Spelling suggestions: "subject:"biphenyls"" "subject:"diphenyls""
281 |
Fate and transport of POPs in the aquatic environment : with focus on contaminated sedimentsJosefsson, Sarah January 2011 (has links)
Persistent organic pollutants (POPs) are hydrophobic substances that readily sorb to organic matter in particles and colloids instead of being freely dissolved in the water phase. This sorption affects the bioavailability and environmental transport of the POPs. The major part of this thesis concerns the role of sediments as secondary sources of POPs. As the primary emissions decrease, contaminated sediments where POPs have accumulated can become the main source of contamination. If the contaminated sediment by time becomes covered with cleaner layers, the POPs are buried and no longer in contact with the aquatic environment. Experiments in this thesis showed, however, that new invading species can alter the sediment-water dynamics as a result of their bioturbation, i.e. mixing of sediment particles and pore-water. Marenzelleria spp., invading species in the Baltic Sea that burrow deeper than native species, were found to increase the remobilization of buried contaminants. The sediment-to-water flux was inversely related to the burial depth (2-10 cm) of the POP congeners (polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers) and also inversely related to the hydrophobicity of the congener. The flux was therefore most pronounced for less hydrophobic contaminants, which was linked to the bioirrigating behaviour of these species. Marenzelleria spp. also accumulated the buried POPs and increased concentrations in surface sediment. Contaminants previously considered buried at a ’safe’ depth can thus be remobilized as a result of the invasion of Marenzelleria spp. in the Baltic Sea. One method to decrease the remobilization of contaminants from sediments is ’capping’, i.e. a layer of clean material is placed as a cap on the sediment. By amending the cap with active materials, which sequester the POPs and decrease their availability, thinner layers can be used (’active capping’ or ’thin-layer capping’). Results from an experiment with thin-layer capping using different active materials (activated carbon (AC) and kraft lignin) showed that both the sediment-to-water flux and the bioaccumulation by benthic species of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), hexachlorobenzene (HCB) and octachlorostyrene (OCS) decreased with increased thickness of the cap layer (0.5-5 cm). Amendments with active materials further increased the cap efficiency. AC was more efficient than kraft lignin, and a 3 cm cap with 3.3% AC reduced the flux and bioaccumulation with ~90%. The reduction of the sediment-to-water flux was inversely related to the hydrophobicity of the POP, and reductions in the flux had similar magnitudes as reductions in the concentration in deep-burrowing polychaetes, demonstrating the importance of bioturbation for sediment-to-water transport. In a one-year study on the levels of PCDD/Fs, PCBs, and HCB in a coastal area of the Baltic Sea, the correlations between the POP levels and the levels of particles and organic carbon in the water were found to differ for POPs of different structure and hydrophobicity. The levels of PCDD/Fs decreased to one third in May, which could be related to the increased sedimentation, i.e. water-to-sediment transport, during spring bloom.
|
282 |
Kombinovaná metoda - Sanace podzemních vod za využití kombinace laktátu sodného a nanoželeza / Combined methods Remediation of groundwater by combination of sodium lactate and zero valent nanoironStejskal, Vojtěch January 2014 (has links)
Vojtěch Stejskal - Diplomová práce 2014 - Přírodovědecká fakulta UK v Praze 4 ABSTRACT The thesis describes pilot applications of combined method - combination of sodium lactate and nanoparticles of zero-valent iron and their synergic effect. Two applications of combined method are described onto two geologically different sites - in Rožmitál pod Třemšínem and Spolchemie in Ústí nad Labem. First site is contaminated by polychlorinated biphenyls; contamination is situated in hydraulically well conducted porous media formed by weathered granodiorite. Main contaminants of Spolchemie site are trichloroethylene and tetrachloroethylene, contamination is situated in geologically heterogenous quaternary terrace of Bílina river. Effects of combined method on two different sites were compared and recommendations and conclusions were done. Part of the thesis is research of scientific articles and literature on topics: polychlorinated biphenyls, chlorinated ethylenes, in situ chemical reduction by sodium lactate and nanoiron, natural conditions of both sites, history of sites. In the thesis are also processed and evaluated results of geophysical investigation, changes of groundwater level and results of groundwater monitoring in view of the application of combined method on both sites.
|
283 |
The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, CanadaEickmeyer, David 03 September 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water.
Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.
|
284 |
The Effects of Retrogressive Thaw Slump Development on Persistent Organic Pollutants in Lake Sediments of the Mackenzie River Delta Uplands, NT, CanadaEickmeyer, David January 2013 (has links)
Using a comparative spatial and temporal analysis on sediment cores from 8 lakes in the Mackenzie River Delta uplands region, NT, Canada, this study assessed how persistent organic pollutant (POP) deposition to lake sediments was affected by: (1) the presence of retrogressive thaw slumps on lake shores; and (2) changes occurring with increased autochthonous primary productivity. POPs examined included polychlorinated biphenyls (PCBs), penta- and hexachlorobenzenes (CBzs), and dichlorodiphenyltrichloroethane and metabolites (DDTs). Surface sediments of slump-affected lakes contained higher total organic carbon (TOC)-normalized POP concentrations than nearby reference lakes unaffected by thaw slumps. Inorganic sedimentation rates were positively related to contaminant concentrations, suggesting that the influx of siliciclastic material reducing organic carbon in slump-affected lake water indirectly results in higher concentrations of POPs on sedimentary organic matter. This explanation was corroborated by an inverse relationship between sedimentary POP concentrations and TOC content of the lake water.
Deposition proxies of autochthonous carbon were not significantly correlated to POP fluxes of surface sediments, and historical profile fluctuations did not coincide with variation in POP deposition. Thus this study does not support the contention that algal-derived organic carbon increases the delivery of organic pollutants to sediments (the algal-scavenging hypothesis), as previously proposed for mercury. Higher POP concentrations observed in surface sediments of slump-affected lakes are best explained by simple solvent switching processes of hydrophobic contaminants onto a lower pool of available organic carbon when compared to neighbouring lakes unaffected by thaw slump development.
|
Page generated in 0.0419 seconds