, la formation des jonctions intercellulaires de CECs en culture doit être améliorée afin d'assurer la fonctionnalité de l'endothélium reconstruit. *In vivo*, les CECs reposent sur la membrane de Descemet ayant une rigidité entre 20 et 80 kPa. L'objectif 1 a pour but de déterminer comment la culture de CECs sur un substrat de rigidité physiologique influence la formation de jonctions intercellulaires. Pour ce faire, deux types d'hydrogels à rigidité physiologique ont été utilisés. Nos résultats ont démontré que les hydrogels de polyacrylamide sont un meilleur candidat que les hydrogels « CytoSoft » pour la culture à long terme de CECs. Par la suite, la culture a été optimisée pour la formation de jonctions intercellulaires et les résultats ont favorisé un recouvrement de collagène IV, un milieu de maturation avec 5% de sérum de veau fœtal et TGF-β2 et une rigidité de 50 kPa. Ces conditions optimales ont été utilisées pour comparer la culture sur hydrogel à la culture sur verre (70 GPa). Nos résultats ont démontré que la rigidité physiologique ne peut pas rétablir un phénotype endothélial et que la culture de CECs conditionnées à la rigidité physiologique sur hydrogel permet une meilleure formation des jonctions intercellulaires que lors de la culture sur verre. Pour terminer, l'expansion de CECs fraichement isolées sur hydrogel a été évaluée et s'est trouvée impossible à exécuter en raison d'une absence de prolifération. L'objectif 2 évalue la formation d'un endothélium cornéen sur un hydrogel biocompatible composé de courts peptides mimant le collagène (CLP) lié, ou non, au polyéthylène glycol (PEG). Les résultats ont démontré qu'un recouvrement de laminine 511 est nécessaire à l'adhésion des cellules aux hydrogels CLP, mais pas CLP-PEG, mais qu'il n'est tout de même pas possible de reformer une monocouche, en raison d'un décollement précoce des cellules ou de l'hydrogel. Le motif IKVAV de la laminine a été réticulé aux hydrogels pour éviter le décollement des cellules, mais n'a pas permis de reformer une monocouche confluente. Ce mémoire démontre que la rigidité du substrat influence la formation de jonctions intercellulaires et ouvre des pistes sur l'optimisation d'un biomatériau pouvant éventuellement servir de support à la culture de CECs. / The corneal endothelium is a monolayer of corneal endothelial cells (CECs) located on the posterior part of the cornea. It creates a permeable barrier, in part due to intercellular junctions. Damage to this monolayer leads to corneal edema and vision loss. The only treatment available is a corneal graft from a donor. An alternative would be to multiply CECs in culture and recreate a corneal endothelium onto a biocompatible biomaterial. This could allow to graft several patients using the cells of a single cornea. On the other hand, intercellular junction formation of CECs in culture must be enhanced in order to ensure the reconstructed endothelium's functionality. *In vivo*, CECs rest on the Descemet's membrane, which has an average stiffness in between 20 and 80 kPa. Objective 1 aims to determine how culturing CECs on a substrate of physiological stiffness influences the formation of intercellular junctions. To do so, two types of substrates with physiological stiffnesses were used. Our results demonstrate that polyacrylamide hydrogels are a better candidate than "CytoSoft" hydrogels for long-term culture of CECs. Thereafter, cell culture was optimized for intercellular junction formation. The optimal culture conditions included a type IV collagen coating, a maturation media with 5% fetal bovine serum and TGF-β2, and a stiffness of 50 kPa. Those conditions were then used to compare the culture on hydrogels to the culture on glass (70 GPa). Our results demonstrated that physiological stiffness can't restore endothelial phenotype and that culture of physiological-stiffness-conditioned CECs on hydrogel led to better intercellular junction formation than culture on glass. Finally, freshly isolated CEC expansion on hydrogel was evaluated and was found to be impossible to execute due to lack of proliferation. Objective 2 evaluates the formation of a corneal endothelium on a biocompatible hydrogel composed of collagen-like peptides (CLP), linked or not to polyethylene glycol (PEG). The results demonstrated that a laminin 511 coating is necessary for cell adhesion on CLP, but not CLP-PEG hydrogels, and that it is still not possible to reform a monolayer because of early detachment of the cells or the hydrogel. The IKVAV laminin motif was crosslinked to the hydrogels to avoid cell detachment, but could not reform a confluent monolayer. This master thesis demonstrates that substrate stiffness has an impact on intercellular junction formation and opens avenues to optimize a biomaterial that could be used as a support to cultivate CECs.
|
8 |
Micro-engineered substrates as bone extracellular matrix mimicsBilem, Ibrahim 24 April 2018 (has links)
Il est de plus en plus évident que la matrice extracellulaire (MEC), au-delà de sa fonction d’échafaudage cellulaire, génère des signaux de nature biochimique et biophysique jouant un rôle primordial au cours du processus de différenciation des cellules souches. A l’heure actuelle, plus de 15 différents facteurs extrinsèques (environnementaux), incluant l’organisation spatiale de la MEC, sa topographie, rigidité, porosité, biodégradabilité et chimie ont été identifiés comme modulateurs potentiels de la différenciation des cellules souches en lignées cellulaires spécialisées. Ainsi, il est plausible que l’intégration d’un biomatériau au sein de l’organisme dépendra largement de sa capacité à mimer les propriétés de la MEC du tissu à remplacer. Récemment, les techniques de micro-ingénierie ont émergé comme outil innovant pour découpler les différentes propriétés de la MEC et étudier l’impact individuel ou combiné de ces facteurs sur le comportement des cellules souches. De plus, ces techniques de microfabrication ont un intérêt particulier dans une perspective de reconstruction de la MEC dans tous ses aspects, in vitro. Dans ce projet de thèse, le concept de déconstruction/reconstruction de la complexité de la MEC a été appliqué pour récapituler, in vitro, plusieurs aspects inhérents à la MEC osseuse et explorer leurs effets individuels ou combinés sur la différenciation ostéoblastique des cellules souches mésenchymateuses (CSMs) humaines. Trois principales composantes ont été utilisées tout au long du projet : un matériau modèle (verre borosilicate), des séquences peptidiques mimétiques dérivées de la MEC naturelle, favorisant à la fois l’adhérence cellulaire (peptide RGD) et la différenciation ostéoblastique (peptide BMP-2) des CSMs prélevées de la moelle osseuse des patients. La première étude du projet consiste à greffer, d’une manière aléatoire, les peptides RGD et/ou BMP-2 sur la surface du matériau. Brièvement, nous avons développé trois types de matériaux bioactifs : matériaux fonctionnalisés avec le peptide RGD, matériaux fonctionnalisés avec le peptide BMP-2 et matériaux bi-fonctionnalisés avec les peptides RGD/BMP-2. La caractérisation physicochimique de ces matériaux a été réalisée en utilisant la spectrométrie photoélectrique à rayons X (XPS) pour évaluer la composition chimique de la surface, la microscopie à force atomique (AFM) pour évaluer la topographie de la surface et la microscopie à fluorescence pour confirmer la présence des peptides sur la surface et évaluer leur densité. L’objectif de cette étude est d’évaluer le potentiel individuel et synergétique de ces peptides à induire et contrôler la différentiation ostéoblastique des CSMs. Dans un premier temps, la caractérisation physicochimique nous a permis de confirmer l’immobilisation covalente des peptides sur la surface et de mesurer leur densité. En effet, la densité des peptides, mesurée sur les surfaces greffées uniquement avec le peptide RGD ou BMP-2, était de 1.8 ± 0.2 pmol/mm² et 2.2 ± 0.3 pmol/mm², respectivement. Cependant, sur les surfaces bifonctionnalisées, la densité de chaque peptide a diminué de presque la moitié, atteignant 0.7 ± 0.1 pmol/mm² pour le peptide RGD et 1 ± 0.1 pmol/mm² pour le peptide BMP-2. Ensuite, l’évaluation biologique des différents matériaux fonctionnalisés a clairement révélé que contrairement au peptide RGD, le peptide BMP-2 induit la différenciation ostéoblastique des CSMs. Cependant, le greffage simultané des peptides RGD/BMP-2 améliore significativement la différenciation des CSMs en ostéoblastes et cela malgré la diminution significative de la densité de chaque peptide sur les surfaces bi-fonctionnalisées, comparativement aux surfaces contenant qu’un seul peptide. Ces résultats montrent que les peptides RGD et BMP-2 peuvent engendrer un effet synergétique pour améliorer la différenciation ostéoblastique des CSMs. Le second chapitre de thèse vise à déterminer si la microstructuration de la surface des matériaux avec des ligands bioactifs améliore la différenciation ostéoblastique des CSMs. En effet, les peptides RGD et BMP-2 ont été greffés séparément sur la surface du matériau sous forme de micro-motifs de différentes formes mais de taille similaire. En se basant sur des précédents travaux de littérature – discutés dans le chapitre II – nous avons sélectionné trois différentes formes de motifs peptidiques (triangle, carré et rectangle) dont la surface est de 50 μm². Ces micromotifs ont été créées grâce à une technique assez répondue et facile à utiliser qui est la photolithographie. Les surfaces microstructurées ont été caractérisées avec l’interférométrie optique et la microscopie à fluorescence. Les résultats montrent que les micromotifs peptidiques ont à la fois la forme et les dimensions prédéfinies. In vitro, les résultats de différenciation cellulaire ont révélé que la distribution spatiale des ligands à l’échelle micrométrique joue un rôle très important dans l’engagement et la différenciation des CSMs en ostéoblastes. En effet, contrairement aux micromotifs peptidiques en forme de rectangles, les micromotifs triangulaires et carrés améliorent significativement l’expression des marqueurs ostéogéniques (Runx-2 et Ostéopontine) comparativement à la distribution aléatoire des peptides. Il est important de noter que ce profile d’expression des marqueurs biologiques a été observé que sur les matériaux fonctionnalisés avec le peptide BMP-2, tant dis que les matériaux fonctionnalisés avec le peptide RGD n’ont induit aucun effet spécifique sur la différenciation des CSMs et cela peu importe la forme des micromotifs peptidiques. En conclusion, cette étude a permis d’identifier un nouveau facteur extracellulaire capable de contrôler la différenciation des CSMs. De plus, nous avons démontré que la distribution spatiale des ligands à l’échelle micrométrique affecte le devenir des CSMs, dépendamment de la nature du principe actif. Finalement, la troisième étude de ce projet de thèse est une suite logique de l’étude 1 et 2, puisqu’elle consiste à greffer simultanément les peptides RGD et BMP-2 sous forme de micromotifs. En effet, ces surfaces ont été développées afin de bénéficier à la fois de l’effet synergétique des peptides RGD/BMP-2, observé dans l’étude 1 (facteur 1), et de l’effet de la distribution spatiale contrôlée des ligands, observé dans l’étude 2 (facteur 2). Les différents types de matériaux ont été caractérisés avec les mêmes techniques de caractérisation de surface mentionnées dans l’étude 2. Les résultats montrent clairement que les surfaces microstructurées sont très bien définies et correspondent à un damier de micromotifs RGD, intercalé par un damier de micromotifs BMP-2. L’évaluation de la différenciation des CSMs sur ces matériaux a révélé que la combinaison des facteurs 1 et 2 améliore significativement la différenciation des CSMs vers le lignage ostéoblastique, comparativement à l’exposition des CSMs à un seul facteur extracellulaire (1 ou 2). De plus, cette étude confirme les résultats obtenus dans l’étude 2, puisque les micromotifs triangulaires et carrés ont permis une meilleure différenciation cellulaire, comparativement aux micromotifs rectangulaires. Il est important de noter également que l’évaluation biologique des différentes surfaces biomimétiques a été réalisée dans un milieu de culture basal qui ne contient pas de facteurs ostéogéniques solubles, afin d’étudier d’une manière assez précise et fiable les interactions des CSMs avec les différents microenvironnements in vitro développés dans ce projet. En conclusion générale, les travaux effectués jusqu’à présent ont permis d’identifier deux aspects de la MEC qui influencent considérablement la différenciation ostéoblastique des CSMs. De plus, nous avons démontré que ces deux facteurs peuvent coopérer pour induire une meilleure différenciation cellulaire. Cela révèle clairement l’intérêt des techniques de micro-ingénierie pour une meilleure et plus profonde compréhension des mécanismes d’interactions des cellules souches avec leurs niches, ce qui permettra éventuellement de concevoir des produits d’ingénierie tissulaire sur-mesure. Mots clés : Microstructuration de la surface des matériaux, matrice extracellulaire biomimétique, peptides mimétiques, BMP-2, cellules souches, ostéogenèse. / It is becoming increasingly appreciated that the role of extracellular matrix (ECM) extends beyond acting as scaffolds to providing biochemical and biophysical cues, which are critically important in regulating stem cell self-renewal and differentiation. To date, more than 15 different extrinsic (environmental) factors, including the matrix spatial organization, topography, stiffness, porosity, biodegradability and chemistry have been identified as potent regulators of stem cells specification into lineage-specific progenies. Thus, it is plausible that the behavior of biomaterials inside the human body will depend to a large extent on their ability to mimic ECM properties of the tissue to be replaced. Recently, nano- and microengineering methods have emerged as an innovative tool to dissect the individual role of ECM features and understand how each element regulates stem cell fate. In addition, such tools are believed to be useful in reconstructing complex tissue-like structures resembling the native ECM to better predict and control cellular functions. In the thesis project presented here, the concept of deconstructing and reconstructing the ECM complexity was applied to reproduce several aspects inherent to the bone ECM and harness their individual or combinatorial effect on directing human mesenchymal stem cells (hMSCs) differentiation towards the osteoblastic lineage. Three main components were used throughout this project: a model material (borosilicate glass), ECM derived peptides (adhesive RGD and osteoinductive BMP-2 mimetic peptides) and bone marrow derived hMSCs. All cell differentiation experiments were performed in the absence of soluble osteogenic factors in the medium in order to precisely assess the interplay between hMSCs and the different artificial matrices developed in the current study. First, RGD and/or BMP-2 peptides were covalently immobilized and randomly distributed on glass surfaces. The objective here was to investigate the effect of each peptide as well as their combination on regulating hMSCs osteogenic differentiation. The most important funding was that RGD and BMP-2 peptides can act synergistically to enhance hMSCs osteogenesis. Then, micropatterning technique (photolithography) was introduced to control the spatial distribution of RGD and BMP-2 at the micrometer scale. The peptides were grafted individually onto glass substrates, as specific micropatterns of varied shapes (triangular, square and rectangle geometries) but constant size (50 μm² per pattern). In this second part of the project, the focus was made on investigating the role of ligands presentation in a spatially controlled manner in directing hMSCs differentiation into osteoblasts. Herein, we demonstrated that the effect of microscale geometric cues on stem cell differentiation is peptide dependent. Finally, glass surfaces modified with combined and spatially distributed peptides were used as in vitro cell culture models to evaluate the interplay between RGD/BMP-2 crosstalk and microscale geometric cues in regulating stem cell fate. In this study, we revealed that the combination of several ECM cues (ligand crosstalk and geometric cues), instead of the action of individual cues further enhances hMSCs osteogenesis. Overall, our findings provide new insights into the role of single ECM features as well their cooperation in regulating hMSCs fate. Such studies would allow the reconstruction of stem cell microenvironment in all the aspects ex vivo, which may pave the way towards the development of clinically relevant tissue-engineered constructs. Keywords: Chemical micropatterning, bioactive surfaces, mimetic peptides, BMP-2, mesenchymal stem cells, stem-cell differentiation, stem-cell niche, osteogenesis.
|
9 |
Dynamique des réseaux d'actine d'architecture contrôlée / Dynamics of controlled actin network's architectureReymann, Anne-Cécile 11 July 2011 (has links)
Mon travail fut de développer différents projets en vue de mieux comprendre la dynamique et l'organisation des réseaux d'actine et les mécanismes moléculaires à l'origine de la production de force, cela en systèmes reconstitués bio-mimétiques. Dans un premier temps je me suis intéressée à l'étude de l'organisation spatio-temporelle des réseaux d'actine et de ses protéines associées durant la motilité de particules recouverte de promoteurs de nucléation (Achard et al, Current Biology, 2010 et Reymann et al, sous presse à MBOC). J'ai suivi en temps réel l'incorporation de deux régulateurs de l'actine (capping protein et ADF/cofiline) et montré que leur contrôle biochimique sur l'actine gouverne également ces propriétés mécaniques. Afin de mieux caractériser les propriétés mécaniques de ces réseaux d'actine en expension, j'ai ensuite développé un système biomimétique novateur utilisant un set-up de micro-patterning permettant un contrôle spatial reproductible des sites de nucléation d'actine. Cela m'a permis de montrer comment des barrières géométriques, semblables à celles trouvées dans les cellules, peuvent influencer la formation dynamique de réseaux organisés d'actine et ainsi contrôler la localisation de la production de forces. (Reymann et al, Nature Materials, 2010). De plus l'addition de moteurs moléculaires sur ce système versatile nous a permis d'étudier la contraction induite par des myosines. En particulier les myosines VI-HMM interagissent de manière sélective sur différentes architectures d'actine (organisation parallèle ou antiparallèle, réseau enchevêtré), aboutissant à un processus en trois phase : tension puis déformation des réseaux d'actine fortement couplé à un désassemblage massif des filaments. Ce phénomène est intimement dépendant de l'architecture du réseau d'actine et pourrait donc jouer un rôle essentiel dans la régulation spatiale des zones d'expansion et de contraction du cytosquelette in vivo. (Travail en cours d'écriture). / I have developed different projects in order to tackle the problem of actin network dynamics and organization as well as the molecular mechanism at the origin of force production in biomimetic reconstituted systems. My first interest concerned the spatiotemporal organization of actin networks and actin-binding proteins during actin based motility of nucleation promoting factor-coated particles (Achard et al, Current Biology, 2010 and Reymann et al, in press at MBOC). I tracked in real time the incorporation of two actin regulators and showed that their biochemical control of actin dynamics also governs its mechanical properties. To further characterize mechanical properties of expanding actin networks, I used an innovative micro-patterning set-up allowing a reproducible spatial control of actin nucleation sites. It allowed me to show that geometrical boundaries, such as those encountered in cells, affect the dynamic formation of highly ordered actin structures and hence control the location of force production (Reymann et al, Nature Materials, 2010). Finally the addition of molecular motors on this tunable system allowed me to study implications for myosin-induced contractility. In particular, HMM-MyosinVI selectively interact with the different actin network architectures (parallel, anti-parallel organization or entangled networks) and leads to a selective three-phase process of tension, deformation of actin networks tightly coupled to massive filament disassembly. This phenomenon being highly dependent on actin network architecture could therefore play an essential role in the spatial regulation of expanding and contracting regions of actin cytoskeleton in cells. (Work in writing process).
|
10 |
Compréhension des mécanismes de complexation de l'uranyle par les molécules du vivant : élaboration de peptides biomimétiques chélatants pour la détoxification / Understanding uranyl chelation by biomolecules : design of biomimetic chelating peptides for detoxificationLaporte, Fanny 10 October 2017 (has links)
Les métaux lourds, et en particulier les actinides, sont toxiques pour l'homme. La compréhension des mécanismes responsables de leur toxicité constitue un champ d'investigation important dans le domaine de la toxicologie. La compréhension des interactions de l’uranyle à l’échelle moléculaire est nécessaire pour prédire sa toxicité et pour concevoir des agents décorporants efficaces. Ce travail a pour objectif de contribuer à la caractérisation des sites d’interaction protéine-uranyle et à l’identification des facteurs clés gouvernant ces interactions. Pour obtenir des données thermodynamiques et structurales sur ces sites, deux stratégies ont été adaptées à l’étude des deux protéines humaines prédites comme cibles majeures de l’uranyle et dont les propriétés et structures sont très différentes. Les deux domaines structurés de la fétuine-A, ont été produits puis étudiés indépendamment par des méthodes physico-chimiques complémentaires incluant la spectroscopie RMN multidimensionelle afin d’obtenir des informations structurales sur les sites de liaison du métal dans la protéine. Afin d’élucider les interactions entre l’uranyle et l’ostéopontine, une protéine phosphorylée intrinsèquement désordonnée, nous avons conçu des peptides préorganisés en feuillet β comme modèles de sites de liaison de l’uranyle. Des acides aminés phosphorylés ont été introduits dans ces structures, permettant ainsi de reproduire l’environnement de coordination du métal dans la protéine. Les différences de structures et de propriétés entre biomolécules peuvent représenter un frein aux études d’affinité. Une sonde fluorescente non naturelle a donc été développée pour mettre au point une méthode de hiérarchisation des cibles de l’uranyle s’affranchissant de ces différences. / Heavy metals, especially actinides, are toxic for humans. Understanding the mechanisms responsible for their toxicity is an important field of research in toxicology. Uranyl toxicity is still not well understood. The understanding of uranyl interactions at the molecular level is necessary to predict its chemical toxicity and to develop efficient chelating agents. This work aims at identifying uranyl binding sites in proteins and key factors that govern these interactions. To obtain thermodynamic and structural data, strategies were developed to study two proteins predicted as major uranyl targets which present different structures and properties. We took advantage of fetuin-A structure and studied the two structured domain of the protein by complementary physico-chemical methods including multidimensional NMR spectroscopy to acquire structural information on uranyl binding sites in this protein. In order to elucidate interactions between the metal and disordered phosphorylated proteins such as osteopontin, we designed peptides preorganized in β-sheet optimized to coordinate uranyl cation. We introduced amino acids containing phosphate groups and demonstrated that these peptides are relevant models to mimic uranyl binding sites found in phosphorylated proteins. Biomolecules display different structures and properties which may constitute an obstacle to affinity studies. A tool based on a non-natural fluorescent probe was developed to investigate and compare uranyl targets affinities.
|
Page generated in 0.0401 seconds