• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 14
  • 13
  • 4
  • Tagged with
  • 58
  • 35
  • 33
  • 29
  • 18
  • 18
  • 18
  • 17
  • 11
  • 10
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Gefahrenabwehr bei Bodenerosion: Arbeitshilfe

January 2013 (has links)
Im Freistaat Sachsen tritt jährlich mehr oder weniger ausgeprägt nach lokalen Starkregenereignissen Bodenerosion auf. In der Öffentlichkeit werden die Erosionsschäden meist erst beachtet, wenn über den Ackerboden hinaus Siedlungs- und Verkehrsbereiche betroffen sind. Bodenerosion kann eine schädliche Bodenveränderung begründen, die nach § 4 Bundesbodenschutzgesetz abzuwehren oder zu sanieren ist. Für die Frage, ob eine schädliche Bodenveränderung vorliegt, enthält die Arbeitshilfe Hinweise.
52

Experimentelle Untersuchungen zum Einfluss physikalischer Bodeneigenschaften auf die Rillenerosion / Experimental research on the influence of soil physical properties on rill erosion

Hieke, Falk 17 February 2010 (has links) (PDF)
Der Einfluss bodenspezifischer Größen auf die Rillenerosion wurde in Überströmungsversuchen in einem eigens dafür konstruiertem Kleingerinne untersucht. Die Neigung des 2 m langen und 0,1 m breiten Gerinnes wurde dafür zwischen 2, 4 und 6 % variiert. Im Gerinne wurden zum einen natürliche Böden, zum anderen künstliche, aus Schluff und Sand gemischte Substrate mit 0,060 l*s-1, 0,125 l*s-1 und 0,300 l*s-1 überströmt. Die Körnung der natürlichen Böden reichte von stark schluffig bis sandig-lehmig, die der künstlichen Substrate von stark schluffig bis sandig. Die künstlichen Substrate wiesen im Gegensatz zu den natürlichen Böden keine Aggregierung auf und waren frei von organischer Substanz. Zu Beginn der Versuche wird der Boden zunächst flächig überströmt. Währenddessen bilden sich Mikrorillen auf der Gerinnesohle aus. Selektiver Sedimenttransport bewirkt die Akkumulation der nicht transportablen Fraktion auf der Bodenoberfläche, wodurch sich Rippel bilden. Über den Rippeln formen sich stehende Wellen im Abfluss. Die stehenden Wellen erzeugen Sohlschubspannungsspitzen auf die Gerinnesohle, welche zu verstärkter lokaler Erosion, zur Ausbildung von Mikrodepressionen und im weiteren zur Entstehung von Rillenköpfen führen. Die Rillenköpfe wandern entgegen dem Gefälle und hinterlassen Rillen, in denen sich der Abfluss konzentriert. In den Rillen können weitere Rillenköpfe entstehen. Anhand des Beginns der Rillenerosion, der Rillenkopfneubildungsrate, dem Erosionsfortschritt der Rillenköpfe, der Bestandsdauer der Rillenköpfe und der Sedimentkonzentration im Abfluss kann das Phänomen „Rillenerosion“ erfasst und quantifiziert werden. Diese erosionsspezifischen Kennwerte zeigen sich dabei in Abhängigkeit von bodenspezifischen Größen, wie der Lagerungsdichte, der Korngrößenzusammensetzung sowie der Aggregatgrößenverteilung und –stabilität. Aus den Korrelationsanalysen zwischen den bodenspezifischen Größen und den spezifischen Kennwerten der Rillenerosion leiten sich empirische Beziehungen ab. Diese Beziehungen sind nicht-linearerer und nicht-stetiger Natur. Parallel zu den Versuchen im Kleingerinne wurden Überströmungs- und Beregnungsversuche in einem Großgerinne durchgeführt. Die Projektion der laborativen Ergebnisse des Kleingerinnes auf das naturnahere Großgerinne zeigte dabei Parallelen.
53

Rule-based analysis of throughfall kinetic energy to evaluate biotic and abiotic factor thresholds to mitigate erosive power

Goebes, Philipp, Schmidt, Karsten, Stumpf, Felix, von Oheimb, Goddert, Scholten, Thomas, Härdtle, Werner, Seitz, Steffen 17 September 2019 (has links)
Below vegetation, throughfall kinetic energy (TKE) is an important factor to express the potential of rainfall to detach soil particles and thus for predicting soil erosion rates. TKE is affected by many biotic (e.g. tree height, leaf area index) and abiotic (e.g. throughfall amount) factors because of changes in rain drop size and velocity. However, studies modelling TKE with a high number of those factors are lacking. This study presents a new approach to model TKE. We used 20 biotic and abiotic factors to evaluate thresholds of those factors that can mitigate TKE and thus decrease soil erosion. Using these thresholds, an optimal set of biotic and abiotic factors was identified to minimize TKE. The model approach combined recursive feature elimination, random forest (RF) variable importance and classification and regression trees (CARTs). TKE was determined using 1405 splash cup measurements during five rainfall events in a subtropical Chinese tree plantation with five-year-old trees in 2013. Our results showed that leaf area, tree height, leaf area index and crown area are the most prominent vegetation traits to model TKE. To reduce TKE, the optimal set of biotic and abiotic factors was a leaf area lower than 6700mm2, a tree height lower than 290 cm combined with a crown base height lower than 60 cm, a leaf area index smaller than 1, more than 47 branches per tree and using single tree species neighbourhoods. Rainfall characteristics, such as amount and duration, further classified high or low TKE. These findings are important for the establishment of forest plantations that aim to minimize soil erosion in young succession stages using TKE modelling.
54

Mapping rill soil erosion in agricultural fields with UAV-borne remote sensing data

Malinowski, Radek, Heckrath, Goswin, Rybicki, Marcin, Eltner, Anette 27 February 2024 (has links)
Soil erosion by water is a main form of land degradation worldwide. The problem has been addressed, among others, in the United Nations Sustainability Goals. However, for mitigation of erosion consequences and adequate management of affected areas, reliable information on the magnitude and spatial patterns of erosion is needed. Although such need is often addressed by erosion modelling, precise erosion monitoring is necessary for the calibration and validation of erosion models and to study erosion patterns in landscapes. Conventional methods for quantification of rill erosion are based on labour-intensive field measurements. In contrast, remote sensing techniques promise fast, non-invasive, systematic and larger-scale surveying. Thus, the main objective of this study was to develop and evaluate automated and transferable methodologies for mapping the spatial extent of erosion rills from a single acquisition of remote sensing data. Data collected by an uncrewed aerial vehicle was used to deliver a highly detailed digital elevation model (DEM) of the analysed area. Rills were classified by two methods with different settings. One approach was based on a series of decision rules applied on DEM-derived geomorphological terrain attributes. The second approach utilized the random forest machine learning algorithm. The methods were tested on three agricultural fields representing different erosion patterns and vegetation covers. Our study showed that the proposed methods can ensure recognition of rills with accuracies between 80 and 90% depending on rill characteristics. In some cases, however, the methods were sensitive to very small rill incisions and to similar geometry of rills to other features. Additionally, their performance was influenced by the vegetation structure and cover. Besides these challenges, the introduced approach was capable of mapping rills fully automatically at the field scale and can, therefore, support a fast and flexible assessment of erosion magnitudes.
55

Prozessbasierte Modellierung von Erosion, Deposition und partikelgebundenem Nähr- und Schadstofftransport in der Einzugsgebiets- und Regionalskala

Schindewolf, Marcus 20 April 2012 (has links) (PDF)
The process based soil erosion simulation model EROSION 3D is applied on regional scale for the federal state of Saxony/Germany. This survey is aimed on modeling soil loss, sediment transport, deposition resp. the input of particle attached nutrient and pollutant input into surface water bodies for 10years storm event and three land use scenarios. The available region-wide geo-data were preprocessed to be used in the parameterization interface DPROC. This software has been extended to parameterize large areas as well as small catchments. The basis of parameterization is a relational data base consisting of measured or estimated specific model soil parameters. These values have been derived by heavy rainfall simulation experiments below field conditions. The data base has been extended by the new results, which cover different soil tillage practices. The new experiments were conducted with a newly developed methodology. The experimental results show a significant relation of soil loss from the mechanical impact due to soil tillage. Only the non-tillage practice is able to protect soils efficiently from erosional soil losses. In order to describe particle attached nutrient and pollutant transport, soil samples were analyzed determining the element content of different particle fractions. The regional scale simulations identify the Saxonian Loess Belt as hotspot of soil erosion. However considerable amounts can also be expected in certain areas of the low mountain range. Particle attached element inputs into surface water bodies correspond to main sediment delivery areas. The amounts of erosional soil losses could be reduced to 90 % in case of consequently and area-wide transformation to conservation tillage practices. The calculated phosphorous inputs into surface waters on catchment scale are proofed to be valid. Compared to empirical based phosphorous and heavy metal yields the results in this study exceed this findings by a wide range. The differences are caused by lacking an event based consideration, which disregards system maximal impacts. Since erosion is an exclusive non continuous process, those maximal impacts are highly relevant and have to be considered in case of planning and execution of erosion and water protection concepts. / In der vorliegenden Arbeit wird das prozessbasierte Erosionsprognosemodell EROSION 3D flächendeckend auf regionaler Ebene für den Freistaat Sachsen angewendet. Ziel der Untersuchungen ist es, Bodenabtrag, Sedimenttransport und -deposition bzw. den Eintrag partikelgebundener Nähr- und Schadstoffe in Oberflächengewässer für ein 10jähriges Starkniederschlagsereignis und drei verschiedene Landnutzungsszenarien zu beschreiben. Dazu wurden im Vorfeld verfügbare Geo-Basisdaten so aufbereitet, dass sie für die semiautomatische Parametrisierung mit der Software DPROC verwendet werden können. Diese Software wurde so erweitert, dass sowohl größere Einzugsgebiete als auch einzelne Teileinzugsgebiete parametrisiert werden können. Grundlage der Parametrisierung bildet eine relationale Datenbank, die auf Messwerten bzw. davon abgeleiteten Schätzwerten aus Starkregenexperimenten unter Feldbedingungen basiert. Der vorhandene Datenfundus wurde durch neue Ergebnisse zu verschiedenen Verfahren der ackerbaulichen Bodenbearbeitung mittels neu entwickelter Methodik korrigiert und erweitert. Die experimentellen Ergebnisse zeigen eine deutliche Abhängigkeit des Feststoffaustrages von der Eingriffsintensität bei der Bodenbearbeitung. Dabei ist die Direktsaat die einzige Bewirtschaftungsform, die den Boden effektiv vor Erosion schützt. Um den selektiven partikelgebundenen Nähr- und Schadstofftransport prozessbasiert abzuschätzen, wurden die Stoffgehalte für die Partikelfraktionen Sand, Schluff und Ton an Bodenproben bestimmt. Die regionalskalierten Simulationen identifizieren die sächsische Lössregion als Schwerpunkt der Bodenerosion in Sachsen. Beträchtliche Bodenabträge sind darüber hinaus in den sächsischen Mittelgebirgen zu erwarten. Partikelgebundene Stoffeinträge in Oberflächengewässer verteilen sich in Abhängigkeit von den Sedimentliefergebieten. Die Bodenumlagerungsprozesse einschließlich der damit verbundenen partikelgebundenen Stoffeinträge lassen sich bei konsequenter Umstellung auf konservierende Bewirtschaftungsmethoden entsprechend den Modellergebnissen um mehr als 90 % reduzieren. Im Rahmen der Modellvalidierung konnte die Zuverlässigkeit der berechneten Phosphorausträge auf Einzugsgebietsebene belegt werden. Verglichen mit empirisch basierten mittleren jährlichen Abschätzungen sind die in dieser Arbeit berechneten ereignisbezogenen Phosphor- und Schwermetallausträge um ein Vielfaches höher. Zurückzuführen sind diese Unterschiede vor allem darauf, dass bei den rein empirischen Ansätzen, die maximale Belastungsspitzen unberücksichtigt bleiben. Da Erosion stets ein diskontinuierlicher Prozess ist, sind diese Belastungsspitzen im höchsten Maße relevant und bei der Planung und Durchführung von Erosions- und Gewässerschutzkonzepten unbedingt zu berücksichtigen.
56

Erhaltung der Bodenfruchtbarkeit unter Anwendung angepasster Anbausysteme in Bergregionen Vietnams / Soil Fertility Conservation for Sustainable Agriculture in Sloping Lands by applying appropriate Crop Systems and Green Manure Crops in Mountainous Area of Northern Vietnam

Do, Thi Lan 19 January 2004 (has links)
No description available.
57

Prozessbasierte Modellierung von Erosion, Deposition und partikelgebundenem Nähr- und Schadstofftransport in der Einzugsgebiets- und Regionalskala

Schindewolf, Marcus 27 January 2012 (has links)
The process based soil erosion simulation model EROSION 3D is applied on regional scale for the federal state of Saxony/Germany. This survey is aimed on modeling soil loss, sediment transport, deposition resp. the input of particle attached nutrient and pollutant input into surface water bodies for 10years storm event and three land use scenarios. The available region-wide geo-data were preprocessed to be used in the parameterization interface DPROC. This software has been extended to parameterize large areas as well as small catchments. The basis of parameterization is a relational data base consisting of measured or estimated specific model soil parameters. These values have been derived by heavy rainfall simulation experiments below field conditions. The data base has been extended by the new results, which cover different soil tillage practices. The new experiments were conducted with a newly developed methodology. The experimental results show a significant relation of soil loss from the mechanical impact due to soil tillage. Only the non-tillage practice is able to protect soils efficiently from erosional soil losses. In order to describe particle attached nutrient and pollutant transport, soil samples were analyzed determining the element content of different particle fractions. The regional scale simulations identify the Saxonian Loess Belt as hotspot of soil erosion. However considerable amounts can also be expected in certain areas of the low mountain range. Particle attached element inputs into surface water bodies correspond to main sediment delivery areas. The amounts of erosional soil losses could be reduced to 90 % in case of consequently and area-wide transformation to conservation tillage practices. The calculated phosphorous inputs into surface waters on catchment scale are proofed to be valid. Compared to empirical based phosphorous and heavy metal yields the results in this study exceed this findings by a wide range. The differences are caused by lacking an event based consideration, which disregards system maximal impacts. Since erosion is an exclusive non continuous process, those maximal impacts are highly relevant and have to be considered in case of planning and execution of erosion and water protection concepts.:Inhaltsverzeichnis I Abbildungsverzeichnis V Tabellenverzeichnis IX Abkürzungsverzeichnis XI Symbole und Einheiten XIII Zusammenfassung XV Abstract XVI 1 Einleitung 1 1.1 Motivation 1 1.2 Aufbau der Arbeit 4 1.3 Stand der Forschung 6 1.3.1 Prozesse und Skalen der Bodenerosion 6 1.3.2 Einflussgrößen der Bodenerosion 8 1.3.3 Erosionsschäden 13 1.3.4 Gesetzliche Regelungen zum Erosionsschutz 15 1.3.5 Erosionsmodellierung 16 1.3.6 Niederschlagssimulationen zur Parametererfassung 25 1.3.7 Kornfraktionsspezifische Verteilung partikelgebundener Nähr- und Schadstoffe 27 2 Material und Methoden 30 2.1 Untersuchungsgebiet 30 2.1.1 Allgemeine Charakteristik 30 2.1.2 Flächennutzung 31 2.1.3 Boden und Relief 31 2.1.4 Gewässer 33 2.1.5 Klima 34 2.1.6 Planungsebenen 34 2.2 Simulationsmodell EROSION 3D 36 2.2.1 Modellgrundlagen 36 2.2.2 Modellalgorithmen 39 2.2.3 Modellparameter 48 2.3 Parametrisierungsinterface DPROC 50 2.3.1 Programmgrundlagen 50 2.3.2 Datenbank 51 2.3.3 Flächenauswahl und Datenzuschnitt 53 2.4 Experimentelle Untersuchungen 56 2.4.1 Untersuchungsstandorte 56 2.4.2 Durchführung von Erosionsexperimenten mit Starkregensimulation 59 2.4.3 Parameterableitung 62 2.4.4 Korrektur- und Erweiterung der DPROC-Datenbank 65 2.5 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer 68 2.5.1 Regionalisierung und Validierung amtlicher Datenquellen 68 2.5.2 Probenahmen und Laboranalysen 68 2.5.3 Bestimmung der kornfraktionsspezifischen Phosphor- und Schwermetallgehalte 70 2.5.4 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer unter Verwendung der Simulationsergebnisse 71 2.6 Statistische Auswertung der experimentellen Daten 73 2.7 GIS-Daten und Datenaufbereitung 74 2.7.1 Reliefdaten 74 2.7.2 Bodendaten 75 2.7.3 Landnutzung und Bodenbearbeitung 75 2.7.4 Niederschlagsdaten 77 2.7.5 Andere Flächendaten 78 2.8 Simulationsrechnungen 79 2.8.1 Aufteilung in Untereinheiten 79 2.8.2 Szenarien 79 2.9 Risikoabschätzung 81 2.9.1 Landwirtschaftliche Nutzflächen 81 2.9.2 Oberflächengewässer 82 2.10 Modellvalidierung 84 2.10.1 Gebietsauswahl und Gebietscharakteristik 84 2.10.2 Datengrundlagen der Modellvalidierung 85 2.10.3 Modellparametrisierung 86 3 Ergebnisse 90 3.1 Experimentelle Ergebnisse 90 3.1.1 Starkregensimulationen 90 3.1.2 Ableitung sachsenweiter kornfraktionsspezifischer Stoffgehalte 91 3.2 Ergebnisse aus GIS-Operationen 98 3.2.1 Reliefdaten 98 3.2.2 Landnutzungsdaten 98 3.2.3 Andere GIS-Daten 99 3.3 Ergebnisse aus Simulationsrechnungen 105 3.3.1 Landwirtschaftliche Nutzflächen 105 3.3.2 Oberflächengewässer 112 3.4 Ergebnisse zur Modellvalidierung 126 3.4.1 Aus Messdaten abgeleitete Ergebnisse 126 3.4.2 Simulationsrechnungen zur Modellvalidierung 130 4 Diskussion 132 4.1 Experimentelle Ergebnisse 132 4.1.1 Messdaten 132 4.1.2 Abgeleitete Daten 135 4.1.3 Zusammenfassende Bewertung der experimentellen Daten 141 4.1.4 Kornfraktionsspezifische Stoffgehalte und -verteilungen 142 4.2 GIS-Daten 145 4.2.1 Reliefdaten 145 4.2.2 Bodendaten 145 4.2.3 Landnutzungsdaten 146 4.2.4 Regionalisierte Stoffgehalte 147 4.3 Weiterentwicklung und Korrektur der DPROC-Datenbank 149 4.4 Modellvalidierung 153 4.5 Simulationsrechnungen 156 4.5.1 Bodenabtrag und Deposition 156 4.5.2 Sediment- und partikelgebundener Stofftransport 163 5 Schlussfolgerung 170 6 Literatur 176 Anhang II A I Erosionsmodelle i A II DPROC-Übersetzungstabellen ii A III GIS-Daten viii A IV Interpolierte Oberboden-Schwermetallgehalte xii A V Daten der Starkregensimulationen xix A VI Elementgehalte der Bodenproben lxi A VII Simulationsrechnungen lxxi / In der vorliegenden Arbeit wird das prozessbasierte Erosionsprognosemodell EROSION 3D flächendeckend auf regionaler Ebene für den Freistaat Sachsen angewendet. Ziel der Untersuchungen ist es, Bodenabtrag, Sedimenttransport und -deposition bzw. den Eintrag partikelgebundener Nähr- und Schadstoffe in Oberflächengewässer für ein 10jähriges Starkniederschlagsereignis und drei verschiedene Landnutzungsszenarien zu beschreiben. Dazu wurden im Vorfeld verfügbare Geo-Basisdaten so aufbereitet, dass sie für die semiautomatische Parametrisierung mit der Software DPROC verwendet werden können. Diese Software wurde so erweitert, dass sowohl größere Einzugsgebiete als auch einzelne Teileinzugsgebiete parametrisiert werden können. Grundlage der Parametrisierung bildet eine relationale Datenbank, die auf Messwerten bzw. davon abgeleiteten Schätzwerten aus Starkregenexperimenten unter Feldbedingungen basiert. Der vorhandene Datenfundus wurde durch neue Ergebnisse zu verschiedenen Verfahren der ackerbaulichen Bodenbearbeitung mittels neu entwickelter Methodik korrigiert und erweitert. Die experimentellen Ergebnisse zeigen eine deutliche Abhängigkeit des Feststoffaustrages von der Eingriffsintensität bei der Bodenbearbeitung. Dabei ist die Direktsaat die einzige Bewirtschaftungsform, die den Boden effektiv vor Erosion schützt. Um den selektiven partikelgebundenen Nähr- und Schadstofftransport prozessbasiert abzuschätzen, wurden die Stoffgehalte für die Partikelfraktionen Sand, Schluff und Ton an Bodenproben bestimmt. Die regionalskalierten Simulationen identifizieren die sächsische Lössregion als Schwerpunkt der Bodenerosion in Sachsen. Beträchtliche Bodenabträge sind darüber hinaus in den sächsischen Mittelgebirgen zu erwarten. Partikelgebundene Stoffeinträge in Oberflächengewässer verteilen sich in Abhängigkeit von den Sedimentliefergebieten. Die Bodenumlagerungsprozesse einschließlich der damit verbundenen partikelgebundenen Stoffeinträge lassen sich bei konsequenter Umstellung auf konservierende Bewirtschaftungsmethoden entsprechend den Modellergebnissen um mehr als 90 % reduzieren. Im Rahmen der Modellvalidierung konnte die Zuverlässigkeit der berechneten Phosphorausträge auf Einzugsgebietsebene belegt werden. Verglichen mit empirisch basierten mittleren jährlichen Abschätzungen sind die in dieser Arbeit berechneten ereignisbezogenen Phosphor- und Schwermetallausträge um ein Vielfaches höher. Zurückzuführen sind diese Unterschiede vor allem darauf, dass bei den rein empirischen Ansätzen, die maximale Belastungsspitzen unberücksichtigt bleiben. Da Erosion stets ein diskontinuierlicher Prozess ist, sind diese Belastungsspitzen im höchsten Maße relevant und bei der Planung und Durchführung von Erosions- und Gewässerschutzkonzepten unbedingt zu berücksichtigen.:Inhaltsverzeichnis I Abbildungsverzeichnis V Tabellenverzeichnis IX Abkürzungsverzeichnis XI Symbole und Einheiten XIII Zusammenfassung XV Abstract XVI 1 Einleitung 1 1.1 Motivation 1 1.2 Aufbau der Arbeit 4 1.3 Stand der Forschung 6 1.3.1 Prozesse und Skalen der Bodenerosion 6 1.3.2 Einflussgrößen der Bodenerosion 8 1.3.3 Erosionsschäden 13 1.3.4 Gesetzliche Regelungen zum Erosionsschutz 15 1.3.5 Erosionsmodellierung 16 1.3.6 Niederschlagssimulationen zur Parametererfassung 25 1.3.7 Kornfraktionsspezifische Verteilung partikelgebundener Nähr- und Schadstoffe 27 2 Material und Methoden 30 2.1 Untersuchungsgebiet 30 2.1.1 Allgemeine Charakteristik 30 2.1.2 Flächennutzung 31 2.1.3 Boden und Relief 31 2.1.4 Gewässer 33 2.1.5 Klima 34 2.1.6 Planungsebenen 34 2.2 Simulationsmodell EROSION 3D 36 2.2.1 Modellgrundlagen 36 2.2.2 Modellalgorithmen 39 2.2.3 Modellparameter 48 2.3 Parametrisierungsinterface DPROC 50 2.3.1 Programmgrundlagen 50 2.3.2 Datenbank 51 2.3.3 Flächenauswahl und Datenzuschnitt 53 2.4 Experimentelle Untersuchungen 56 2.4.1 Untersuchungsstandorte 56 2.4.2 Durchführung von Erosionsexperimenten mit Starkregensimulation 59 2.4.3 Parameterableitung 62 2.4.4 Korrektur- und Erweiterung der DPROC-Datenbank 65 2.5 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer 68 2.5.1 Regionalisierung und Validierung amtlicher Datenquellen 68 2.5.2 Probenahmen und Laboranalysen 68 2.5.3 Bestimmung der kornfraktionsspezifischen Phosphor- und Schwermetallgehalte 70 2.5.4 Ermittlung der Phosphor- und Schwermetalleinträge in Oberflächengewässer unter Verwendung der Simulationsergebnisse 71 2.6 Statistische Auswertung der experimentellen Daten 73 2.7 GIS-Daten und Datenaufbereitung 74 2.7.1 Reliefdaten 74 2.7.2 Bodendaten 75 2.7.3 Landnutzung und Bodenbearbeitung 75 2.7.4 Niederschlagsdaten 77 2.7.5 Andere Flächendaten 78 2.8 Simulationsrechnungen 79 2.8.1 Aufteilung in Untereinheiten 79 2.8.2 Szenarien 79 2.9 Risikoabschätzung 81 2.9.1 Landwirtschaftliche Nutzflächen 81 2.9.2 Oberflächengewässer 82 2.10 Modellvalidierung 84 2.10.1 Gebietsauswahl und Gebietscharakteristik 84 2.10.2 Datengrundlagen der Modellvalidierung 85 2.10.3 Modellparametrisierung 86 3 Ergebnisse 90 3.1 Experimentelle Ergebnisse 90 3.1.1 Starkregensimulationen 90 3.1.2 Ableitung sachsenweiter kornfraktionsspezifischer Stoffgehalte 91 3.2 Ergebnisse aus GIS-Operationen 98 3.2.1 Reliefdaten 98 3.2.2 Landnutzungsdaten 98 3.2.3 Andere GIS-Daten 99 3.3 Ergebnisse aus Simulationsrechnungen 105 3.3.1 Landwirtschaftliche Nutzflächen 105 3.3.2 Oberflächengewässer 112 3.4 Ergebnisse zur Modellvalidierung 126 3.4.1 Aus Messdaten abgeleitete Ergebnisse 126 3.4.2 Simulationsrechnungen zur Modellvalidierung 130 4 Diskussion 132 4.1 Experimentelle Ergebnisse 132 4.1.1 Messdaten 132 4.1.2 Abgeleitete Daten 135 4.1.3 Zusammenfassende Bewertung der experimentellen Daten 141 4.1.4 Kornfraktionsspezifische Stoffgehalte und -verteilungen 142 4.2 GIS-Daten 145 4.2.1 Reliefdaten 145 4.2.2 Bodendaten 145 4.2.3 Landnutzungsdaten 146 4.2.4 Regionalisierte Stoffgehalte 147 4.3 Weiterentwicklung und Korrektur der DPROC-Datenbank 149 4.4 Modellvalidierung 153 4.5 Simulationsrechnungen 156 4.5.1 Bodenabtrag und Deposition 156 4.5.2 Sediment- und partikelgebundener Stofftransport 163 5 Schlussfolgerung 170 6 Literatur 176 Anhang II A I Erosionsmodelle i A II DPROC-Übersetzungstabellen ii A III GIS-Daten viii A IV Interpolierte Oberboden-Schwermetallgehalte xii A V Daten der Starkregensimulationen xix A VI Elementgehalte der Bodenproben lxi A VII Simulationsrechnungen lxxi
58

Modellgestützte Bewertung und Optimierung landschaftsbezogener Planungen unter besonderer Berücksichtigung des Erosionsschutzes: Modellgestützte Bewertung und Optimierung landschaftsbezogener Planungen unter besonderer Berücksichtigung des Erosionsschutzes

Schob-Adam, Annekatrin 25 January 2013 (has links)
Die Planung geeigneter Maßnahmen zu Verminderung des Bodenabtrags ist gebunden an eine möglichst präzise Ermittlung von Erosions- und Depositionsflächen, die Lokalisierung des Oberflächenabflusses und die Erfassung möglicher Eintrittspunkte des erodierten Bodens in Fließ- und Stillgewässer (siehe auch DUTTMANN 1999). Dazu stehen verschiedene Instrumente zur Verfügung. Neben den klassischen Methoden wie Kartierungen von Erosionsformen sowie deren Verteilung oder Messungen zur Quantifizierung von Bodenab- und aufträgen kommt der Anwendung von Modellen eine deutlich steigende Bedeutung zu. Dazu stehen einerseits empirische Modelle und andererseits prozessorientierte physikalisch basierte Modelle zur Verfügung. Bedingt durch den damit verbundenen Aufwand wurde bisher auf einen Einsatz dieser Modelle im Rahmen der planerischen Praxis weitgehend verzichtet. Mit der Anwendung des physikalisch basierten Erosionsmodells EROSION 3D wurde die Anwendbarkeit des Modells als Instrument in der Planungspraxis untersucht. Dazu wurde geprüft, ob der Ist-Zustand der Flächen dargestellt und die Planung von Maßnahmen präzisiert und objektiviert wurden kann. Diese Zielstellung wurde an drei, in verschiedenen Regionen Sachsens gelegenen Fallbeispielen mit verschiedenen planerischen Zielstellungen untersucht. Alle Untersuchungsgebiete befinden sich in überwiegend agrarisch geprägten Landschaften, da mit dem gewählten Modell vorrangig erosive Prozesse auf ackerbaulich genutzten Standorten dargestellt werden. Das erste Fallbeispiel untersucht, inwieweit die Funktion des Bodens als Archiv der Natur- und Kulturgeschichte auf Ackerflächen gewährleistet wurde und welche Maßnahmen zum Schutz dieser Bodenfunktion beitragen können. Archäologische Bodendenkmäler auf landwirtschaftlich genutzten Flächen unterliegen durch die deutliche Intensivierung der landwirtschaftlichen Bodenbearbeitung einer zunehmenden Gefährdung. Als Vorgehensweise wurde hier zuerst die graduelle Gefährdung der archäologischen Bodendenkmäler auf mesoskaliger Ebene bestimmt. Dazu erfolgt die Ermittlung der potentiellen Erosionsgefährdung. Anschließend für mehrere Hot-Spot-Flächen auf der Ebene des Kleineinzugsgebietes (chorische Ebene) eine hochaufgelöste Prüfung des derzeitigen Zustandes der Flächen und die Ableitung und Prüfung von Schutzmaßnahmen unter der Annahme von mehreren Landschaftsszenarien durchgeführt. Das zweite Fallbeispiel betrachtet den Einsatz des Erosionsmodells im Rahmen des Artenschutzes am Beispiel der Flussperlmuschel (Margaritifera margaritifera). Die Flussperlmuscheln sind durch Sediment- und Stoffeinträge in Fließgewässer extrem in ihrem Bestand gefährdet. Mit Hilfe der Modellierungsszenarien wurde untersucht, ob Stoffeintragspfade aus landwirtschaftlich genutzten Flächen und Sedimentübertrittspunkte in Gewässer nachvollziehbar ermittelt werden. Die Erwartung wurde durch den Modelleinsatz bestätigt. Auf Basis des Ist-Zustandes wurden anschließend Maßnahmenvorschläge erarbeitet, die zur Minimierung der Gewässereutrophierung und damit zum Schutz der Flussperlmuschel beitragen. Fallbeispiel 3 untersucht im Untersuchungsgebiet Baderitzer Stausee vorliegende umweltrelevante Planungen hinsichtlich ihrer Aussagen zum Erosionsschutz und den möglichen Einsatz von Erosionsmodellierungen auf dieser Planungsebene. Dazu wurde für dieses Fallbeispiel ein optimiertes Szenario mit der Fokussierung auf den Erosionsschutz entwickelt. Zusammenfassend wird festgestellt, dass das Modell EROSION 3D den unterschiedlichen Planungsansprüchen der drei ausgewählten Fallbeispiele gerecht werden konnte und ein weiterer Einsatz des Modells im Rahmen umweltrelevanter Maßnahmen sehr gut vorstellbar ist. Dazu bedarf es neben der noch zu beantwortenden Frage nach dem Finanzierungskonzept vor allem der Mitarbeit und kompetenten Beratung der Entscheidungsträger durch die Planer und Planerinnen.:INHALTSVERZEICHNIS ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ABKÜRZUNGEN UND SYMBOLE 1 Einleitung 1 1.1 Motivation 1 1.2 Ziel 3 1.3 Vorgehensweise 4 2 Stand des Wissens 5 2.1 Bodenerosion 5 2.1.1 Nutzungsbedingte Erosion 6 2.1.2 Erosionsschäden 8 2.1.3 Erosionsschutz 9 2.2 Umweltziele, Umweltqualitätsziele und Umwelthandlungsziele des Erosionsschutzes 13 2.2.1 Allgemeine Grundlagen 13 2.2.2 Situation des Erosionsschutzes 15 2.3 Rechtliche Grundlagen des Erosionsschutzes 19 2.3.1 Weltweit 19 2.3.2 Europäische Union (EU) 21 2.3.3 Bundesebene 22 2.3.4 Länderebene am Beispiel des Freistaates Sachsen 26 2.4 Landschaftsbezogene Planungen - Umsetzungsinstrumente des Erosionsschutzes? 28 2.4.1 Einordnung der Landschaftsplanung im Planungssystem 28 2.4.2 Planungsrecht und räumliche Planungssysteme 28 2.4.3 Raumordnung 28 2.4.4 Landschaftsplanung 29 2.4.5 Weitere Planungsinstrumente 31 2.4.6 Landwirtschaftliche Fachplanungen 32 2.5 Bisherige planerische Ansätze zur Erosionsminderung 33 2.5.1 Kriterien zur Ackerschlaggestaltung 33 2.5.2 Sächsischer Leitfaden Bodenschutz bei Planungs- und Genehmigungsverfahren 33 2.5.3 Aktuelle sächsische, deutsche und europäische Förderprogramme 33 2.5.4 Standards zum Erosionsschutz unter Cross Compliance ab dem 01. Juli 2010 35 3 Methodik 36 3.1 Vorgehensweise 36 3.1.1 Fallbeispiel 1 – Erosionsbedingte Gefährdung archäologischer Denkmalflächen 38 3.1.2 Fallbeispiel 2 - Arten- und Gewässerschutz am Beispiel der Flussperlmuschel 39 3.1.3 Fallbeispiel 3 – Optimierung landschaftsgliedernder Strukturen 40 3.2 Erosionsmodellierung 42 3.2.1 Stand der Wissenschaft 42 3.2.2 Auswahlkriterien der Modellanwendung 43 3.2.3 EROSION 3D 45 3.3 Daten- und Informationsgrundlagen 49 3.3.1 Landnutzungsparameter 49 3.3.2 Bodendaten 50 3.3.3 Ableitung des Landnutzungs- und Bodendatensatzes 51 3.3.4 Geländehöhen/ Geländemodell 51 3.3.5 Niederschlagsdaten 52 3.4 Experimentelle Parameterbestimmung 55 3.4.1 Feldarbeiten 55 3.4.2 Laborarbeiten 55 4 Ergebnisse 56 4.1 Fallbeispiel 1 – Schutz archäologischer Denkmalflächen 56 4.1.1 Beschreibung des Untersuchungsgebietes 57 4.1.2 Erosionsgefährdung des Gesamtgebietes - Übersichtsmodellierung 62 4.1.3 Erosionsgefährdung der Hotspotflächen 67 4.2 Fallbeispiel 2 – Artenschutzschwerpunkt Flussperlmuschel 92 4.2.1 Beschreibung der Untersuchungsgebiete 93 4.2.2 Gefährdungsursachen 97 4.2.3 Ergebnisse 99 4.2.4 Lokalisierung und Quantifizierung von Eintragspfaden und Übertrittspunkten 108 4.3 Fallbeispiel 3 – Optimierung landschaftsgliedernder Strukturen im Einzugsgebiet Stausee Baderitz 113 4.3.1 Beschreibung des Untersuchungsgebietes 113 4.3.2 Vorgehensweise 116 4.3.3 Ergebnisse der Modellierungsszenarien 125 5 Diskussion und Schlussfolgerungen 136 5.1 Fallbeispiel 1 136 5.1.1 Übersichtsmodellierung 136 5.1.2 Hot-Spot-Szenarien 136 5.1.3 Schlussfolgerungen 138 5.2 Fallbeispiel 2 139 5.2.1 Modellierungsergebnisse 139 5.2.2 Fehlerdiskussion 141 5.2.3 Vergleich der Modellierungsergebnisse mit vorliegenden Untersuchungen 143 5.2.4 Nicht berücksichtigte Gefährdungsfaktoren 144 5.2.5 Schlussfolgerungen Fallbeispiel 2 144 5.3 Fallbeispiel 3 146 5.3.1 Berücksichtigung des Erosionsschutzes in den vorliegenden Umweltplanungen 146 5.3.2 Erosionsmodellierung 146 5.3.3 Schlussfolgerung Fallbeispiel 3 150 5.4 Synopse der Fallbeispiele 153 5.4.1 Diskussion der Methodik 153 5.4.2 Eignung des Modells für die Umweltplanung 155 5.4.3 Einsatzmöglichkeiten auf der Basis gesetzlicher Grundlagen 156 5.4.4 Fazit 159 6 Zusammenfassung 161 7 Abstract 163 8 Literaturverzeichnis 164 Erklärung gemäß Anlage 4 – Eidesstattliche Versicherung 177 ANHANG A 1 Parametrisierung Fallbeispiel 2 180 A 2 Parametrisierung Fallbeispiel 3 182 A 3 Kartographische Darstellung der Modellergebnisse Fallbeispiel 1 187 / The planning of suitable measurements for reducing soil erosion is linked to a possible precise calculation of size of erosion and deposition, the localization of the overland flow and the side identification of any possible signs of eroded soil in flowing and in slack water (DUTTMANN 1999). A number of different instruments are available. Additionally to the classical methods, such as, field mapping the erosion forms, as well as, the allocation or measurements for the quantification of soil erosion and application, it also increases the importance of models. On the one side there are the empirical models and on the other the process orientated physical models. Due to the amount of work involved in using such models in the real world, they have been mainly ignored. Under the use of physical based erosion models EROSION 3D the use of these models as instruments of planning practice has been examined. The actual condition of the areas has also been produced and to see if the planning of measurements can be precise and objective. This aim has been examined in three different regions in Saxony in case studies each with different methods of planning. All examination areas were located in mainly agricultural countrysides and examined mainly with chosen model of erosion process concerning agronomic used locations. The first case study examined to what extent the function the soil as archive the nature and cultural history on agronomic areas had been allowed for and which measurements for the protection of these soil functions can make a contribution. Archaeological sites on used agricultural areas are exposed to greater danger due to the increased use of soil cultivation. First the potential erosion danger of archaeological sites on a mesoskalig level with subsequent gradual erosion levels was calculated. Finally for several hot spot areas followed a detailed examination of the current condition of the areas and the diversion and examination of protection measurements concerning several countryside scenarios. The second case study looked at the application of erosion models in the framework of wildlife conservation with the example choosen of freshwater pearl mussel (Margaritifera margaritifera). The freshwater pearl mussels are extremely endangered in their population as they are in the sediment and element inputs in flowing water. The examination looked comprehensibly at the help of element input ways on countryside areas and loose sediment in waters. Based on the actual situation a number of measurement suggestions were prepared for the reduction of water eutrophication and add to the protection of the freshwater pearl mussel. Case study 3 looked at the examination point Baderitzer Stausee the actual status of the countryside planning and the possible use of erosion models as possible methods of these planning levels. To what extent the existing plans for erosion protection in these planning procedures had been taken into account up to now.:INHALTSVERZEICHNIS ABBILDUNGSVERZEICHNIS TABELLENVERZEICHNIS ABKÜRZUNGEN UND SYMBOLE 1 Einleitung 1 1.1 Motivation 1 1.2 Ziel 3 1.3 Vorgehensweise 4 2 Stand des Wissens 5 2.1 Bodenerosion 5 2.1.1 Nutzungsbedingte Erosion 6 2.1.2 Erosionsschäden 8 2.1.3 Erosionsschutz 9 2.2 Umweltziele, Umweltqualitätsziele und Umwelthandlungsziele des Erosionsschutzes 13 2.2.1 Allgemeine Grundlagen 13 2.2.2 Situation des Erosionsschutzes 15 2.3 Rechtliche Grundlagen des Erosionsschutzes 19 2.3.1 Weltweit 19 2.3.2 Europäische Union (EU) 21 2.3.3 Bundesebene 22 2.3.4 Länderebene am Beispiel des Freistaates Sachsen 26 2.4 Landschaftsbezogene Planungen - Umsetzungsinstrumente des Erosionsschutzes? 28 2.4.1 Einordnung der Landschaftsplanung im Planungssystem 28 2.4.2 Planungsrecht und räumliche Planungssysteme 28 2.4.3 Raumordnung 28 2.4.4 Landschaftsplanung 29 2.4.5 Weitere Planungsinstrumente 31 2.4.6 Landwirtschaftliche Fachplanungen 32 2.5 Bisherige planerische Ansätze zur Erosionsminderung 33 2.5.1 Kriterien zur Ackerschlaggestaltung 33 2.5.2 Sächsischer Leitfaden Bodenschutz bei Planungs- und Genehmigungsverfahren 33 2.5.3 Aktuelle sächsische, deutsche und europäische Förderprogramme 33 2.5.4 Standards zum Erosionsschutz unter Cross Compliance ab dem 01. Juli 2010 35 3 Methodik 36 3.1 Vorgehensweise 36 3.1.1 Fallbeispiel 1 – Erosionsbedingte Gefährdung archäologischer Denkmalflächen 38 3.1.2 Fallbeispiel 2 - Arten- und Gewässerschutz am Beispiel der Flussperlmuschel 39 3.1.3 Fallbeispiel 3 – Optimierung landschaftsgliedernder Strukturen 40 3.2 Erosionsmodellierung 42 3.2.1 Stand der Wissenschaft 42 3.2.2 Auswahlkriterien der Modellanwendung 43 3.2.3 EROSION 3D 45 3.3 Daten- und Informationsgrundlagen 49 3.3.1 Landnutzungsparameter 49 3.3.2 Bodendaten 50 3.3.3 Ableitung des Landnutzungs- und Bodendatensatzes 51 3.3.4 Geländehöhen/ Geländemodell 51 3.3.5 Niederschlagsdaten 52 3.4 Experimentelle Parameterbestimmung 55 3.4.1 Feldarbeiten 55 3.4.2 Laborarbeiten 55 4 Ergebnisse 56 4.1 Fallbeispiel 1 – Schutz archäologischer Denkmalflächen 56 4.1.1 Beschreibung des Untersuchungsgebietes 57 4.1.2 Erosionsgefährdung des Gesamtgebietes - Übersichtsmodellierung 62 4.1.3 Erosionsgefährdung der Hotspotflächen 67 4.2 Fallbeispiel 2 – Artenschutzschwerpunkt Flussperlmuschel 92 4.2.1 Beschreibung der Untersuchungsgebiete 93 4.2.2 Gefährdungsursachen 97 4.2.3 Ergebnisse 99 4.2.4 Lokalisierung und Quantifizierung von Eintragspfaden und Übertrittspunkten 108 4.3 Fallbeispiel 3 – Optimierung landschaftsgliedernder Strukturen im Einzugsgebiet Stausee Baderitz 113 4.3.1 Beschreibung des Untersuchungsgebietes 113 4.3.2 Vorgehensweise 116 4.3.3 Ergebnisse der Modellierungsszenarien 125 5 Diskussion und Schlussfolgerungen 136 5.1 Fallbeispiel 1 136 5.1.1 Übersichtsmodellierung 136 5.1.2 Hot-Spot-Szenarien 136 5.1.3 Schlussfolgerungen 138 5.2 Fallbeispiel 2 139 5.2.1 Modellierungsergebnisse 139 5.2.2 Fehlerdiskussion 141 5.2.3 Vergleich der Modellierungsergebnisse mit vorliegenden Untersuchungen 143 5.2.4 Nicht berücksichtigte Gefährdungsfaktoren 144 5.2.5 Schlussfolgerungen Fallbeispiel 2 144 5.3 Fallbeispiel 3 146 5.3.1 Berücksichtigung des Erosionsschutzes in den vorliegenden Umweltplanungen 146 5.3.2 Erosionsmodellierung 146 5.3.3 Schlussfolgerung Fallbeispiel 3 150 5.4 Synopse der Fallbeispiele 153 5.4.1 Diskussion der Methodik 153 5.4.2 Eignung des Modells für die Umweltplanung 155 5.4.3 Einsatzmöglichkeiten auf der Basis gesetzlicher Grundlagen 156 5.4.4 Fazit 159 6 Zusammenfassung 161 7 Abstract 163 8 Literaturverzeichnis 164 Erklärung gemäß Anlage 4 – Eidesstattliche Versicherung 177 ANHANG A 1 Parametrisierung Fallbeispiel 2 180 A 2 Parametrisierung Fallbeispiel 3 182 A 3 Kartographische Darstellung der Modellergebnisse Fallbeispiel 1 187

Page generated in 0.0727 seconds