Spelling suggestions: "subject:"bruhat"" "subject:"nauhat""
11 |
[pt] RUMO A UMA ABORDAGEM COMBINATÓRIA DA TOPOLOGIA DOS ESPAÇOS DE CURVAS ESFÉRICAS NÃO-DEGENERADAS / [en] TOWARDS A COMBINATORIAL APPROACH TO THE TOPOLOGY OF SPACES OF NONDEGENERATE SPHERICAL CURVESJOSÉ VICTOR GOULART NASCIMENTO 03 November 2016 (has links)
[pt] Decompõe-se o espaço das curvas não-degeneradas sobre a n-esfera
sujeitas a uma dada matriz de monodromia (munido de uma estrutura de
variedade de Hilbert adequada) em uma coleção enumerável de células contráteis
parametrizadas pelos itinerários admissíveis para os levantamentos a
SOn+1 das referidas curvas através das células obtidas de uma estratificação
de SOn+1 estreitamente relacionada com a clássica decomposição de Bruhat
de GLn+1. A expressão itinerário admissível significa aqui uma sequência
finita de células sujeitas a umas poucas restrições que, ademais, são naturalmente
insinuadas pela geometria do problema. O principal interesse dessa
nova abordagem é que essa combinatorialização funciona homogeneamente
em todas as dimensões n (não obstante óbvias dificuldades computacionais),
diferentemente dos métodos ad-hoc, de cunho mais geométrico, até aqui empregados
para obter informações topológicas sobre esses e outros espaços de
curvas relacionados (que têm sido bem sucedidos apenas em dimensões n
baixas). Essa abordagem pode ser considerada como uma primeira tentativa
de chegar a um método unificado para a determinação do tipo homotópico
de tais espaços, e ajuda a dispensar certos argumentos de análise funcional
usualmente empregados na definição da topologia correta para os referidos
espaços de curvas. / [en] The space of nondegenerate curves on the n-sphere subject to a fixed
monodromy matrix (provided with a suitable Hilbert manifold structure) is
decomposed into a countable collection of contractible cells parameterized
by the SOn+1-lifted curves admissible itineraries through cells arriving from
a stratification of SOn+1 closely related to the classical Bruhat decomposition
of GLn+1. The expression admissible itinerary herein stands for a
finite sequence of cells subject to a few constraints that are otherwise naturally
suggested by the geometry of the problem. The main interest of such
a new approach is that this combinatorialization works homogeneously in
any dimension n (with obvious computational difficulties), unlike the more
geometry-flavoured ad-hoc methods for achieving topological information
about these and related spaces of curves (which usually have had a good
run only in low dimensions n). This approach can be regarded as a first
attempt at a unified method for figuring out the homotopy-type of such
spaces, and it helps to override some functional analysis arguments usually
deployed in defining the right topology for these spaces of curves.
|
12 |
Shellability of the Bruhat Order on Borel Orbit ClosuresJanuary 2013 (has links)
Involutions and fixed-point-free involutions arise naturally as representatives for certain Borel orbits in invertible matrices. Similarly, partial involutions and partial fixed-point-free involutions represent certain Borel orbits in matrices which are not necessarily invertible. Inclusion relations among Borel orbit closures induce a partial order on these discrete parameterizing sets. In this dissertation we investigate the associated order complex of these posets. In particular, we prove that the order complex of the Bruhat poset of Borel orbit closures is shellable in symmetric as well as skew-symmetric matrices. / acase@tulane.edu
|
13 |
Adhérences d'orbites des sous-groupes de Borel dans les espaces symétriquesPIN, Stéphane 03 October 2001 (has links) (PDF)
Cette thèse est consacrée à l'étude des singularités d'adhérences d'orbites des sous-groupes de Borel dans un espace symétrique. On se donne un groupe réductif $G$ muni d'une involution, et le sous-groupe $H$ de ses points fixes. Suivant Richardson et Springer, on paramètre les orbites d'un sous-groupe de Borel dans l'espace symétrique $G/H$. On donne une description combinatoire de leurs adhérences, et on construit des ``slices'' qui permettent de décrire les singularités de ces dernières. On étudie plus particulièrement l'espace symétrique $PSL_n/PSO_n$. Dans ce dernier, à l'aide de la description combinatoire et des ``slices'', on donne des critères de normalité d'adhérences d'orbites ainsi qu'une caractérisation de la lissité en codimension un. Enfin, on donne de nombreux exemples d'adhérences d'orbites d'un sous-groupe de Borel dans un espace symétrique avec divers types de singularités~: des adhérences d'orbites de codimension un dans $G/H$ non normales, et des adhérences d'orbites qui ne sont pas de Cohen-Macaulay.
|
14 |
Schubert NumbersKobayashi, Masato 01 May 2010 (has links)
This thesis discusses intersections of the Schubert varieties in the flag variety associated to a vector space of dimension n. The Schubert number is the number of irreducible components of an intersection of Schubert varieties. Our main result gives the lower bound on the maximum of Schubert numbers. This lower bound varies quadratically with n. The known lower bound varied only linearly with n. We also establish a few technical results of independent interest in the combinatorics of strong Bruhat orders.
|
15 |
A Combinatorially Explicit Relative Möbius Function on Affine Grassmannians and a Proposal for an Affine Infinite Symmetric GroupLugo, Michael Ruben 09 May 2019 (has links)
For an affine Weyl group W, we explicitly determine the elements for which the Möbius function of the subposet of affine Grassmannians under the Bruhat order is non-zero by utilizing the quantum Bruhat graph of the classical Weyl group associated to W . Then we examine embedding stable and consistent statistics on the affine Weyl group of type A which permit the definition of an affine infinite symmetric group. / Doctor of Philosophy / Similar to the integers, there are groups that have both an infinite number of elements and also a way to partially order those elements. With a partial ordering, we can consider the interval between two elements. When we make a function that sums over an interval of elements, then we can invert the function by using something called the Mӧbius function. For many groups, the Mӧbius function is extremely unpredictable and calculating the inverse may require us to consider an infinite number of elements. In this paper, we focus on groups called affine Weyl groups, which are very useful in algebraic geometry. It turns out that most elements in these groups have a very predictable pattern in their Mӧbius functions which only considers a finite number of elements. The first part of this paper gives very simple rules for calculating it. The second part of this paper focuses on a special type of affine Weyl group: the affine symmetric groups. We provide an attempt at defining a large parent group, which we call the affine infinite symmetric group, that contains all the other affine symmetric groups.
|
16 |
Autour des représentations modulo p des groupes réductifs p-adiques de rang 1 / Mod p representations of p-adic reductive groups of rank 1Abdellatif, Ramla 02 December 2011 (has links)
Soit p un nombre premier. Cette thèse est une contribution à la théorie des représentations modulo p des groupes réductifs p-adiques, jusque là essentiellement centrée sur le groupe linéaire général GL(n) défini sur un corps local non archimédien F complet pour une valuation discrète, de caractéristique résiduelle p et de corps résiduel fini. L’originalité de nos travaux réside notamment dans le fait qu’ils concernent d’autres groupes : nous nous intéressons en effet à la description des classes d’isomorphisme des représentations modulo p de groupes formés des F-points d’un groupe réductif connexe défini, quasi-déployé de rang semi-simple égal à 1 sur F. Une place particulière est accordée au groupe spécial linéaire SL(2) et au groupe unitaire quasi-déployé non ramifié en trois variables U(2,1). Dans ces deux cas, nous montrons que les classes d’isomorphisme des représentations lisses irréductibles admissibles à coefficients dans un corps algébriquement clos de caractéristique p se scindent en deux familles : les représentations non supersingulières et les représentations supersingulières. Nous décrivons complètement les représentations non supersingulières, et montrons que la notion de supersingularité est équivalence à la notion de supercuspidalité apparaissant dans la théorie complexe. Nous donnons aussi une description explicite des représentations supersingulières de SL(2,Q_{p}), ce qui nous permet de définir dans ce cas une correspondance de Langlands locale semi-simple modulo p compatible à celle construite par Breuil pour GL(2). Nous généralisons ensuite les méthodes utilisées jusqu’alors pour obtenir la description des représentations non supercuspidales de G(F) lorsque G est un groupe réductif connexe défini, quasi-déployé, et rang semi-simple égal à 1 sur F. Elle fait apparaître trois familles deux à deux disjointes de représentations : les caractères, les représentations de la série principale et celles de la série spéciale. Nous terminons par une classification des modules à droite simples sur la pro-p-algèbre de Hecke-Iwahori H de SL(2,F). On déduit en particulier que l’application qui envoie une représentation lisse modulo p de SL(2,F) sur son espace de vecteurs invariants sous l’action du pro-p-sous-groupe d'Iwahori induit une bijection entre l’ensemble des classes d’isomorphisme des représentations lisses irréductibles non supersingulières de SL(2,F) et l’ensemble des classes d’isomorphisme des H-modules à droite simples non supersinguliers. Cette bijection s’étend aux objets supersinguliers lorsque l’on suppose que F = Q_{p}, ce qui est de bon augure dans la recherche d’une équivalence de catégories analogue à celle obtenue par Ollivier dans le cadre de la théorie existant pour GL(2, Q_{p}). / Let p be a prime number. This thesis is a contribution to the theory of mod p representations of p-adic reductive groups, which was until now mainly focused on the general linear group GL(n) defined over a non-archimedean local field F complete with respect to a discrete valuation and with finite residue class field of characteristic p. Our work is original as it deals with other groups : we indeed look for a classification of isomorphism classes of modulo p representations of groups formed by the F-points of a connected reductive group defined, quasi-split and of semi-simple rank 1 over F. A special place is devoted to the special linear group SL(2) and to the unramified quasi-split unitary group. In these two cases, we prove that the isomorphism classes of irreducible smooth representations over an algebraically closed field of characteristic p split into two families : supersingular and non-supersingular representations. We give a complete description of non-supersingular representations and prove that supersingularity is equivalent to the notion of supercuspidality that appears in the complex theory. We also make explicit the supersingular representations of SL(2,Q_{p}), what allows us to define a mod p semi-simple local Langlands correspondence that is compatible to the one built by Breuil for GL(2). We then generalize the methods used above to classify the isomorphism classes of non-supercuspidal representations of G(F) for G a connected reductive group which is defined, quasi-split and of semi-simple rank 1 over F. This classification is made up of three pairwise disjoint families : characters, representations of the principal series, and representations of the special series. We finally come back to SL(2) as we give an exhaustive classification of isomorphism classes of simple right modules on the pro-p-Iwahori-Hecke algebra H of SL(2,F). It implies that the map sending a smooth mod p representation of SL(2,F) on its vector space of invariants vectors under the action of the pro-p-Iwahori subgroup induces a bijection between non-supersingular irreducible smooth representations of SL(2,F) and non-supersingular simple right H-modules. This bijection extends to supersingular objects when F = Q_{p}, what is the first step in the search for an equivalence of categories similar to the one built by Ollivier in the setting of mod p representations of GL(2, Q_{p}).
|
17 |
Extensions entre séries principales p-adiques et modulo p d'un groupe réductif p-adique déployé / Extensions between p-adic and mod p principal series of a split p-adic reductive groupHauseux, Julien 11 December 2014 (has links)
Cette thèse est une contribution à l'étude des représentations p-adiques (c'est-à-dire continues unitaires sur des espaces de Banach p-adiques) et modulo p (c'est-à-dire lisses sur un corps fini de caractéristique p) d'un groupe réductif p-adique déployé G.Nous déterminons les extensions entre séries principales p-adiques et modulo p de G Pour cela, nous calculons le delta-foncteur H•OrdB des parties ordinaires dérivées d'Emerton relatif à un sous-groupe de Borel sur une série principale en utilisant une filtration de Bruhat.Nous déterminons également les extensions d'une série principale par une représentation ordinaire (c'est-à-dire obtenue par induction parabolique à partir d'une représentation spéciale du Levi tordue par un caractère), ainsi que les extensions de Yoneda de longueur supérieure entre séries principales modulo p sous une conjecture d'Emerton vraie pour GL2.Nous montrons de plus qu'il n'existe pas de « chaîne » de trois séries principales p-adiques ou modulo p distinctes de G. Pour cela, nous calculons partiellement le delta-foncteur H•OrdP relatif à un sous-groupe parabolique quelconque sur une série principale. En exploitant ce résultat, nous prouvons une conjecture de Breuil et Herzig sur l'unicité de certaines représentations p-adiques de G dont les constituants sont des séries principales, ainsi que son analogue modulo p.Enfin, nous énonçons une nouvelle conjecture sur les extensions entre représentations modulo p irréductibles de G obtenues par induction parabolique à partir d'une représentations supersingulière du Levi. Nous prouvons cette conjecture pour les extensions par une série principale. / This thesis is a contribution to the study of p-adic (i.e. unitary continuous on p-adic Banach spaces) and mod p (i.e. smooth over a finite field of characteristic p) representations of a split p-adic reductive group G.We determine the extensions between p-adic and mod p principal series of G. In order to do so, we compute Emerton's delta-functor H•OrdB of derived ordinary parts with respect to a Borel subgroup on a principal series using a Bruhat filtration.We also determine the extensions of a principal series by an ordinary representation (i.e. parabolically induced from a special representation of the Levi twisted by a character), as well as the Yoneda extensions of higher length between mod p principal series under a conjecture of Emerton true for GL2.Moreover, we show that there exists no “chain” of three distinct p-adic or mod p principal series of G. In order to do so, we partially compute the delta-functor H•OrdP with respect to any parabolic subgroup on a principal series. Exploiting this result, we prove a conjecture of Breuil and Herzig on the uniqueness of certain p-adic representations of G whose constituents are principal series, as well as its mod p analogue.Finally, we formulate a new conjecture on the extensions between irreducible mod p representations of G parabolically induced from a supersingular representation of the Levi. We prove this conjecture for extensions by a principal series.
|
18 |
Correspondance de Jacquet-Langlands et distinction / Jacquet-Langlands correspondence and distinguishnessConiglio-Guilloton, Charlène 11 July 2014 (has links)
Soit K/F une extension quadratique modérément ramifiée de corps locaux non archimédiens. Soit GLm (D) une forme intérieure de GLn (F) et GLμ (∆) = (Mm (D) ⊗ K)× . Alors GLμ (∆) est une forme intérieure de GLn (K), les quotients GLμ (∆)/GLm (D) et GLn (K)/GLn (F) sont des espaces symétriques. En utilisant la paramétrisation de Silberger et Zink, nous déterminons des critères de GLm (D)-distinction pour les cuspidales de niveau 0 de GLμ (∆), puis nous prouvons qu’une cuspidale de niveau 0 de GLn (K) est GLn (F)-distinguée si et seulement si son image par la correspondance de Jacquet-Langlands est GLm (D)-distinguée. Puis, dans le cas particulier où μ = 2 et m = 1, nous regardons le cas des séries discrètes de niveau 0 non cuspidales, en utilisant le système de coefficients sur l’immeuble associé à la représentation, donné par Schneider et Stuhler. / Let K/F be a tamely ramified quadratic extension of non-archimedean locally compact fields. Let GLm (D) be an inner form of GLn (F) and GLμ (∆) = (Mm (D)⊗K)× . Then GLμ (∆) is an inner form of GLn (K), the quotients GLμ (∆)/GLm (D) and GLn (K)/GLn (F) are symmetric spaces. Using the parametrization of Silberger and Zink, we determine conditions of GLm (D)-distinction for level zero cuspidal representations of GLμ (∆). We also show that a level zero cuspidal representation of GLn (K) is GLn (F)-distinguished if and only if its image by the Jacquet-Langlands correspondence is GLm (D)-distinguished. Then, we treat the case of level zero non supercuspidal representations when μ = 2 and m = 1 using the coefficient system of the Bruhat-Tits building associated to the representation by Schneider and Stuhler.
|
19 |
Méthodes explicites pour les groupes arithmétiques / Explicit methods for arithmetic groupsPage, Aurel regis 15 July 2014 (has links)
Les algèbres centrales simples ont de nombreuses applications en théorie des nombres, mais leur algorithmique est encore peu développée. Dans cette thèse, j’apporte une contribution dans deux directions. Premièrement, je présente des algorithmes de complexité prouvée, ce qui est nouveau dans la plupart des cas. D’autre part, je développe des algorithmes heuristiques mais très efficaces dans la pratique pour les exemples qui nous intéressent le plus, comme en témoignent mes implantations. Les algorithmes sont à la fois plus rapides et plus généraux que les algorithmes existants. Plus spécifiquement, je m’intéresse aux problèmes suivants : calcul du groupe des unités d’un ordre et problème de l’idéal principal. Je commence par étudier le diamètre du domaine fondamental de certains groupes d’unités grâce à la théorie des représentations. Je décris ensuite un algorithme prouvé pour calculer des générateurs et une présentation du groupe des unités d’un ordre maximal dans une algèbre à division, puis un algorithme efficace qui calcule également un domaine fondamental dans le cas où le groupe des unités est un groupe kleinéen. Je donne en outre un algorithme de complexité prouvée qui détermine si un idéal d’un tel ordre est principal, et qui en calcule un générateur le cas échéant, puis je décris un algorithme heuristiquement sous-exponentiel pour résoudre le même problème dans le cas d’une algèbre de quaternions indéfinie. / Central simple algebras have many applications in number theory, but their algorithmic theory is not yet fully developed. I present algorithms to compute effectively with central simple algebras that are both faster and more general than existing ones. Some of these algorithms have proven complexity estimates, a new contribution in this area; others rely on heuristic assumptions but perform very efficiently in practice.Precisely, I consider the following problems: computation of the unit group of an order and principal ideal problem. I start by studying the diameter of fundamental domains of some unit groups using representation theory. Then I describe an algorithm with proved complexity for computing generators and a presentation of the unit group of a maximal order in a division algebra, and then an efficient algorithm that also computes a fundamental domain in the case where the unit group is a Kleinian group. Similarly, I present an algorithm with proved complexity that decides whether an ideal of such an order is principal and that computes a generator when it is. Then I describe a heuristically subexponential algorithm that solves the same problem in indefinite quaternion algebras.
|
20 |
Études des masures et de leurs applications en arithmétique / Study of masures and of their applications in arithmeticHebert, Auguste 28 June 2018 (has links)
Les masures ont été introduites en 2008 par Gaussent et Rousseau afin d’étudier les groupes de Kac-Moody sur les corps locaux. Elles généralisent les immeubles de Bruhat-Tits. Dans cette thèse, j’étudie d’une part les propriétés des masures et d’autre part leurs applications en arithmétique et en théorie des représentations. Rousseau a donné une définition axiomatique des masures, inspirée par la définition de Tits des immeubles de Bruhat-Tits. Je propose une axiomatique plus simple et plus agréable à manipuler et je montre que mon axiomatique est équivalente à celle de Rousseau.Nous étudions (en collaboration avec Ramla Abdellatif) les algèbres de Hecke sphériques et d’Iwahori-Hecke introduites par Bardy-Panse, Gaussent et Rousseau. Nous démontrons que contrairement au cas réductif, le centre de leur algèbre d’Iwahori-Hecke est quasiment trivial, et n’est en particulier pas isomorphe à l’algèbre de Hecke sphérique. Nous introduisons donc une algèbre d’Iwahori-Hecke complétée, dont le centre est isomorphe à l’algèbre de Hecke sphérique. Nous associons aussi des algèbres de Hecke à des faces sphériques comprises entre 0 et l’alcôve fondamentale de la masure,généralisant la construction de Bardy-Panse, Gaussent et Rousseau de l’algèbre d’Iwahori-Hecke.La formule de Gindikin-Karpelevich est une formule importante dans la théorie des groupes réductifs sur les corps locaux. Récemment, Braverman,Garland, Kazhdan, et Patnaik ont généralisé cette formule au cas des groupes de Kac-Moody affines. Une partie importante de leur preuve consiste à montrer que cette formule est bien définie, c’est à dire que les nombres intervenants dans cette formule, qui sont les cardinaux de certains sous groupes de quotients du groupe étudié sont bien finis. Je démontre cette finitude dans le cas des groupes de Kac-Moody généraux. J’étudie aussi les distances sur une masure. Je montre qu’on ne peux pas avoir de distance ayant les mêmes propriétés que dans le cas réductif. Je construis des distances ayant des propriétés moins forte mais qui semblent intéressantes. / Masures were introduced in 2008 by Gaussent and Rousseau in order to study Kac-Moody groups over local fields. They generalize Bruhat-Tits buildings. In this thesis, I study the properties of masures and the application of the theory of masures in arithmetic and representation theory. Rousseau gave an axiomatic of masures, inspired by the definition by Tits of Bruhat-Tits buildings. I propose an axiomatic, which is simpler and easyer to handle and I prove that my axiomatic is equivalent to the one of Rousseau. We study (in collaboration with Ramla Abdellatif) the spherical and Iwahori-Hecke algebras introduced by Bardy-Panse, Gaussent and Rousseau. We prove that on the contrary to the reductive case, the center of the Iwahori-Hecke algebra is almost trivial and is in particular not isomorphic to the spherical Hecke algebra. We thus introduce a completed Iwahori-Hecke algebra, whose center is isomorphic to the spherical Hecke algebra. We also associate Hecke algebras to spherical faces between 0 and the fundamental alcove of the masure, generalizing the construction of Bardy-Panse, Gaussent and Rousseau of the Iwahori-Hecke algebra.The Gindikin-Karpelevich formula is an important formula in the theory of reductive groups over local fields. Recently, Braverman, Garland, Kazhdanand Patnaik generalized this formula to the case of affine Kac-Moody groups. An important par of their prove consists in proving that this formula iswell-defined, which means that the numbers involved in this formula, which are the cardinals of certain subgroup of quotients of the studied subgroupare finite. I prove this finiteness in the case of general Kac-Moody groups.I also study distances on a masure. I prove that there is no distance having the same properties as in the reductive case. I construct distances having weaker properties, but which seem interesting.
|
Page generated in 0.0323 seconds