Spelling suggestions: "subject:"bridge"" "subject:"cridge""
91 |
Effect of Environmental Conditions and Structural Design on Linear Cracking in Virginia Bridge DecksKeller, Wesley John 27 April 2004 (has links)
Chloride-induced corrosion of reinforcing steel is widely accepted as the primary cause of premature deterioration in concrete bridge decks (Brown, M.C., 2002). Since linear cracking in concrete cover can potentially accelerate chloride ingress to the depth of the reinforcing steel, there is reason to believe that severity of deck cracking can significantly influence the time to first repair and/or rehabilitation of the bridge deck.
Surface width, orientation, and length of cracks in 38 Virginia bridge decks were investigated in order to characterize the general distribution of deck cracking in the commonwealth of Virginia. Crack data was correlated to structural/material design parameters and environmental exposure conditions in order to determine significant predictor-response relationships. The majority of surveyed bridge decks were divided into four classifications of deck type based on superstructure type and construction era, either 1968-1971 or 1984-1991. Surveyed bridge decks that did not fit into any of the four classifications were used to form more generalized subsets. These larger subsets were used to determine if significant influence factors could be translated to broader classifications of bridge decks.
Transverse beam spacing, annual average daily truck traffic (AADTT), resistivity of the deck concrete, chloride exposure, and the percentage of concrete clear cover depths less than or equal to 38mm (1.5 in) were all determined to have a significant correlation with linear deck cracking. / Master of Science
|
92 |
Nyack River Front Park: a conversation between land and waterMullins, Kerri Ann 10 January 2003 (has links)
This architecture thesis is an exploration of an idea, an event, and a place. The idea was to explore design with water. The design had to be thoughtful and have an impact: an event. My place is on the waterfront.
This thesis confirmed my ideas about site-specific and site-inspired architecture. I looked to my thoughts about water and tried to incorporate them into my design and enhance it with them. In my design I began to think about materials, about the senses, and about how we experience places through sight, sound, smell, touch, and taste. My exploration led me to design a public park on the Hudson River in Nyack, New York.
*note* the printed version of this book is in the format of double sided pages and is best viewed in the format of facing pages. / Master of Architecture
|
93 |
Determination of Lateral Resistance of Deck Tie Fasteners in Smooth Top Bridge GirdersVasudevan, Vishali Mylapore 24 May 2018 (has links)
The purpose of this research was to investigate and create preliminary design aids for the determination of lateral resistance capacity and spacing requirements of deck tie fasteners in curved railroad bridges with smooth top girders. In railroad bridge design, required lateral resistance dictates the spacing of deck tie fasteners. Currently, no provisions exist to aid in the calculation of lateral resistance for systems that include bridge ties, fasteners, and girders which experience centrifugal or lateral forces. Thus, design practices specific to each railroad vary, producing inconsistent fastener spacing in existing railroad bridges.
This project identified and quantified three factors contributing to lateral resistance through experimental testing: resistance due to friction at the tie-girder interface; resistance from the fastener; and resistance from dapped ties bearing against the girder flange. Three fastener types were studied in this research: Square body hook bolts, Lewis Forged hook bolts, and Quikset Anchors. Results indicated that frictional resistance is a product of the train wheel load and the friction coefficient. Fastener resistance was determined to be a function of fastener type and lateral track displacement. Finally, dap resistance was found to be a function of the area of the shear plane in a dapped tie. A preliminary equation for calculating the total lateral resistance capacity was developed utilizing superposition of all three resistance contributions. Lateral demand loads were compared with reported lateral capacity to create a preliminary design aid to determine fastener spacing. / Master of Science / Railroad bridges are constructed by securing wooden ties to I-shaped steel beams (girders) using deck tie fasteners. Curved railroad bridges should provide lateral resistance to resist lateral loads from trains negotiating the curve. Currently, there is no official practice for determining lateral strength, which is a function of fastener spacing. Thus, each railroad company uses a proprietary fastener spacing, producing inconsistencies in existing railroad bridges.
The purpose of this research was to create a preliminary table or equation for determining the lateral strength and spacing requirements of deck tie fasteners through experimental testing. This project identified and quantified three factors contributing to lateral resistance: resistance due to friction at the tie-girder interface; resistance from the fastener; and resistance from dapped ties (ties that are notched to sit on the girder flanges). Three fastener types were studied. Results showed that frictional resistance was directly proportionate to the magnitude of the vertical wheel load. Fastener resistance was found to be a function of the type of fastener used. Finally, the dap was determined to be a function of the area of the shear plane in a dapped tie. A preliminary equation for calculating the total lateral resistance capacity was developed by summing the resistance contributions from all three resistance factors. Lateral loads were compared with lateral capacity to create a preliminary design aid to determine fastener spacing.
|
94 |
Effect Of Vehicular And Seismic Loads On The Performance Of Integral BridgesErhan, Semih 01 September 2011 (has links) (PDF)
Integral bridges (IBs) are defined as a class of rigid frame bridges with a single row of piles at the abutments cast monolithically with the superstructure. In the last decade, IBs have become very popular in North America and Europe as they provide many economical and functional advantages. However, standard design methods for IBs have not been established yet. Therefore, most bridge engineers depend on the knowledge acquired from performance of previously constructed IBs and the design codes developed for conventional jointed bridges to design these types of bridges. This include the live load distribution factors used to account for the effect of truck loads on bridge components in the design as well as issues related to the seismic design of such bridges. Accordingly in this study issues related to live load effects as well as seismic effects on IB components are addressed in two separate parts.
In the first part of this study, live load distribution formulae for IB components are developed and verified. For this purpose, numerous there dimensional and corresponding two dimensional finite element models (FEMs) of IBs are built and analyzed under live load. The results from the analyses of two and three dimensional FEMs are then used to calculate the live load distribution factors (LLDFs) for the components of IBs (girders, abutments and piles) as a function of some substructure, superstructure and soil properties. Then, live load distribution formulae for the determination of LLDFs are developed to estimate to the live load moments and shears in the girders, abutments and piles of IBs. It is observed that the developed formulae yield a reasonably good estimate of live load effects in IB girders, abutments and piles.
In the second part of this study, seismic performance of IBs in comparison to that of conventional bridges is studied. In addition, the effect of several structural and geotechnical parameters on the performance of IBs is assessed. For this purpose, three existing IBs and conventional bridges with similar properties are considered. FEMs of these IBs are built to perform nonlinear time history analyses of these bridges. The analyses results revealed that IBs have a better overall seismic performance compared to that of conventional bridges. Moreover, IBs with thick, stub abutments supported by steel H piles oriented to bend about their strong axis driven in loose to medium dense sand are observed to have better seismic performance. The level of backfill compaction is found to have no influence on the seismic performance of IBs.
|
95 |
Study of Long Span Bridge Design Based on Long Term Maintenance in Developing Countries / 途上国における長期維持管理を前提にした長大橋の設計法に関する研究Matsumoto, Tsuyoshi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22414号 / 工博第4675号 / 新制||工||1729(附属図書館) / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 杉浦 邦征, 教授 河野 広隆, 教授 八木 知己 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
|
96 |
Impact of bridge-to-bridge strategies from paracorporeal to implantable left ventricular assist devices on the pre-heart transplant outcome: A single-center analysis of 134 cases / 体外設置型補助人工心臓から植込型左室補助人工心臓への移行が心臓移植待機中の予後に及ぼす影響:単一施設における134例の検討Doi, Seiko 26 July 2021 (has links)
京都大学 / 新制・論文博士 / 博士(医学) / 乙第13428号 / 論医博第2232号 / 新制||医||1053(附属図書館) / (主査)教授 湊谷 謙司, 教授 佐藤 俊哉, 教授 福田 和彦 / 学位規則第4条第2項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
97 |
Most na silnici I/38 v Jihlavě / Bridge on the I/38 road in JihlavaNěmec, Martin January 2017 (has links)
Diploma thesis is focused on design of road bridge bearing structure over road in Jihlava. The construction is girder with 3 fields beard by local supports. Calculations were made in the program called Scia Engineer. Appraisals were made by hand.
|
98 |
A Comparison among Three Bridge Performance Measures for Allocating FundsZhang, Chi 12 December 2018 (has links)
No description available.
|
99 |
Destructive Testing of a Full-Scale 43 Year Old Adjacent Prestressed Concrete Box Beam Bridge: Middle and West SpansHuffman, Jonathan M. 18 April 2012 (has links)
No description available.
|
100 |
Jämförande studie mellan en ZIP-balksbro och en traditionell plattrambro : Utifrån underhåll, materialåtgång, last av trafik samt en utvärdering av det färdiga broprojektetCarlsson, Catharina, Johnsson, Stefan January 2020 (has links)
I Sverige finns 21 000 broar som Trafikverket förvaltar (Trafikverket, 2018a). Två brotyper som finns är rambro och balkbro. Rambron är en av de vanligaste brotyperna och är uppbyggd som en fast inspänd konstruktion. Brosystemet kallas plattrambro eller balkrambro beroende på om balkarna eller plattan är det bärande elementet. Om bron istället är fritt upplagd på stödkonstruktionen, kallas brosystemet för plattbro eller balkbro (Vägverket, 1996). ZIP-balksbron är uppbyggd som en balkbro med en modell liknande omvända T-balkar som läggs fläns mot fläns. Brosystemet kommer ursprungligen från Spanbeton i Holland och gjorde under år 2019 premiär på den svenska marknaden med ett projekt i Härnösand. Bron har en spännvidd på 20,55 meter bestående av nio ZIP-balkar. Balkarna prefabriceras på Strängbetongs fabrik i Långviksmon utanför Härnösand. Projektet blev klart under hösten 2019. Syfte och mål med examensarbetet var att undersöka skillnader mellan ZIP-balksbron och en traditionell exemplifierad plattrambro. Aspekterna som undersöktes var underhållet hos de två brotyperna, materialåtgång av betong och armering, last av trafik samt att det gjordes en utvärdering av projektet. Resultatet visar att ZIP-balksbron kräver mer underhåll än en plattrambro eftersom balkbroar har övergångskonstruktion och brolager. Den tar även mer tid att inspektera då den innehåller manhål. ZIP-balksbron använder sig av 29,38 % mindre betong på en meter. Armeringsdifferensen mellan broarna är försumbart. Momentet av den vertikala respektive horisontella lasten av trafik är 44,5 % respektive 19,2 % större hos ZIP-balksbron jämfört med plattrambron. Resultatet visar även på ett bra utfört brobygge som kan hänvisas i brolösningen, samt nöjda parter från flera håll. Slutsatsen är att plattrambron är mer fördelaktig att använda ur ett underhållsperspektiv, en balkbro kräver betydligt större underhåll än de driftåtgärder som årligen sker på broar. Men, genom arbetets bevisning använder ZIP-balksbron mindre betong än hos en traditionell plattrambro och har en enkel byggprocess, vilket ökar förtroendet för brolösningen och framförallt för prefabricering inom brobranschen. Trots att brotypen kräver ett större underhåll samt en ökad och mer komplex momentfördelning än hos en plattrambro, kan säkerheten under byggtiden vara en avgörande aspekt vid val av brobyggen i framtiden. / The ZIP-beam bridge is constructed as a beam bridge with inverted T-beams placed with flanges next to each other. The bridge system is originally from Spanbeton in Holland and it is having its premiere on the Swedish market during year 2019 with an ongoing project in Härnösand. The bridge span is 20,55 meters consisted with nine ZIP-beams. The project was finished in august 2019. The purpose and goal were to examine differences between the ZIP-beam bridge and a traditional slab frame bridge. The aspects to examine was maintence, use of concrete and reinforcement and traffic loads. The results show that the ZIP-beam bridge requires more maintenance than the slab frame bridge. The ZIP-beam bridge uses 29,38 % less concrete per metre. The use of reinforcement is negligible. The moment force of the horisontal and vertical traffic loads is 44,5 % respective 19,2 % larger at the ZIP-beam bridge. The conclusion of this paper shows that even though the ZIP-beam bridge requires more maintenance and a more complex moment force than a slab frame bridge, the safety during the building time as well as the less amount of concrete used can be a conclusive factor when building bridges in Sweden in the future.
|
Page generated in 0.0263 seconds