• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • Tagged with
  • 16
  • 16
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

From few-body atomic physics to many-body statistical physics : the unitary Bose gas and the three-body hard-core model / De la physique atomique à peu de corps à la physique statistique à N-corps : le gaz de Bose unitaire et le modèle de cœur dur à trois corps

Comparin, Tommaso 06 December 2016 (has links)
Les gaz d'atomes ultrafroids offrent des possibilités sans précédent pour la réalisation et la manipulation des systèmes quantiques. Le contrôle exercé sur les interactions entre particules permet d'atteindre le régime de fortes interactions, pour des espèces d'atomes à la fois fermioniques et bosoniques. Dans la limite unitaire, où la force d'interaction est à son maximum, des propriétés universelles émergent. Pour les atomes bosoniques, celles-ci comprennent l'effet Efimov, l'existance surprenante d'une séquence infinie d'états liés à trois corps. Dans cette thèse, nous avons étudiés un système de bosons unitaires. Partant des cas à deux et à trois corps, nous avons montrés que le modèle choisi capturait correctement les caractéristiques universelles de l'effet Efimov. Pour le modèle à N-corps, nous avons développé un algorithme de Monte Carlo quantique capable de réaliser les différentes phases thermodynamiques du système : gaz normal à haute-température, condensat de Bose-Einstein, et liquide d'Efimov. Un unique composant de notre modèle resterait pertinent à la limite de température infinie, à savoir la répulsion corps dur à trois corps, qui constitue une généralisation du potentiel classique entre sphères dures. Pour ce modèle, nous avons proposé une solution au problème d'empilement compact en deux et trois dimensions, fondée sur une Ansatz analytique et sur la technique de recuit simulé. En étendant ces résultats à une situation de pression finie, nous avons montré que le système présente une transition de fusion discontinue, que nous avons identifié à travers la méthode de Monte Carlo. / Ultracold atomic gases offer unprecedented possibilities to realize and manipulate quantum systems. The control on interparticle interactions allows to reach the strongly-interacting regime, with both fermionic and bosonic atomic species. In the unitary limit, where the interaction strength is at its maximum, universal properties emerge. For bosonic atoms, these include the Efimov effect, the surprising existence of an infinite sequence of three-body bound states. In this thesis, we have studied a system of unitary bosons. Starting from the two- and three-body cases, we have shown that the chosen model correctly captures the universal features of the Efimov effect. For the corresponding many-body problem, we have developed a quantum Monte Carlo algorithm capable of realizing the different thermodynamic phases in which the system may exist: The high-temperature normal gas, Bose-Einstein condensate, and Efimov liquid. A single ingredient of our model would remain relevant in the infinite-temperature limit, namely the three-body hard-core repulsion, which constitutes a generalization of the classical hard-sphere potential. For this model, we have proposed a solution to the two- and three-dimensional packing problem, based on an analytical ansatz and on the simulated-annealing technique. Extending these results to finite pressure showed that the system has a discontinuous melting transition, which we identified through the Monte Carlo method.
12

Collective localization transitions in interacting disordered and quasiperiodic Bose superfluids / Transitions de localisation collective dans les superfluides de Bose désordonnés ou quasipériodiques

Lellouch, Samuel 12 December 2014 (has links)
Ce mémoire présente une étude théorique des propriétés de localisation collective dans les superfluides de Bose désordonnés ou quasipériodiques. S'il est connu depuis Anderson que le désordre peut localiser les particules libres, comprendre ses effets dans les systèmes quantiques en interaction, où il est à l'origine de transitions de phase et d'effets de localisation non-Triviaux, représente aujourd'hui un défi majeur. En nous focalisant sur le cas d'un gaz de Bose dans le régime de faibles interactions, bien décrit par la théorie de Bogoliubov, nous étudions les transitions de localisation de ses excitations collectives dans différents contextes. Dans le cas d'un vrai désordre dans l'espace continu tout d'abord, nous développons un formalisme de désordre fort allant au-Delà des études antérieures, aboutissant à une description complète des propriétés de localisation des excitations en dimension arbitraire. Nous présentons un diagramme de localisation générique, et une interprétation microscopique de la propagation des excitations dans le désordre. Dans un second temps, nous considérons le cas d'un potentiel quasipériodique unidimensionel, aux propriétés intermédiaires entre un vrai désordre et un potentiel périodique. Notre traitement analytique et numérique du problème révèle une transition de localisation collective, que nous caractérisons et interprétons en termes de localisation dans un potentiel effectif multiharmonique. Pour finir, nous considérons le cas d'un gaz de Bose à deux composants. Nous développons le formalisme général pour étudier ces questions et décrivons la physique de base de ces systèmes qui présentent leurs propres spécificités. / In this thesis, we theoretically investigate the collective localization properties of weakly-Interacting Bose superfluids subjected to disordered or quasiperiodic potentials. While disorder has been recognized since Anderson to induce single-Particle localization, the interplay between disorder and interactions in quantum systems is today among the most challenging questions in the field, and underlies fascinating phase transitions and non-Trivial localization effetcs. Focusing on Bose gases in the weakly-Interacting regime for which the Bogoliubov theory proves a successful tool, we study the localization transitions of collective excitations in several contexts. First, in the case of a continuous true disorder, we develop a strong-Disorder formalism going beyond previous studies, providing us with a complete description of the localization behaviour of collective excitations in arbitrary dimension. A generic localization diagram is obtained and the transport of excitations in the disorder is microscopically interpreted. Secondly, we consider the case of one-Dimensional quasiperiodic potentials, which are known to display intermediate properties between periodic and disordered ones. We perform a numerical and analytical treatment of the localization problem of collective excitations, allowing us to quantitatively characterize and interpret the localization transition in terms of an effective multiharmonic problem. Finally, we set up the general inhomogeneous formalism to address such issues in multicomponent Bose gases, and enlighten the basic physic of such systems, which are known to exhibit their own specific features.
13

Non-equilibrium strongly-correlated dynamics

Johnson, Tomi Harry January 2013 (has links)
We study non-equilibrium and strongly-correlated dynamics in two contexts. We begin by analysing quantum many-body systems out of equilibrium through the lens of cold atomic impurities in Bose gases. Such highly-imbalanced mixtures provide a controlled arena for the study of interactions, dissipation, decoherence and transport in a many-body quantum environment. Specifically we investigate the oscillatory dynamics of a trapped and initially highly-localised impurity interacting with a weakly-interacting trapped quasi low-dimensional Bose gas. This relates to and goes beyond a recent experiment by the Inguscio group in Florence. We witness a delicate interplay between the self-trapping of the impurity and the inhomogeneity of the Bose gas, and describe the dissipation of the energy of the impurity through phononic excitations of the Bose gas. We then study the transport of a driven, periodically-trapped impurity through a quasi one-dimensional Bose gas. We show that placing the weakly-interacting Bose gas in a separate periodic potential leads to a phononic excitation spectrum that closely mimics those in solid state systems. As a result we show that the impurity-Bose gas system exhibits phonon-induced resonances in the impurity current that were predicted to occur in solids decades ago but never clearly observed. Following this, allowing the bosons to interact strongly, we predict the effect of different strongly-correlated phases of the Bose gas on the motion of the impurity. We show that, by observing the impurity, properties of the excitation spectrum of the Bose gas, e.g., gap and bandwidth, may be inferred along with the filling of the bosonic lattice. In other words the impurity acts as a probe of its environment. To describe the dynamics of such a strongly-correlated system we use the powerful and near-exact time-evolving block decimation (TEBD) method, which we describe in detail. The second part of this thesis then analyses, for the first time, the performance of this method when applied to simulate non-equilibrium classical stochastic processes. We study its efficacy for a well-understood model of transport, the totally-asymmetric exclusion process, and find it to be accurate. Next, motivated by the inefficiency of sampling-based numerical methods for high variance observables we adapt and apply TEBD to simulate a path-dependent observable whose variance increases exponentially with system size. Specifically we calculate the expected value of the exponential of the work done by a varying magnetic field on a one-dimensional Ising model undergoing Glauber dynamics. We confirm using Jarzynski's equality that the TEBD method remains accurate and efficient. Therefore TEBD and related methods complement and challenge the usual Monte Carlo-based simulators of non-equilibrium stochastic processes.
14

Dynamics and stability of a Bose-Fermi mixture : counterflow of superfluids and inelastic decay in a strongly interacting gas / Dynamique et stabilité d'un mélange de Bose-Fermi : contre-courant de superfluides et pertes inélastiques dans un gaz fortement corrélé

Laurent, Sébastien 09 October 2017 (has links)
La compréhension des effets des interactions dans un ensemble de particules quantiques représente un enjeu majeur de la physique moderne. Les atomes ultra-froids sont rapidement devenus un outil incomparable pour étudier ces systèmes quantiques fortement corrélés. Dans cette thèse, nous présentons plusieurs travaux portant sur les propriétés d’un mélange de superfluides de Bose et de Fermi créé à l’aide de vapeurs ultra-froides de ⁷Li et de ⁶Li. Nous étudions tout d'abord les propriétés hydrodynamiques du mélange en créant un contre-courant entre les superfluides. L'écoulement est dissipatif uniquement au dessus d'une vitesse critique que nous mesurons dans le crossover BEC-BCS. Une simulation numérique d’un contre-courant de deux condensats permet de mieux comprendre les mécanismes sous-jacents mis en jeu dans la dynamique. En particulier, l'étude numérique fournit des preuves supplémentaires que l'origine de la dissipation dans nos expériences est liée à l'émission d'excitation élémentaires dans chaque superfluide. Finalement, nous nous intéressons aux pertes inélastiques par recombinaison à trois corps qui peuvent limiter la stabilité de nos nuages. Ces pertes sont intimement liées aux corrélations à courte distance présentes dans le système et sont ainsi connectées aux propriétés universelles du gaz quantique. Cela se manifeste notamment par l’apparition de dépendances en densité ou en température inusuelles du taux de perte lorsque le système devient fortement corrélé. Nous démontrons cet effet dans deux exemples où les interactions sont résonantes, le cas du gaz de Bose unitaire et celui de notre mélange de superfluides Bose-Fermi. Plus généralement, nos travaux montrent que ces pertes inélastiques peuvent être utilisées pour sonder les corrélations quantiques dans un système en fortes interactions. / Understanding the effect of interactions in quantum many-body systems presents some of the most compelling challenges in modern physics. Ultracold atoms have emerged as a versatile platform to engineer and investigate these strongly correlated systems. In this thesis, we study the properties of a mixture of Bose and Fermi superfluids with tunable interactions produced using ultracold vapors of ⁷Li and ⁶Li. We first study the hydrodynamic properties of the mixture by creating a counterflow between the superfluids. The relative motion only exhibit dissipation above a critical velocity that we measure in the BEC-BCS crossover. A numerical simulation of counterflowing condensates allows for a better understanding of the underlying mechanisms at play in the dynamics. In particular, this numerical study provides additional evidence that the onset of friction in our experiment is due to the simultaneous generation of elementary excitations in both superfluids. Finally, we consider the inelastic losses that occur via three-body recombination in our cold gases. This few-body process is intimately related to short-distance correlations and is thereby connected to the universal properties of the many-body system. This manifests as the apparition of an unusual dependence on density or temperature in the loss rate when increasing the interactions. We demonstrate this effect in two examples where interactions are resonant: the case of a dilute unitary Bose gas and the one of impurities weakly coupled to a unitary Fermi gas. More generally, our work shows that inelastic losses can be used to probe quantum correlations in a many-body system.
15

Mesures de corrélations dans un gaz de bosons unidimensionnel sur puce / Probing correlations in a one-dimensional gas of bosons on an atom chip

Jacqmin, Thibaut 22 November 2012 (has links)
Nous présentons dans ce manuscrit des mesures de corrélations spatiales à un et deux corps effectuées sur un gaz de bosons unidimensionnel et ultra-froid piégé à la surface d'une microstructure. Les corrélations à deux corps sont mises en évidence par des mesures de fluctuations de densité in situ ; les corrélations à un corps sont sondées grâce à des mesures de distributions en impulsion. Nous avons observé des fluctuations de densité sub-poissoniennes dans le régime d'interactions faibles, mettant ainsi en évidence pour la première fois le sous-régime du régime de quasi-condensat dans lequel la fonction de corrélation à deux corps est dominée par les fluctuations quantiques. Nous avons également observé des fluctuations sub-poissoniennes quelle que soit la densité dans le régime d'interactions fortes ; notre mesure constitue la première observation d'un unique gaz de bosons unidimensionnel dans ce régime. Le piège magnétique que nous avons utilisé est un piège modulé qui possède la propriété remarquable de découplage entre confinements transverse et longitudinal. Cette spécificité nous a permis de façonner à volonté la forme du confinement longitudinal. En particulier, nous avons pu obtenir des pièges harmoniques et quartiques. Nous avons également utilisé les propriétés de ce piège modulé afin de réaliser une lentille magnétique longitudinale. Cette technique nous a permis de mesurer la distribution en impulsion du gaz, dans le régime d'interactions faibles. Nous présentons deux résultats, obtenus de part et d'autre de la transition molle entre les régimes de gaz de Bose idéal et de quasi-condensat. Sur le plan théorique, nous montrons qu'une théorie de champ classique ne suffit pas à décrire quantitativement cette transition molle pour les paramètres typiques de l'expérience. Nous avons donc recours à des calculs Monte-Carlo quantiques. La température extraite de l'ajustement de nos donnée par ces calculs est en bon accord avec celle obtenue en ajustant les fluctuations de densité in situ avec la thermodynamique de C. N. Yang et C. P. Yang. Enfin, nous démontrons une méthode de compensation de la gravité (piégeage harmonique résiduel) lors de la phase de lentille magnétique, qui nous permet d'améliorer considérablement la résolution en impulsion de cette technique. / In this manuscript, we present spatial one and two-body correlation measurements performed on a one-dimensional gas of ultra-cold bosons trapped at the surface of a microstructure. Two body correlations are highlighted by measurements of in situ density fluctuations and one-body correlations are probed through measurements of momentum distributions.We observed sub-Poissonian density fluctuations in the regime of weak interactions, thus demonstrating for the first time the regime of quasi-condensate in which the two-body correlation function is dominated by quantum fluctuations. We also observed sub-Poissonian fluctuations regardless of the density in the regime of strong interactions. Our measurement is the first observation of a single one-dimensional gas of bosons in this regime.The magnetic trap that we used is a modulated trap that has the remarkable property of decoupling between transverse and longitudinal confinements. This specificity has enabled us to engineer at will the shape of the longitudinal confinement. In particular, we were able to obtain harmonic and quartic traps.
16

Equilibrium and out-of-equilibrium physics of Bose gases at finite temperature

Wolswijk, Louise 24 June 2022 (has links)
The physics of ultracold quantum gases has been the subject of a long-lasting and intense research activity, which started almost a century ago with purely theoretical studies and had a fluorishing experimental development after the implementation of laser and evaporative cooling techniques that led to the first realization of a Bose Einstein condensate (BEC) over 25 years ago. In recent years, a great interest in ultracold atoms has developed for their use as platforms for quantum technologies, given the high degree of control and tunability offered by ultracold atom systems. These features make ultracold atoms an ideal test bench for simulating and studying experimentally, in a controlled environment, physical phenomena analogous to those occurring in other, more complicated, or even inaccessible systems, which is the idea at the heart of quantum simulation. In the rapidly developing field of quantum technologies, it is highly important to acquire an in-depth understanding of the state of the quantum many-body system that is used, and of the processes needed to reach the desired state. The preparation of the system in a given target state often involves the crossing of second order phase transitions, bringing the system strongly out-of-equilibrium. A better understanding of the out-of-equilibrium processes occurring in the vicinity of the transition, and of the relaxation dynamics towards the final equilibrium condition, is crucial in order to produce well-controlled quantum states in an efficient way. In this thesis I present the results of the research activity that I performed during my PhD at the BEC1 laboratory of the BEC center, working on ultracold gases of 23Na atoms in an elongated harmonic trap. This work had two main goals: the accurate determination of the equilibrium properties of a Bose gas at finite temperature, by the measurement of its equation of state, and the investigation of the out-of-equilibrium dynamics occurring when a Bose Einstein condensate is prepared by cooling a thermal cloud at a finite rate across the BEC phase transition.To study the equilibrium physics of a trapped atomic cloud, it is crucial to be able to observe its density distribution in situ. This requires a high optical resolution to accurately obtain the density profile of the atomic distribution, from which thermodynamic quantities can then be extracted. In particular, in a partially condensed atomic cloud at finite temperature, it is challenging to resolve well also the boundaries of the BEC, where the condensate fraction rapidly drops in a narrow spatial region. This required an upgrade of the experimental apparatus in order to obtain a high enough resolution. I designed, tested and implemented in the experimental setup new imaging systems for all main directions of view. Particular attention was paid for the vertical imaging system, which was designed to image the condensates in trap with a resolution below 2 μm, with about a factor 4 improvement compared to the previous setup. The implementation of the new imaging systems involved a partial rebuilding of the experimental apparatus used for cooling the atoms. This created the occasion for an optimization of the whole system to obtain more stable working conditions. Concurrently I also realized and included in the experiment an optical setup for the use of a Digital Micromirror Device (DMD) to project time-dependent arbitrary light patterns on the atoms, creating optical potentials that can be controlled at will. The use of this device opens up exciting future scenarios where it will be possible to locally modify the trapping potential and to create well-controlled barriers moving through the atomic cloud. Another challenge in imaging the density distribution in situ is determined by the fact that the maximum optical density (OD) of the BEC, in the trap center, exceeds the low OD of the thermal tails by several orders of magnitude. In order to obtain an accurate image of the whole density profile, we developed a minimally destructive, multi-shot imaging technique, based on the partial transfer of a fraction of atoms to an auxiliary state, which is then probed. Taking multiple images at different extraction fractions, we are able to reconstruct the whole density profile of the atomic cloud avoiding saturation and maintaining a good signal to noise ratio. This technique, together with the improvements in the imaging resolution, has allowed us to accurately obtain the optical density profile of the Bose gas in trap, from which the 3D density profile was then calculated applying an inverse Abel transform, taking advantage of the symmetry of the trap. From images of the same cloud after a time-of-flight expansion, we measured the temperature of the gas. From these quantities we could find the pressure as a function of the density and temperature, determining the canonical equation of state of the weakly interacting Bose gas in equilibrium at finite temperature. These measurements also allowed us to clearly observe the non-monotonic temperature behavior of the chemical potential near the critical point for the phase transition, a feature that characterizes also other superfluid systems, but that had never been observed before in weakly interacting Bose gases. The second part of this thesis work is devoted to the study of the dynamical processes that occur during the formation of the BEC order parameter within a thermal cloud. The cooling at finite rate across the Bose-Einstein condensation transition brings the system in a strongly out-of-equilibrium state, which is worth investigating, together with the subsequent relaxation towards an equilibrium state. This is of interest also in view of achieving a better understanding of second order phase transitions in general, since such phenomena are ubiquitous in nature and relevant also in other platforms for quantum technologies. A milestone result in the study of second order phase transitions is given by the Kibble-Zurek mechanism, which provides a simple model capturing important aspects of the evolution of a system that crosses a second-order phase transition at finite rate. It is based on the principle that in an extended system the symmetry breaking associated with a continuous phase transition can take place only locally. This causes the formation of causally disconnected domains of the order parameter, at the boundaries of which topological defects can form, whose number and size scale with the rate at which the transition is crossed, following a universal power law. It was originally developed in the context of cosmology, but was later successfully tested in a variety of systems, including superfluid helium, superconductors, trapped ions and ultracold atoms. The BEC phase transition represents in this context a paradigmatic test-bench, given the high degree of control at which this second-order phase transition can be crossed by means of cooling ramps at different rates. Already early experiments investigated the formation of the BEC order parameter within a thermal cloud, after quasi-instantaneous temperature quenches or very slow evaporative cooling. In the framework of directly testing the Kibble-Zurek mechanism, further experiments were performed, both in 2D and 3D systems, focusing on the emergence of coherence and on the statistics of the spontaneously generated topological defects as a function of the cooling rate. The Kibble-Zurek mechanism, however, does not fully describe the out-of-equilibrium dynamics of the system at the transition, nor the post-quench interaction mechanisms between domains that lead to coarse-graining. Most theoretical models are based on a direct linear variation of a single control parameter, e.g. the temperature, across the transition. In real experiments, the cooling process is controlled by the tuning of other experimental parameters and a global temperature might not even be well defined, in a thermodynamic sense, during the whole process. Moreover, the temperature variation is usually accompanied by the variation of other quantities, such as the number of atoms and the collisional rate, making it difficult to accurately describe the system and predict the post-quench properties. Recent works included effects going beyond the Kibble-Zurek mechanism, such as the inhomogeneity introduced by the trapping potential, the role of atom number losses, and the saturation of the number of defects for high cooling rates. These works motivate further studies, in particular of the dynamics taking place at early times, close to the crossing of the critical point. The aim of the work presented in this thesis is to further investigate the timescales associated to the formation and evolution of the BEC order parameter and its spatial fluctuations, as a function of the rate at which the transition point is crossed. We performed experiments producing BECs by means of cooling protocols that are commonly used in cold-atom laboratories, involving evaporative cooling in a magnetic trap. We explored a wide range of cooling rates across the transition and found a universal scaling for the growth of the BEC order parameter with the cooling rate and a finite delay in its formation. The latter was already observed in earlier works, but for a much more limited range of cooling rates. The evolution of the fluctuations of the order parameter was also investigated, with an analysis of the timescale of their decay during the relaxation of the system, from an initial strongly out-of-equilibrium condition to a final equilibrium state. This thesis is structured as follows: The first chapter presents the theoretical background, starting with a brief introduction to the concept of Bose Einstein condensation and a presentation of different models describing the thermodynamics of an equilibrium Bose gas. The second part of this chapter then deals with the out-of-equilibrium dynamics that is inevitably involved in the crossing of a second-order phase transition such as the one for Bose-Einstein condensation. The Kibble-Zurek mechanism is briefly reviewed and beyond KZ effects are pointed out, motivating a more detailed investigation of the timescales involved in the BEC formation. In the second chapter, I describe the experimental apparatus that we use to cool and confine the atoms. Particular detail is dedicated to the parts that have been upgraded during my PhD, such as the imaging system. In the third chapter I show our experimental results on the measurement of the equation of state of the weakly interacting uniform Bose gas at finite temperature. In the fourth chapter I present our results on the out-of-equilibrium dynamics in the formation of the condensate order parameter and its spatial fluctuations, as a function of different cooling rates.

Page generated in 0.0798 seconds