• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 16
  • 16
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Dynamique de bulles de cavitation dans des systèmes micro-confinés / Cavitation bubbles dynamics confined in microsystems

Scognamiglio, Chiara 15 December 2017 (has links)
Cette thèse porte sur l’étude de la cavitation, c’est-à-dire l’apparition d’une bulle dans un liquide soumis à une dépression. Le contrôle du processus est d’un grand intérêt dans plusieurs domaines, de l’hydrodynamique à la biologie. En fait ce phénomène, apparemment inoffensif, peut provoquer des graves dommages comme la fracture d’hélices ou la mort d’arbres. La première partie de la thèse se focalise sur la cavitation dans un système biomimétique. Il s’agit de micro-volumes d’eau encapsulés dans un milieu poro-élastique. L’évaporation de l’eau à travers l’hydrogel génère des pressions négatives et finalement l’apparition d’une bulle. Lorsque la première bulle de cavitation apparait dans une cellule, elle peut déclencher en quelques microsecondes l’apparition d’autres bulles dans les cellules voisines, en amorçant un effet d’avalanche ultra-rapide. Nous résolvons la dynamique et l’acoustique des bulles, dans le cas des événements uniques ou multiples. La réalisation d’un dispositif innovant ou les volumes du liquide sont encapsulés entre l’hydrogel et une lame de verre ouvre la voie à l’investigation de l’eau métastable. Une deuxième partie du travail a été consacrée à une étude interdisciplinaire où la microfluifique et la biologie sont combinées et appliqués à la livraison de médicament. Le dispositif est composé d’un vaisseau sanguin artificiel en communication avec un tissu cible placé dans un compartiment créé exprès. Les parois du canal microfluidique sont tapissées de cellules endothéliales pour reproduire la paroi réelle d’un vaisseau sanguin in vivo. Ce dispositif permet l’étude des effets des bulles activées par des ultrasons sur la barrière endothéliale. / The present thesis focuses on cavitation process, meaning nucleation and dynamics of a bubble within a liquid as a result of pressure decrease. In particular, we investigate the growth of the vapor phase in micrometric volumes of water confined by a poro-elastic material. In systems where water is encapsulated in a porous medium, molecules can evaporate from the pores resulting in a remarkable pressure reduction and bubbles nucleation. Once a vapor bubble nucleates, it can trigger within few microseconds the appearance of other bubbles in the neighbor cavities, activating an ultra-fast avalanche-like phenomenon. We resolved the dynamics and acoustics of cavitation bubbles, in case of singles or multiple nucleation events. The realization of an innovative device where water is encapsulated between a porous material and a glass window opens the way for metastable water investigation. A second part of the manuscript is devoted to a new project where microfluidics and biology are combined and applied to drug delivery. The device consists of an artificial blood vessel in communication with the target tissue accommodated in a purposely designed compartment (tissue-on-a-chip). The walls of the microfluidic channel mimicking the vessel are lined with endothelial cells to reproduce the actual walls of in vivo blood vessels. This device allows to investigate the effects of ultrasound-activated bubbles on the blood vessels wall.
12

An Experimental Investigation On The Dynamics Of Bubbles Utilizing Refrigerant R134a Under Pressurized Flow Boiling Conditions

Vereen, Keon 01 January 2011 (has links)
Flow boiling heat transfer allows for the dissipation of large amounts of heat. In this work, the effect of heat flux and pressure on flow boiling of liquid refrigerant R-134a is studied in a vertical thin channel. The experimental setup mimics a refrigeration cycle and specifically looks at the effect of pressure and wall heat flux on the departure size and bubble generation rate. The experimental setup consists of a closed loop which includes a vertical narrow rectangular channel and two synchronized high speed cameras for optical measurements at either sides of the channel. The setup is built to employ an accurate measurement technique to define wall temperatures of the representative flow boiling process. Instead of using thermocouples on the surface channel, the thermochromic liquid crystallography (TLC) technique is used to determine non-invasively the heater surface temperature at high temporal and spatial resolution. The TLC interval range is 30-50°C. The TLC is attached to a Fecralloy heating section. The high speed Prosilica cameras simultaneously capture, colored TLC images as well as bubble nucleation and departure at very high frame rates. Experiments on subcooled flow boiling heat transfer have been conducted with refrigerant R-134a under a mass flux range of 484.838 kg/m2 s to 1212.1 kg/m2 s. With the low mass flux, the wall heat flux ranged from 167.2 to 672.1 kW/m2 , the inlet subcooling ranged from 0.35°C to 16.55 °C, the system pressure ranged from 621 kPa to 1034 kPa. At high mass flux, the wall heat flux ranged from 329.8 kW/m2 to 744 kW/m2 , the iv inlet subcooling from 0.16°C to 17.21 °C, and the system pressure from 621 kPa to 1034 kPa. A parametric study was done by maintaining various input parameters constant. From the high speed images, bubble parameters such as size and frequency are calculated. Temperature contours are utilized to determine the surface wall temperature at specific points. Sequential wall temperatures are traced over a short period of time to understand the cooling effects. The bubble propagation and coalescence are also visualized. Results show that bubble size and frequency increased with heat flux at any particular pressure. At higher pressure, the trend would be for the bubble size to decrease; however, the inlet subcooling and heat flux also affect bubble size. The bubble frequency is also seen to be affected by the inlet subcooling and the heat flux. Even though the inlet subcooling is maintained approximately constant, any slight decrease in subcooling increased bubble growth rate. Another trend that is observed is that at higher the heat flux, the bubble generation frequency is faster; however no specific trend is observed for wall superheat. With an increase in heat flux, the wall superheats are expected to increase; however, the localized nature of the nucleation activity sites is seen to affect the results. The variables are non-dimensionalized to note trends in parameters. In summary, the data analysis demonstrates that both heat flux and pressure significantly influence the bubble generation rate, size, propagation and coalescence.
13

Measurement techniques to characterize bubble motion in swarms

Acuña Pérez, Claudio Abraham January 2007 (has links)
No description available.
14

Local heat transfer rate and bubble dynamics during jet impingement boiling

Mani, Preeti 29 October 2012 (has links)
Characterization of local boiling trends, in addition to the typically reported area-averaged trends, is essential for the robust design and implementation of phase change technologies to sensitive heat transfer applications such as electronics cooling. Obtaining the values of heat fluxes corresponding to locally varying surface temperatures has been a challenge limiting most investigations to area-averaged results. This thesis illustrates the importance of a spatially local heat transfer analysis during boiling. Pool and submerged jet impingement boiling scenarios on a silicon surface are considered at the macroscale (27.5 mm heater with multiple nucleation sites) and microscale (1000 ��m heater for isolated bubble generation), by the use of two thin film serpentine heater geometries. The macroscale heater highlights the effect of spatial variations in imposed heat flux on boiling heat transfer with a circumferentially uniform but radially non-uniform heat flux distribution. The microscale heater simulates a local hot-spot for spot cooling on an electronic device. Spatial variation in boiling heat transfer and bubble dynamics with and without a jet flow are documented using thin film voltage sensors along with qualitative and quantitative high speed imaging and infra-red thermography. Unique to this study is the documentation of local boiling curves for different radial locations on the heat transfer surface and their comparison with the corresponding area-averaged representations. It is shown here that sectionally averaged representations of boiling curves over regions of like-imposed heat flux can substantially simplify the interpretation of data while retaining important information of the local variations in heat transfer. The radial influence of the convective jet flow on the bubble dynamics and boiling heat transfer is assessed for a single circular submerged jet configuration. Varied parameters include jet exit Reynolds numbers, nozzle geometry, test fluid (deionized water and FC-72), fluid subcooling and the supplied heat flux. Distinct modifications of the surface temperature distribution imposed by the impinging jet flow are highlighted by comparing radial temperature profiles during pool and jet impingement boiling. It is demonstrated that in contrast with pool boiling, thermal overshoots during jet impingement boiling for a highly wetting fluid like FC-72 are highest in regions farthest from the impingement point. The effect of jet inertia on bubble departure characteristics are compared with pool boiling under subcooled conditions for FC-72. Qualitative high speed visualization indicates the presence of two modes of bubble generation during jet impingement boiling (a) bubble departure from the surface and (b) bubble separation from the source resulting in sliding bubbles over the surface. The effect of jet flow on bubble entrainment is depicted. Quantitative results indicate that in general departure diameters for pool and jet impingement boiling increase and plateau at a maximum value with increasing power input while no notable trends were observed in the corresponding departure frequencies. The largest departure diameters for jet impingement boiling at fixed fluid subcoolings of 10��C and 20��C were found to be smaller than that for the corresponding pool boiling test by a factor of 1.6 and 2.3, respectively. / Graduation date: 2013
15

Etude de la dynamique et de la morphologie de bulles confinées et non confinées, et de leur transfert de matière vers le liquide environnant / Study of the dynamics and the morphology of confined and non confined bubbles, and their mass transfer to the surrounding liquid

Mikaelian, David 25 September 2014 (has links)
Cette thèse porte sur l'étude de la dynamique et de la morphologie de bulles non confinées dans des colonnes à bulles et de bulles confinées dans des microcanaux, ainsi que sur l'étude du transfert de matière entre une bulle sphérique confinée dans un microcanal et le liquide environnant. <p><p>Un dispositif expérimental d'imagerie et une méthode de posttraitement des images brutes ont été développés afin d'analyser la dynamique et la morphologie de bulles non confinées ayant une trajectoire non rectiligne de leur centre de masse en évitant les effets de perspectives et en déterminant un seuil pour la binarisation des images brutes sur base d'un critère bien défini. Ce dispositif expérimental et cette méthode de posttraitement des images brutes ont permis de générer des données relatives à la dynamique et la morphologie de bulles ellipsoïdales isolées et non confinées, pour des nombres d'Eötvös (Eo) et de Morton (Mo) de ces bulles tels que 0.8 < Eo < 8 et 10 <SUP>-11</SUP> < Mo < 10 <SUP>-7</SUP>. L'analyse de ces données a permis de cartographier la nature de la trajectoire d'une bulle et la présence d'une éventuelle oscillation de son interface en fonction de ses nombres d'Eötvös et de Morton. Les bulles ayant une trajectoire hélicoïdale sans oscillation de leur interface ont été sélectionnées afin de proposer des corrélations pour calculer l'amplitude et la fréquence de leur trajectoire en fonction de leurs nombres d'Eötvös et de Morton. Concernant les bulles ayant une trajectoire en zigzag ou hélicoïdale sans oscillation de leur interface, l'analyse des données a permis de montrer l'alignement entre le vecteur vitesse de leur centre de masse et leur petit axe. Les rayons de courbure de l'avant et l'arrière de l'interface de ces bulles ont été évalués. Pour les bulles ayant une trajectoire en zigzag, une corrélation a été établie pour calculer le rapport des rayons de courbure à l'avant et à l'arrière de leur interface en fonction de leurs nombres d'Eötvös et de Morton. Une pulsation dans la composante verticale du mouvement du centre de masse d'une bulle a été observée dans le cas d'une trajectoire en zigzag de la bulle et ce à une fréquence égale au double de celle de sa trajectoire. Une telle pulsation n'a pas pu être identifiée dans le cas d'une trajectoire hélicoïdale d'une bulle. <p><p>Concernant l'analyse de la dynamique de bulles sphériques confinées dans des microcanaux de sections carrée et circulaire, ainsi que du transfert de matière entre ces bulles et le liquide environnant, une méthode numérique a été développée dans laquelle deux conditons aux limites sont considérées sur l'interface liquide-gaz: une condition de contrainte tangentielle nulle et une condition de non glissement. Les résultats obtenus avec cette méthode ont permis de caractériser les champs de vitesse et de concentration autour des bulles considérées, et de montrer leurs interactions. Grâce à ces résultats, des corrélations ont été établies, dans ces microcanaux et pour ces deux conditions aux limites, pour calculer la vitesse des bulles et pour caractériser le transfert de matière entre ces bulles et le liquide en fonction des paramètres définissant le système. Sur base de ces corrélations et de bilans de matière et de quantité de mouvement, un modèle pour la dissolution de bulles le long de microcanaux de sections carrée et circulaire a été proposé, pour le régime bubbly flow, et comparé avec des données expérimentales disponibles dans la littérature. Ce modèle permet de prédire, pour une bulle se mouvant le long d'un microcanal de section carrée ou circulaire, les évolutions des pressions dans le liquide et le gaz, de son diamètre, de sa vitesse, de la concentration du gaz dissous dans le liquide, de la distance de séparation entre cette bulle et la bulle qui la suit et du coefficient de transfert de matière entre cette bulle et le liquide environnant.<p><p> / Doctorat en Sciences de l'ingénieur / info:eu-repo/semantics/nonPublished
16

The development of polystyrene based microfluidic gas generation system

Yuanzhi, Cao 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The purpose of this thesis is to use experimental methods to seek deeper understanding and better performance in the self-circulating self-regulating microfluidic gas generator initially developed in Dr. Zhu’s group, by changing the major features and dimensions in the reaction channel of the device. In order to effectively conduct experiments described above, a microfabrication method that is capable of making new microfluidic devices with low cost, short time period, as well as relatively high accuracy was needed first. Developing such a fabrication method is the major part of this thesis. We initially used patterned polymer films and glass slide, and bonded them together by sequentially aligning and stacking them into a microfluidic device with patterned double-sided tapes. Later we developed a more advanced microfabrication method that used only patterned polystyrene (PS) films. The patterned PS films were obtained from a digital cutter and they were bonded into a microfluidic device by thermopress bonding method that required no heterogeneous bonding agents. This new method did not need manual assembly which greatly improved its precision (~ 100 µm), and it used only PS as device material that has favorable surface wetting property for microfluidics applications. In order to find the optimized microfluidic channel design to improve gas generating performance, we've designed and fabricated microfluidic devices with different channel dimensions using the PS fabrication method. Based on the gas generation testing results of those devices, we were able to come up with the optimal dimensions for the reaction channel that had the best gas generation performance. To obtain a more fundamental understanding about the working mechanism of our device and its bubble dynamics, we have conducted ultrafast X-ray imaging test at Advanced Photon Source (APS), Argonne National Laboratory. High speed (100 KHz) phase contrast images were captured that allowed us to observe directly inside the reaction channel on the cross section view during the self-circulating catalytic reaction. The images provided us with lots of insightful information that in turn helped the dimensional improvement for the microchannel design. The 100 KHz high speed images also gave us useful information about the dynamics of bubble development on a catalyst bed, such as growth and merging of the bubbles.

Page generated in 0.0523 seconds