• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 82
  • 46
  • 8
  • 7
  • 4
  • 4
  • 3
  • 3
  • 1
  • Tagged with
  • 176
  • 176
  • 176
  • 176
  • 42
  • 42
  • 41
  • 40
  • 32
  • 23
  • 21
  • 20
  • 19
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Impact of Gender on Acute Aerobic Exercise Induced Brain-Derived Neurotrophic Factor and Cognitive Function in Older Adults

Phillips, Madison Leigh 23 December 2019 (has links)
No description available.
62

Effects of dopamine on BDNF / TrkB mediated signaling and plasticity on cortico-striatal synapses / Effekte von Dopamin auf BDNF / TrkB vermittelte Signalwege und Plastizität an cortico-striatalen Synapsen

Andreska, Thomas January 2021 (has links) (PDF)
Progressive loss of voluntary movement control is the central symptom of Parkinson's disease (PD). Even today, we are not yet able to cure PD. This is mainly due to a lack of understanding the mechanisms of movement control, network activity and plasticity in motor circuits, in particular between the cerebral cortex and the striatum. Brain-derived neurotrophic factor (BDNF) has emerged as one of the most important factors for the development and survival of neurons, as well as for synaptic plasticity. It is thus an important target for the development of new therapeutic strategies against neurodegenerative diseases. Together with its receptor, the Tropomyosin receptor kinase B (TrkB), it is critically involved in development and function of the striatum. Nevertheless, little is known about the localization of BDNF within presynaptic terminals in the striatum, as well as the types of neurons that produce BDNF in the cerebral cortex. Furthermore, the influence of midbrain derived dopamine on the control of BDNF / TrkB interaction in striatal medium spiny neurons (MSNs) remains elusive so far. Dopamine, however, appears to play an important role, as its absence leads to drastic changes in striatal synaptic plasticity. This suggests that dopamine could regulate synaptic activity in the striatum via modulation of BDNF / TrkB function. To answer these questions, we have developed a sensitive and reliable protocol for the immunohistochemical detection of endogenous BDNF. We find that the majority of striatal BDNF is provided by glutamatergic, cortex derived afferents and not dopaminergic inputs from the midbrain. In fact, we found BDNF in cell bodies of neurons in layers II-III and V of the primary and secondary motor cortex as well as layer V of the somatosensory cortex. These are the brain areas that send dense projections to the dorsolateral striatum for control of voluntary movement. Furthermore, we could show that these projection neurons significantly downregulate the expression of BDNF during the juvenile development of mice between 3 and 12 weeks. In parallel, we found a modulatory effect of dopamine on the translocation of TrkB to the cell surface in postsynaptic striatal Medium Spiny Neurons (MSNs). In MSNs of the direct pathway (dMSNs), which express dopamine receptor 1 (DRD1), we observed the formation of TrkB aggregates in the 6-hydroxydopamine (6-OHDA) model of PD. This suggests that DRD1 activity controls TrkB surface expression in these neurons. In contrast, we found that DRD2 activation has opposite effects in MSNs of the indirect pathway (iMSNs). Activation of DRD2 promotes a rapid decrease in TrkB surface expression which was reversible and depended on cAMP. In parallel, stimulation of DRD2 led to induction of phospho-TrkB (pTrkB). This effect was significantly slower than the effect on TrkB surface expression and indicates that TrkB is transactivated by DRD2. Together, our data provide evidence that dopamine triggers dual modes of plasticity on striatal MSNs by acting on TrkB surface expression in DRD1 and DRD2 expressing MSNs. This surface expression of the receptor is crucial for the binding of BDNF, which is released from corticostriatal afferents. This leads to the induction of TrkB-mediated downstream signal transduction cascades and long-term potentiation (LTP). Therefore, the dopamine-mediated translocation of TrkB could be a mediator that modulates the balance between dopaminergic and glutamatergic signaling to allow synaptic plasticity in a spatiotemporal manner. This information and the fact that TrkB is segregated to persistent aggregates in PD could help to improve our understanding of voluntary movement control and to develop new therapeutic strategies beyond those focusing on dopaminergic supply. / Der fortschreitende Verlust der willkürlichen Bewegungskontrolle ist ein zentrales Symptom der Parkinson-Krankheit (PD). Auch heute sind wir noch nicht in der Lage, PD zu heilen. Dafür verantwortlich ist hauptsächlich ein mangelndes Verständnis von Mechanismen der Bewegungskontrolle, Netzwerkaktivität und Plastizität in motorischen Schaltkreisen, insbesondere zwischen Hirnrinde und Striatum. Der neurotrophe Faktor BDNF ist einer der wichtigsten Faktoren für die Entwicklung und das Überleben von Neuronen sowie für synaptische Plastizität im zentralen Nervensystem. BDNF ist daher ein Target für die Entwicklung neuer therapeutischer Strategien gegen neurodegenerative Erkrankungen. Zusammen mit seinem Rezeptor, der Tropomyosin-Rezeptorkinase B (TrkB), ist BDNF maßgeblich an der Entwicklung und Funktion des Striatums beteiligt. Dennoch ist nur wenig bekannt, wo BDNF an Synapsen im Striatum lokalisiert ist, und wo BDNF in Neuronen der Hirnrinde synthetisiert wird. Außerdem ist der Einfluss von Dopamin aus dem Mittelhirn auf die Kontrolle der BDNF / TrkB-Interaktion in striatalen Medium-Spiny-Neuronen (MSNs) bisher unklar. Dopamin scheint jedoch eine wichtige Rolle zu spielen, da dessen Abwesenheit zu drastischen Veränderungen der striatalen Plastizität führt. Dopamin könnte synaptische Plastizität im Striatum über eine Modulation der BDNF / TrkB-Interaktion regulieren. Um diese Fragen beantworten zu können, haben wir ein sensitives und zuverlässiges Protokoll für den immunhistochemischen Nachweis von endogenem BDNF entwickelt. Wir fanden heraus, dass BDNF im Striatum vor allem in glutamatergen Synapsen von Projektion aus dem Kortex lokalisiert ist und nicht in Terminalen dopaminerger Neurone aus dem Mittelhirn. Tatsächlich fanden wir BDNF in den Zellkörpern von Neuronen in den Schichten II-III und V des primären und sekundären motorischen Kortex sowie Schicht V des somatosensorischen Kortex. Es sind jene Hirnareale, welche dichte Projektionen zum dorsolateralen Striatum senden und entscheidend an der Steuerung von willkürlichen Bewegungen beteiligt sind. Weiterhin konnten wir zeigen, dass eben jene Projektionsneurone die Bildung von BDNF während der juvenilen Entwicklung von Mäusen zwischen 3 und 12 Wochen signifikant herunter regulieren. In striatalen MSN fanden wir zudem einen modulatorischen Effekt von Dopamin auf die Translokation von TrkB zur Zelloberfläche. In MSNs des direkten Signalweges (dMSNs), welche Dopaminrezeptor 1 (DRD1) exprimieren, konnten wir die Bildung von TrkB-Aggregaten im 6-Hydroxydopamin (6-OHDA) - Rattenmodell der Parkinson Erkankung beobachten. Dies deutet darauf hin, dass die DRD1-Aktivität die TrkB-Oberflächenexpression in diesen Neuronen steuert. Im Gegensatz dazu fanden wir heraus, dass die DRD2-Aktivierung in MSNs des indirekten Signalweges (iMSNs) eine gegensätzliche Wirkung hat. Die Aktivierung von DRD2 führt zu einer schnellen Reduktion der TrkB-Oberflächenexpression, die reversibel und von cAMP abhängig ist. Außerdem führte die Stimulation von DRD2 zu einer Induktion von Phospho-TrkB (pTrkB). Dieser Effekt war deutlich langsamer als die Wirkung auf die TrkB-Oberflächenexpression und deutet auf eine Transaktivierung von TrkB über DRD2 hin. Insgesamt scheint Dopamin entgegengesetzte Plastizitätsmodi in striatalen MSNs auszulösen, indem es auf die TrkB-Oberflächenexpression in DRD1- und DRD2-exprimierenden MSNs einwirkt. Diese Oberflächenexpression des Rezeptors ist entscheidend für die Bindung von BDNF, welches aus kortiko-striatalen Afferenzen freigesetzt wird. Dies führt zur Induktion von TrkB-vermittelten-Signaltransduktionskaskaden und Langzeitpotenzierung (LTP). Daher könnte die dopamin-vermittelte Translokalisation von TrkB das Gleichgewicht zwischen dopaminergen und glutamatergen Signalen modulieren, um die synaptische Plastizität in einer räumlich-zeitlich abgestimmten Weise zu ermöglichen. Diese Information und die Tatsache, dass TrkB bei PD stabile Aggregate bildet, könnte dazu beitragen, unser Verständnis der willkürlichen Bewegungskontrolle zu verbessern und neue therapeutische Strategien zu entwickeln, die über jene hinausgehen, welche sich auf die dopaminerge Versorgung konzentrieren.
63

Dynamic remodeling of endoplasmic reticulum and ribosomes in axon terminals of wildtype and Spinal Muscular Atrophy motoneurons / Dynamische Reorganization des endoplasmatischen Retikulums und der Ribosomen in Axonterminalen von Wildtyp- und Spinaler Muskelatrophie Motoneuronen

Deng, Chunchu January 2023 (has links) (PDF)
In highly polarized neurons, endoplasmic reticulum (ER) forms a dynamic and continuous network in axons that plays important roles in lipid synthesis, Ca2+ homeostasis and the maintenance of synapses. However, the mechanisms underlying the regulation of axonal ER dynamics and its function in regulation of local translation still remain elusive. In the course of my thesis, I investigated the fast dynamic movements of ER and ribosomes in the growth cone of wildtype motoneurons as well as motoneurons from a mouse model of Spinal Muscular Atrophy (SMA), in response to Brain-derived neurotrophic factor (BDNF) stimulation. Live cell imaging data show that ER extends into axonal growth cone filopodia along actin filaments and disruption of actin cytoskeleton by cytochalasin D treatment impairs the dynamic movement of ER in the axonal filopodia. In contrast to filopodia, ER movements in the growth cone core seem to depend on coordinated actions of the actin and microtubule cytoskeleton. Myosin VI is especially required for ER movements into filopodia and drebrin A mediates actin/microtubule coordinated ER dynamics. Furthermore, we found that BDNF/TrkB signaling induces assembly of 80S ribosomes in growth cones on a time scale of seconds. Activated ribosomes relocate to the presynaptic ER and undergo local translation. These findings describe the dynamic interaction between ER and ribosomes during local translation and identify a novel potential function for the presynaptic ER in intra-axonal synthesis of transmembrane proteins such as the α-1β subunit of N-type Ca2+ channels in motoneurons. In addition, we demonstrate that in Smn-deficient motoneurons, ER dynamic movements are impaired in axonal growth cones that seems to be due to impaired actin cytoskeleton. Interestingly, ribosomes fail to undergo rapid structural changes in Smn-deficient growth cones and do not associate to ER in response to BDNF. Thus, aberrant ER dynamics and ribosome response to extracellular stimuli could affect axonal growth and presynaptic function and maintenance, thereby contributing to the pathology of SMA. / Das Endoplasmatische Retikulum (ER) bildet ein dynamisches und kontinuierliches Netzwerk in Axonen von stark polarisierten Neuronen und spielt dabei eine wichtige Rolle in der Lipidsynthese, dem Ca2+ Homöostase und der Aufrechterhaltung von Synapsen. Allerding sind die Mechanismen, die der Regulierung der axonalen ER-Dynamik und seiner Funktion bei der dynamischen Regulierung der lokalen Translation zugrunde liegen, nicht vollständig aufgeklärt. Im Rahmen meiner Dissertation habe ich die schnellen dynamischen Bewegungen des ERs und Ribosomen in Wachstumskegeln von Wildtyp- und Smn-defizienten Motoneuronen als Reaktion auf einen kurzen Puls von Brain-derived neurotrophic factor (BDNF) untersucht. Daten der Bildgebung lebender Zellen zeigen, dass sich das ER in axonalen Filopodien des Wachstumskegels entlang von Aktin-Filamenten ausbreitet. Die Beeinträchtigung des Aktin-Zytoskeletts mittels Cytochalasin D Behandlung führt zu einer Einschränkung der dynamischen Bewegung des ERs in den axonalen Filopodien. Im Gegensatz zu den Filopodien scheinen die Bewegungen des ERs in Wachstumskegeln von einem koordinierten Zusammenspiel des Aktin- und Mikrotubuli- Zytoskeletts zu beruhen. Myosin VI ist insbesondere für die ER-Bewegungen in Filopodien erforderlich, während Drebrin A die Aktin/Mikrotubuli koordinierte ER-Dynamik vermittelt. Darüber hinaus zeigte sich, dass das BDNF/TrkB Signal die Bildung von 80S-Ribosomen in Wachstumskegeln in Sekundenschnelle auslöst. Aktivierte Ribosomen verlagern sich in das präsynaptische ER und vollziehen eine lokale Translation. Diese Ergebnisse beschreiben die dynamische Interaktion zwischen ER und Ribosomen während der lokalen Translation und zeigen eine neuartige potentielle Funktion des präsynaptischen ER bei der intra-axonalen Synthese von Transmembranproteinen wie die α-1β Untereinheit der N-Typ Ca2+ Kanäle in Motoneuronen auf. Darüber hinaus zeigen wir, dass in Smn-defizienten Motoneuronen die dynamischen ER-Bewegungen in axonalen Wachstumskegeln beeinträchtigt sind, was mit einer gestörten Polymerisation von Aktinfilamenten zusammenzuhängen scheint. Interessanterweise erfahren Ribosomen in Smn-defizienten Wachstumskegeln keine schnellen strukturellen Veränderungen und assoziieren nicht mit dem ER als Reaktion auf BDNF. Somit könnten eine abweichende ER-Dynamik und die Reaktion der Ribosomen auf extrazelluläre Reize das axonale Wachstum und die präsynaptische Funktion und Aufrechterhaltung beeinträchtigen und damit zur Pathologie von SMA beitragen.
64

Plastin 3 rescues defective cell surface translocation and activation of TrkB in mouse models for spinal muscular atrophy / Plastin 3 kompensiert die defekte Zelloberflächen-Translokation und Aktivierung von TrkB in Mausmodellen für spinale Muskelatrophie

Hennlein, Luisa January 2023 (has links) (PDF)
Spinal muscular atrophy (SMA) is a genetic pediatric condition that affects lower motoneurons leading to their degeneration and muscle weakness. It is caused by homozygous loss or mutations in the Survival Motor Neuron 1 (SMN1) gene; however, the pathomechanism leading to motoneuron degeneration is not fully resolved. Cultured embryonic SMA motoneurons display axon elongation and differentiation defects accompanied by collapsed growth cones with a disturbed actin cytoskeleton. Intriguingly, motoneurons cultured from mice deficient for the Tropomyosin-kinase receptor B (TrkB), exhibit similar pathological features. Thus, the question arises whether SMA motoneurons suffer from defective Brain-derived neurotrophic factor (BDNF)/TrkB signaling and whether there is a link to the disturbed actin cytoskeleton. In the recent years, modifier genes such as Plastin 3 (PLS3) were shown to beneficially interfere with SMA pathology. Nevertheless, the mechanism of how the actin-bundler PLS3 counteracts SMN deficiency is not well understood. In this study, we investigated TrkB localization and its activation in cultured SMA motoneurons and neuromuscular junctions (NMJs). While TrkB levels are only mildly affected locally in axon terminals, BDNF-mediated TrkB phosphorylation was massively disturbed. The activity-dependent TrkB translocation to the cell surface and its activation via BDNF were shown to be Pls3-dependent processes, that can be abolished by knockdown of Pls3. In contrast, PLS3 overexpression in SMA motoneurons rescued the defects on morphological and functional level. In particular, the relocation of TrkB to the cell surface after BDNF-induced internalization is disturbed in SMA, which is based on an actin-dependent TrkB translocation defect from intracellular stores. Lastly, AAV9-mediated PLS3 overexpression in vivo in neonatal SMA mice provided further evidence for the capacity of PLS3 to modulate actin dynamics necessary for accurate BDNF/TrkB signaling. In conclusion, we provide a novel role for PLS3 in mediating proper alignment of transmembrane proteins as prerequisite for their appropriate functioning. Hence, PLS3 is required for a key process indispensable for the development and function of motoneurons even beyond the context of SMA. / Die spinale Muskelatrophie (SMA) ist eine Erkrankung der unteren Motoneurone, die zu deren Degeneration und Muskelschwund führt. Ausgelöst wird sie durch Verlust oder Mutation des Survival Motor Neuron 1 Gens. Kultivierte embryonale Motoneurone von SMA Mäusen zeigen eine veränderte zelluläre Differenzierung, sowie kollabierte Wachstumskegel und ein gestörtes Aktin Zytoskelett. Interessanterweise zeigen Motoneurone mit einem Verlust des Tropomyosinrezeptorkinase B (TrkB) die gleichen zellulären Dysregulationen. Daher stellte sich die Frage, ob SMA Motoneurone eine Störung der Brain-derived neurotrophic factor (BDNF)/TrkB Signalkaskade entwickeln, die auf einem gestörten Aktin Zytoskelett beruht. Studien der letzten Jahre haben gezeigt, dass modifizierende Gene wie Plastin 3 (PLS3) eine schützende Wirkung auf die SMA Pathophysiologie haben. Allerdings ist der genaue Mechanismus, inwieweit PLS3 F-Aktin-gesteuerte Prozesse reguliert nicht gut verstanden. In dieser Studie haben wir die Lokalisierung und Aktivierbarkeit von TrkB in Motoneuronen und Endplatten von SMA Mäusen untersucht. Obwohl die Lokalisierung von TrkB nur wenig verändert ist, war die Aktivierung von TrkB via BDNF in den Axonterminalen stark beeinträchtigt. Außerdem stellten sich die aktivitätsabhängige TrkB Translokation zur Plasmamembran, als auch dessen BNDF-induzierte Phosphorylierung als Pls3-abhängige Prozesse heraus, die durch Pls3 Knockdown inhibiert werden konnten. Im Gegensatz dazu, bewirkt die PLS3 Überexpression in SMA Motoneuronen eine Wiederherstellung der morphologischen und funktionellen Defekte. Vor allem die gestörte Re-Lokalisierung von TrkB an die Zellmembran nach BDNF-Stimulation, welches auf einer defekten Translokation aus intrazellulären Speichern basiert, konnte durch PLS3 Überexpression verbessert wird. Des Weiteren brachte die Viren-basierte PLS3 Überexpression in SMA Mäusen weitere Beweise für die Fähigkeit von PLS3, die Aktin Dynamik zu regulieren. Zusammenfassend zeigen die Daten eine neue Rolle von PLS3 für die korrekte Anordnung von Transmembranproteinen, als Grundvoraussetzung für deren Funktionalität. Somit wird PLS3 für Schlüsselprozesse benötigt, die für die Entwicklung und Funktion von Motoneuronen, auch über den Kontext von SMA hinaus, unverzichtbar sind.
65

Dietary Levels of Pure Flavonoids Improve Spatial Memory Performance and Increase Hippocampal Brain-Derived Neurotrophic Factor

Rendeiro, C., Vauzour, D., Rattray, Marcus, Waffo-Téguo, P., Mérillon, J.M., Butler, L.T., Williams, C.M., Spencer, J.P.E. 28 May 2013 (has links)
yes / Evidence suggests that flavonoid-rich foods are capable of inducing improvements in memory and cognition in animals and humans. However, there is a lack of clarity concerning whether flavonoids are the causal agents in inducing such behavioral responses. Here we show that supplementation with pure anthocyanins or pure flavanols for 6 weeks, at levels similar to that found in blueberry (2% w/w), results in an enhancement of spatial memory in 18 month old rats. Pure flavanols and pure anthocyanins were observed to induce significant improvements in spatial working memory (p = 0.002 and p = 0.006 respectively), to a similar extent to that following blueberry supplementation (p = 0.002). These behavioral changes were paralleled by increases in hippocampal brain-derived neurotrophic factor (R = 0.46, p<0.01), suggesting a common mechanism for the enhancement of memory. However, unlike protein levels of BDNF, the regional enhancement of BDNF mRNA expression in the hippocampus appeared to be predominantly enhanced by anthocyanins. Our data support the claim that flavonoids are likely causal agents in mediating the cognitive effects of flavonoid-rich foods.
66

The Associations Between Habitual Physical Activity Levels and Serum Brain-Derived Neurotrophic Factor (BDNF) Levels in Older Adults

Picard, Caitlyn T. 15 November 2022 (has links)
No description available.
67

Brain-derived Neurotrophic Factor in Autonomic Nervous System: Nicotinic Acetylcholine Receptor Regulation and Potential Trophic Effects

Zhou, Xiangdong 24 October 2005 (has links)
No description available.
68

Influence of the BDNF Val66Met Polymorphism on Emotion Flexibility

Nylocks, Karin Maria 29 November 2016 (has links)
No description available.
69

AN ASSOCIATION BETWEEN A STRUCTURED WALKING PROGRAM AND COGNITIVE FUNCTION, BALANCE, MOBILITY, AND ACTIVITIES OF DAILY LIVING IN PERSONS WITH ALZHEIMER'S DISEASE

Milham, Donald John January 2009 (has links)
Alzheimer’s disease (AD), an age-related neurodegenerative disorder, progresses across a continuum of severity that leads to serious neurological dysfunction and eventually death. Initially manifesting as mild impairment in cognition and executive function, AD eventually leads to serious disturbances in memory, decision-making, language, mobility and sensing the environment. AD affects approximately 27 million people worldwide, over 5 million in the United States alone, and is one of the most debilitating diseases that costs society billions of dollars annually and is a primary cause of death in the elderly. Pharmacological treatments produce only moderate symptomatic benefits and do not attenuate or prevent the progression of AD with some medications associated with increased symptomatic behavior such as decreased motor function and increased likelihood of falls. Conversely, research utilizing animal models indicates exercise may play an important role to attenuate AD symptoms and delaying AD onset as regular aerobic activity increases the expression of brain-derived neurotrophic factor, a peptide that plays a major role in neural function, neural plasticity, and attenuation of neuritic plaque; a ß-amyloid derived plaque that is recognized as the primary cause of neural degradation associated with AD. To examine this exercise hypothesis, participants (N = 19; mean age 85.5 ±5.2 years) completed a single treatment, regular walking activity over time (30-min per day, 3 days per week for 12 weeks), with pre-test post-test evaluations undertaken utilizing valid research instruments designed to measure cognition, executive function, and motor capabilities in persons with AD. T-test with repeated measures ANOVA with various categorical variables as between-group factors were used to test the hypothesis. Analysis of change indicated significant change occurred in Cognitive function [t(18) = 5.74, p &lt; .001], Balance [t(18) = 7.43, p &lt; .001], and Mobility [t(18) = 3.82, p &lt; .001], with no significant change in Activities of Daily Living (t[18] = 1.48, p &lt; .156). A significant decrease in the number of falls was also found (z = 2.392, p &lt; .017). No main effect was associated with AD stage, gender, or education level. The results of this study indicate regular aerobic activity enhances neural function in persons with AD, thus supporting the exercise hypothesis which posits regular aerobic exercise attenuates AD symptoms and delays AD onset. While the results provide important evidence regarding the impact of aerobic exercise on neural function in the AD populations, further research is necessary to identify the mechanisms by which brain-derived neurotrophic factor is induced with exercise and to examine the effectiveness of different exercise modalities (e.g., specificity, duration, and intensity) on neural function in the AD population. / Kinesiology
70

Träningsinducerad respons på vilonivåer av BDNF hos friska vuxna : En litteraturstudie

Andersson, Sophia, Carlsson, Magnus January 2022 (has links)
Syfte Syftet med denna litteraturstudie var att redovisa vilken typ av träning (träningsform, intensitet, frekvens, träningspassduration och interventionsduration) som påverkar vilonivåer av BDNF hos friska vuxna. Metod För att besvara syftet gjordes en litteraturstudie. Litteratursökningar utfördes i databaserna PubMed, Web of Science och SPORTDisucs vilka gav 18 inkluderade artiklar. Träningsinterventionerna redovisades utifrån träningsform, intensitet, duration och frekvens. Resultatet redovisade de ingående gruppernas procentuella förändring gällande vilonivåer av BDNF samt tillhörande signifikansnivå. Resultat Av 18 inkluderade artiklar påvisade fem en signifikant skillnad i vilonivåer av BDNF, medan 13 artiklar inte visade någon signifikant skillnad. Slutsatser Utifrån resultatet kan inga generella slutsatser dras om träningsupplägg som påverkar vilonivåer av BDNF hos friska vuxna. Troligtvis skiljer sig den träningsinducerade responsen på vilonivåer av BDNF i olika kombinationer av träningsform, intensitet, frekvens, interventionsduration och träningspassduration. Responsen är således en komplex funktion beroende på ett flertal faktorer som såväl träningsupplägg och individuella faktorer. Regelbunden träning ger förmodligen en förändrad respons på BDNF-genuttryck, oavsett om vilonivåerna påverkas eller inte, vilket på sikt gynnar hjärnhälsan.

Page generated in 0.1325 seconds