• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 7
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 32
  • 11
  • 11
  • 10
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Solceller integrerade i anläggningskonstruktioner : En studie av hur solceller kan integreras i transportsektorns nyproduktion / Photovoltaics integrated in non-building structures : A study of how photovoltaics can be integrated in the transportation sector’s new production

Bakar, Asra, Mousi, Georgi January 2018 (has links)
Med ett alltmer miljömedvetet samhälle finner vi idag ett ökande intresse för tillämpningen av effektiva energiförsörjningssystem. Ett av tillvägagångssätten för detta är att utnyttja solenergi, vilket möjliggörs med solceller. Solceller kan kortfattat beskrivas som en komponent vilket syftar i att omvandla solenergi till elektricitet. Denna teknik har på senare år blivit ett incitament för byggherrar att uppnå kraven för diverse miljöcertifieringar, där solceller används som byggnadsmaterial vid nyproduktion och renoveringar. De konstruktioner där solceller har använts brukar gemensamt kallas för solcellsanläggningar, beroende på solcellstyp kan dessa delas in i byggnadsapplicerade (BAPV) och byggnadsintegrerade (BIPV). Med hjälp av litteraturstudier, fallstudier, intervjuer samt workshop och observationer har det utförts en undersökning med fokus på byggnadsintegrerade solceller (BIPV). Undersökningen verkställdes med avsikten att granska den potentiella utsträckningen som byggnadsintegrerade solceller kan implementeras inom transportsektorns nyproduktion. Avhandlingens huvudsakliga mål är att förse uppdragsgivaren med förslag på tillämpningsområden för byggnadsintegrerade solceller till nyproduktion, där eventuella hänsyn har tagits till byggteknik och arkitektur. Dessutom menar rapporten att bidra till bildningen av en uppfattning kring solceller som byggnadsmaterial. Resultatet som påvisades från undersökningen är att det finns möjligheter för BIPV att implementeras i anläggningskonstruktioner inom transportsektorn. Bland dessa konstruktioner är bullerskärmar och teknikhus för järnvägar. Dessutom konstateras att de byggtekniska faktorer som bör beaktas vid nyproduktion med BIPV är orientering och lutning, likaså skuggning och ventilation. För arkitektoniska faktorer gäller att konstruktionen är estetiskt tilltalande, har en god komposition med färg och material, passar det synliga rutnätets motiv, den är kontextualiserad och väl projekterad samt att den har en innovativ design. I avhandlingen framkommer även möjligheter och hinder vid projektering med solceller. Resultaten visar att möjligheterna för BIPV är förutom att den utgör ett byggnadsskal, så har den även en energiavkastning till skillnad från traditionella byggnadsmaterial. Dessutom är BIPV ett ekonomiskt och ekologiskt hållbart alternativ. De identifierade hindren relaterar till aktörers brist på kunskap i solcellstekniken, vilket försvårar deras arbeten. Studiens slutsats är att det finns en potential att implementera solcellstekniken i Sverige, dock är den mer lönsam för större anläggningskonstruktioner. Då bullerskärmar och teknikhus förekommer kontinuerligt längs svenska motor-och järnvägar ses detta som ett incitament till att integrera dessa med solceller. Slutsatsen är även att vissa hinder som uppstår vid produktion och underhåll kan undvikas redan vid projekteringsskedet. / With a society that is becoming more environmentally conscious, we now find a growing interest in the application of efficient energy supply systems. One of the approaches for this is to utilize solar energy, which is possible with photovoltaics (PV) also known as solar cells. PV can briefly be described as a component which aims to convert solar energy into electricity. This technology has in recent years been an incentive for constructions companies and project owners to achieve the requirements for various environmental certifications. Photovoltaic technology can be used in building materials for new productions or renovations. Building structures where PV has been utilized are commonly referred to as solar systems. Depending on the solar cell type, these can be divided into building applied photovoltaics (BAPV) and building integrated photovoltaics (BIPV). With the help of literature research, interviews, case studies as well as workshop and observations, a study has been carried out which focuses on building integrated photovoltaic. The study was conducted with the intention to examine the potential extent that building integrated photovoltaics can be implemented in the transport sectors new production. The main aim of the dissertation is to provide with proposals for areas of application for BIPV, where construction technology and architecture is specifically taken into consideration. This dissertation also intends to contribute to the formation of an idea of photovoltaics as a building material. The result shown by the study is that there are opportunities for BIPV to be implemented in the transport sectors production of new constructions. Among these constructions are noise barriers and service houses for railways. In addition, it is noted that factors which regard PV building technology are orientation and tilt as well as shading and ventilation. The architectural factor that are considered when designing with BIPV is that the design of the construction needs to be aesthetically appealing, have a good composition with color and material, suitable with the visible grid's theme, it also needs to be contextualized and carefully planned. It is also required for BIPV constructions to have an innovative design. The dissertation also reveals possibilities and obstacles when designing with solar cells. The results show that the promises for BIPV come in the form of economic and ecological sustainability. The identified barriers relate to lack of knowledge in solar technology, which complicates the work of the involved operatives. The study's conclusion is that there is a potential for implementing PV technology in Sweden, but it is more profitable for larger constructions. However noise barriers and service houses for railways, occur continuously along Swedish roads and railways, therefore they are large in quantity. The large quantity of these constructions should be an incentive to implement BIPV in these constructions. In addition, it is stated that certain obstacles arising from production and maintenance can be avoided as early as in the design stage. / FoI Solenergi
32

Integrability Evaluation Methodology for Building Integrated Photovoltaic's (BIPV) : A Study in Indian Climatic Conditions

Eranki, Gayathri Aaditya January 2016 (has links) (PDF)
India’s geographical location renders it with ample solar-energy potential ranging from 4-7 kWh/m2 daily and 2,300–3,200 sunshine hours annually. The diverse nature of human settlements (scattered low-rise to dense high-rise) in India is one of the unexplored avenues of harnessing solar energy through electricity generation using photovoltaic (PV) technology. Solar energy is a promising alternative that carries adequate potential to support the growing energy demands of India’s burgeoning population. A previous study estimates, by the year 2070, with 425 million households (of which utilizing only 20 %), about 90 TWh of electrical energy can be generated utilizing solar energy. PV is viable for onsite distributed (decentralized) power generation offering advantages of size and scale variability, modularity, relatively low maintenance and integration into buildings (no additional demand land). The application of solar PV technology as the building envelope viz., walls, façade, fenestration, roof and skylights is termed Building Integrated Photovoltaic (BIPV). Apart from generating electricity, PV has to also function as a building envelope, which makes BIPV systems unique. Even with a gradual rise in the number of BIPV installations across the world over the years, a common consensus on their evaluation has not yet been developed. Unlike PV in a ground mounted system, its application in buildings as an envelope has huge implications on both PV and building performance. The functions of PV as a building material translates well beyond electricity generation alone and would also have to look into various aspects like the thermal comfort, weather proofing, structural rigidity, natural lighting, thermal insulation, shading, noise protection safety and aesthetics. To integrate PV into a residential building successfully serving the purpose (given the low energy densities of PV and initial cost), would also mean considering factors like the buildings electricity requirement and economic viability. As many studies have revealed, 40% of electricity consumed in a building is utilized for maintaining indoor thermal comfort. Tropical regions, such as India, are generally characterized by high temperatures and humidity attributed to good sunlight, therefore, the externality considered for this study has been the impact of BIPV on the thermal comfort. Passive designs need to regulate the buildings solar exposure by integrating a combination of appropriate thermal massing, material selection, space orientation and natural ventilation. On the other hand, PV design primarily aims to maximize solar to generate maximum energy. The design requirements for climate-responsive building design may thus infringe upon those required for optimal PV performance. Regulating indoor thermal comfort in tropical regions poses a particular challenge under such conditions, as the indoor temperature is likely to be sensitive to external temperature variations. In addition, given current performance efficiencies for various PVs, high initial cost and space requirement, it is also crucial to ascertain PV’s ability to efficiently support buildings energy requirement. Thus, BIPV would require addressing, concurrently, design requirements for energy-efficient building performance, effective PV integration, and societal feasibility. A real time roof integrated BIPV system (5.25 kW) installed at the Center for Sustainable Technologies at the Indian Institute of Science, Bangalore has been studied for its PV and building thermal performance. The study aims at understanding a BIPV system (based on crystalline silicon) from the technical (climate-responsiveness and PV performance), social (energy requirement and energy efficiency) and economical (costs and benefits) grounds and identifies relevant factors to quantify performance of any BIPV system. A methodology for BIPV evaluation has been proposed (Integrability Methodology), especially for urban localities, which can also be adopted for various PV configurations, building typologies and climatic zones. In the process, a novel parameter (thermal comfort energy) to evaluate the thermal performance of naturally ventilated buildings combining climate-responsiveness and thermal comfort aspects has also been developed. An Integrability Index has also been devised, integrating various building performance factors, to evaluate and compare the performance of BIPV structures. The methodology has been applied to the 5.25 kW BIPV system and the index has been computed to be 0.17 (on a scale of 0 – 1). An insulated BIPV system (building applied photovoltaic system) has been found to be favorable for the climate of Bangalore than BIPV. BIPV systems have also been compared across three different climates (Bangalore, Shillong and Delhi) and given the consideration of the same system for comparison, the system in Delhi is predicted to have a higher Integrability than the other two systems. The current research work is a maiden effort, that aims at developing and testing a framework to evaluate BIPV systems comprising technical, social and economic factors.

Page generated in 0.0319 seconds