121 |
A Multimethod Assessment of Carbon Capture and Storage Possibilities in Sweden / Multimetodologisk utvärdering av lagrings- och avskiljningsmöjligheter för koldioxid i SverigeEdvardsson, Albert, Gustafsson, William January 2024 (has links)
Mitigating greenhouse gas emissions from the Swedish industry is central in reaching set up environmental goals on a national level and fighting climate change that results in economic, environmental and social disasters on a global scale. The efforts of mitigating greenhouse gas emissions from the Swedish industry have historically focused on investing in renewable technologies that have no emissions from production. However, to rapidly decrease emissions of greenhouse gases, such as carbon dioxide, could be done by sequestering the gas from point sources at the industry sites and thereafter transport it to geological formations on- and offshore in a process more commonly known as Carbon Capture and Storage. Even so, the Carbon Capture and Storage technology is relatively new and has not yet been implemented on an industrial scale in Sweden. The real potential of Carbon Capture and Storage in relation to helping the Swedish industry in reaching set up national and international environmental goals is therefore unknown. Here we show, via a literature review and performing interviews with stakeholders from the investigated field, that there is a big potential for Carbon Capture and Storage to mitigate carbon dioxide emissions from the Swedish industry and create negative emission rates by storing emissions originated from biogenic sources. Our results demonstrate that there are regulatory, economic, environmental, and social measures that are needed to create a future market for Carbon Capture and Storage and trading with negative emissions. These include evaluating domestic storage sites, changing laws and regulations, and sharing knowledge between countries and companies to create a wider understanding of the technology. We anticipate that our study on the dynamics of a Carbon Capture and Storage market will help stakeholders to identify levers and restraints in the current market so that the transition towards net zero emissions will accelerate, especially when having the national 2045 net zero emission objective in mind. Nonetheless, there is a great need for research to understand such a market, and more specifically to create a consensus between stakeholders on a national and global level when creating it. / Att minska växthusgasutsläppen från den svenska industrin är centralt för att nå nationella och globala klimatmål och vidare bekämpa klimatförändringar som på en global skala resulterar i ekonomiska, miljömässiga och samhälleliga katastrofer. Historiskt sett har åtgärderna för att minska utsläppen av växthusgaser främst legat på satsningar inom förnybara tekniker där utsläppen från produktion är nästintill noll. Däremot behövs åtgärder för att snabbt minska utsläppen av växthusgaser, såsom koldioxid, där detta kan göras genom att avskilja koldioxiden från industriernas punktkällor och sedan lagra gasen på land och till havs genom en process som är mer känd under namnet koldioxidavskiljning och lagring. Trots detta är koldioxidavskiljning och lagring en relativt ny teknik som inte har tillämpats på industriell skala i Sverige. Teknologins verkliga potential för att uppfylla nationella och globala klimatmål är därför outforskad. Studien visar, genom en litteraturstudie och semistrukturerade intervjuer med intressenter inom forskningsområdet, att tekniken koldioxidavskiljning och lagring har stor potential när det kommer till att minska koldioxidutsläpp från den svenska industrin och även när det kommer till att skapa negativa emissioner av koldioxid genom lagring av biogen koldioxid. Resultatet visar att det är regulatoriska, ekonomiska, miljömässiga och samhälleliga åtgärder som är nödvändiga för att skapa en framtida marknad för koldioxidavskiljning och lagring och handel med negativa utsläpp. Dessa innefattar utvärdering av inhemska lagringsplatser, ändring av lagar och regler samt att sprida och dela kunskap mellan länder och företag för att skapa en vidare förståelse av teknologin. Vi förutser att användningsområdet för studien av en framtida marknad för koldioxidavskiljning och lagring kan hjälpa intressenter inom forskningsområdet att identifiera åtgärder som kan verka som hävarm och även hinder för en framtida utveckling mot nettonollutsläpp. Detta då de svenska miljökvalitetsmålen fastslår att nettonollutsläpp senast ska nås år 2045. Däremot behövs vidare studier för att förstå en framtida marknad för koldioxidavskiljning och lagring samt negativa emissioner, mer specifikt behövs konsensus mellan intressenter på en nationell och global nivå för att skapa en sådan marknad.
|
122 |
A novel approach to solvent screening for post-combustion carbon dioxide capture with chemical absorptionRetief, Frederik Jacobus Gideon 14 March 2012 (has links)
Thesis (MScEng)--Stellenbosch University. / ENGLISH ABSTRACT: Carbon dioxide (CO2) is classified as the main greenhouse gas (GHG) contributing to global warming.
Estimates by the Intergovernmental Panel on Climate Change (IPCC) suggest that CO2 emissions must be
reduced by between 50 to 85% by 2050 to avoid irreversible impacts. Carbon capture and storage (CCS)
strategies can be applied to de-carbonize the emissions from fossil-fueled power plants. Compared to
other CCS techniques, post-combustion capture (PCC) is most likely to be implemented effectively as a
retrofit option to existing power plants. At present however CCS is not yet commercially viable. The
main challenge with CCS is to reduce the inherent energy penalty of the CO2 separation stage on the
host plant.
Seventy-five to eighty percent of the total cost of CCS is associated with the separation stage. There are
several technologies available for separating CO2 from power plant flue gas streams. Reactive absorption
with aqueous amine solutions has the ability to treat low concentration, low pressure and large flux flue
gas streams in industrial-scale applications. It is most likely to be the first technology employed
commercially in the implementation of CCS. The energy required for solvent regeneration however, is
high for the standard solvent used in reactive absorption processes, i.e. MEA. This leads to a reduction in
thermal efficiency of the host plant of up to 15%. Alternative solvent formulations are being evaluated in
an attempt to reduce the energy intensity of the regeneration process.
The main objective of this study was to establish a novel, simplified thermodynamic method for solvent
screening. Partial solubility parameters (PSPs) were identified as the potential basis for such a method.
The major limitation of this approach is that the model doesn’t account for effects from chemical
reaction(s) between materials, e.g. CO2 reacting with aqueous alkanolamine solutions; considering only
the effects from dissolution. The EquiSolv software system was developed based on PSP theory. The
Hansen 3-set PSP approach was used to describe the equilibrium behaviour of CO2 absorbing in task
specific solvents. The Hansen theory was expanded to a 4-set approach to account for contributions
from electrostatic interactions between materials. The EquiSolv program was used successfully to screen
large sets of solvent data (up to 400 million formulations) in the search for suitable alternative solvent
formulations for CO2 absorption.
The secondary objective of this study was to evaluate the ability of the proposed PSP model to
accurately predict suitable alternative solvents for CO2 absorption through preliminary experimental
work. A series of CO2 absorption experiments were conducted to evaluate the absorption performance
of predicted alternative solvent formulations. The predicted alternative solvent formulations exhibited a
significant improvement in absorption performance (up to a 97% increase in the measured absorption
capacity) compared to conventional solvent formulations. Statistical analysis of the experimental results
has shown that there is a statistically significant concordant relationship between the predicted and
measured rankings for the absorption performance of the predicted solvent formulations. Based on this
it was concluded that PSP theory can be used to accurately predict the equilibrium behaviour of CO2
absorbing in task specific solvents.
Recently ionic liquids (ILs) have been identified as potential alternatives to alkanolamine solutions
conventionally used for CO2 absorption. Absorption experiments were conducted as a preliminary
assessment of the absorption performance of ILs. Results have shown ILs to have significantly improved
performance compared to conventional alkanolamine solvents; up to a 96% increase in the measured
absorption capacity compared to conventional solvents. Future work should focus on developing task
specific ionic liquids (TSILs) in an attempt to reduce the energy intensity of solvent regeneration in CO2
absorption processes. / AFRIKAANSE OPSOMMING: Koolsuurgas (CO2) word geklassifiseer as die vernaamste kweekhuis gas (GHG) wat bydra to globale
verwarming. Beramings deur die Interregeringspaneel oor Klimaatsverandering (IPKV) toon aan dat CO2
emissies teen 2050 verminder moet word met tussen 50 en 85% om onomkeerbare invloede te vermy.
Verskeie koolstof opvangs en bergings (KOB) strategieë kan toegepas word ten einde die koolstof
dioksied konsentrasie in die emissies van kragstasies wat fossielbrandstowwe gebruik, te verminder. Naverbranding
opvangs (NVO) is die mees aangewese KOB tegniek wat effektief toegepas kan word op
bestaande kragstasies. Tans is KOB egter nog nie kommersieël lewensvatbaarvatbaar nie. Die hoof
uitdaging wat KOB in die gesig staar is om die energie boete inherent aan die CO2 skeidingstap te
verminder.
Tussen vyf-en-sewentig en tagtig persent van die totale koste van KOB is gekoppel aan die skeidingstap.
Daar is verskeie metodes beskikbaar vir die skeiding van CO2 uit die uitlaatgasse van kragstasies.
Reaktiewe absorpsie met waterige oplossings van amiene kan gebruik word om lae konsentrasie, lae
druk en hoë vloei uitlaatgasstrome in industriële toepassings te behandel. Dit is hoogs waarskynlik die
eerste tegnologie wat kommersieël aangewend sal word in die toepassing van KOB. Die oplosmiddel wat
normalweg vir reaktiewe absorpsie gebruik word (d.w.s. MEA) benodig egter ‘n groot hoeveelheid
energie vir regenerasie. Dit lei tot ‘n afname in die termiese doeltreffendheid van die voeder aanleg van
tot 15%. Alternatiewe oplosmiddelstelsels word tans ondersoek in ‘n poging om the energie intensiteit
van die regenerasieproses te verminder.
Die hoof doelwit van hierdie studie was om ‘n nuwe, ongekompliseerde termodinamiese metode te
vestig vir die keuring van alternatiewe oplosmiddels. Parsiële oplosbaarheidsparameters (POPs) is
geïdentifiseer as ‘n moontlike grondslag vir so ‘n metode. Die model beskryf egter slegs die ontbindings
gedrag van materiale. Die effekte van chemise reaksie(s) tussen materiale, bv. die tussen CO2 en
waterige oplossings van alkanolamiene, word nie in ag geneem nie. Die POP teorie het gedien as
grondslag vir die ontwerp van die EquiSolv sagteware stelsel. Die Hansen stel van drie POPs is gebruik
om die ewewigsgedrag te beskryf van CO2 wat absorbeer in doelgerig-ontwerpte oplosmiddels. Die
Hansen teorie is verder uitgebrei na ‘n stel van vier POPs om die bydrae van elektrostatiese wisselwerking tussen materiale in ag te neem. Die EquiSolv program is verskeie kere met groot sukses
gebruik vir die sifting van groot stelle data (soveel as 400 miljoen formulasies) in die soektog na
alternatiewe oplosmiddels vir CO2 absorpsie.
Die sekondêre doelwit van die studie was om die vermoë van die voorgestelde POP model om geskikte
alternatiewe oplosmiddels vir CO2 absorpsie akkuraat te voorspel, te ondersoek deur voorlopige
eksperimentele werk. ‘n Reeks CO2 absorpsie eksperimente is gedoen ten einde die absorpsie
werkverrigting van die voorspelde alternatiewe oplosmidels te ondersoek. ‘n Verbetering in absorpsie
werkverrigting van tot 97% is gevind vir die voorspelde oplosmiddels vergeleke met die van
oplosmiddels wat tipies in die industrie gebruik word. Statistiese ontleding van die eksperimentele
resultate het getoon dat daar ‘n beduidende ooreenstemming tussen die voorspelde en gemete
rangskikking van die voorspelde oplosmiddels se werkverrigting bestaan. Dus kan POP teorie gebruik
word om die absorpsie van CO2 in doelgerig-ontwerpte oplosmiddels akkuraat te beskryf.
Ioniese vloeistowwe (IVs) is onlangs geïdentifiseer as moontlike alternatiewe oplosmidels vir die
alkanolamien oplossings wat normaalweg gebruik word vir CO2 absorpsie. Absorpsie eksperimente is
gedoen ten einde ‘n voorlopige raming van die absorpsie werkverrigting van IVs te bekom. Daar is
bevind dat IVs ‘n beduidende verbetering in werkverrigting toon in vergelyking met die alkanolamien
oplosmiddels wat normaalweg gebruik word. ‘n Verbetering in absorpsie werkverrigting van tot 96% is
gevind vir die voorspelde IV-bevattende oplosmiddels vergeleke met die van oplosmiddels wat tipies in
die industrie gebruik word. Die fokus van toekomstige navorsing moet val op die ontwikkeling van
doelgemaakte ioniese vloeistowwe (DGIVs) in ‘n poging om die energie intensiteit van oplosmiddel
regenerasie in CO2 absorpsie prosesse te verminder.
|
123 |
Thermochemical-based poroelastic modelling of salt crystallization, and a new multiphase flow experiment : how to assess injectivity evolution in the context of CO2 storage in deep aquifersOsselin, Florian 20 December 2013 (has links) (PDF)
In a context of international reduction of greenhouse gases emissions, CCS (ce{CO2} Capture and Storage) appears as a particularly interesting midterm solution. Indeed, geological storage capacities may raise to several millions of tons of ce{CO2} injected per year, allowing to reduce substantially the atmospheric emissions of this gas. One of the most interesting targets for the development of this solution are the deep saline aquifers. These aquifers are geological formations containing brine whose salinity is often higher than sea water's, making it unsuitable for human consumption. However, this solution has to cope with numerous technical issues, and in particular, the precipitation of salt initially dissolved in the aquifer brine. Consequences of this precipitation are multiple, but the most important is the modification of the injectivity i.e. the injection capacity. Knowledge of the influence of the precipitation on the injectivity is particularly important for both the storage efficiency and the storage security and durability. The aim of this PhD work is to compare the relative importance of negative (clogging) and positive (fracturing) phenomena following ce{CO2} injection and salt precipitation. Because of the numerous simulations and modelling results in the literature describing the clogging of the porosity, it has been decided to focus on the mechanical effects of the salt crystallization and the possible deformation of the host rock. A macroscopic and microscopic modelling has then been developed, taking into account two possible modes of evaporation induced by the spatial distribution of residual water, in order to predict the behavior of a porous material subjected to the drying by carbon dioxide injection. Results show that crystallization pressure created by the growth of a crystal in a confined medium can reach values susceptible to locally exceed the mechanic resistance of the host rock, highlighting the importance of these phenomena in the global mechanical behavior of the aquifer. At the experimental level, the study of a rock core submitted to the injection of supercritical carbon dioxide has been proceeded on a new reactive percolation prototype in order to obtain the evolution of permeabilities in conditions similar to these of a deep saline aquifer
|
124 |
Avaliação da contagem de células somáticas do leite como indicador da ocorrência de mastite em vacas Gir / Evaluation of milk somatic cell count as an indicator of mastitis occurrence in Gyr cowsReis, Carolina Barbosa Malek dos 31 March 2010 (has links)
Os objetivos deste trabalho foram determinar a sensibilidade e especificidade do limiar de contagem de células somáticas (CCS) de vacas Gir para o diagnóstico de mastite subclínica causada por patógenos primários e secundários e avaliar os efeitos de rebanho, vaca, mês de coleta, quarto mamário, presença de infecção intramamária, tipo de microrganismo e suas interações sobre o logCCS e composição do leite. Avaliou-se a hipótese que o limiar da CCS para detecção de mastite subclínica é igual entre vacas Gir e Holandesas. Foram utilizadas 221 vacas Gir em lactação, provenientes de três fazendas comerciais. Foram coletadas amostras de leite individuais por quarto mamário e compostas uma vez por mês, durante um ano. Foram realizadas análises de CCS, composição do leite e cultura microbiológica. O quarto mamário e a vaca foram considerados unidades experimentais. Para determinar a sensibilidade, especificidade e odds ratio (OR) dos limiares da CCS para identificação de quartos infectados, foram utilizados quatro valores de CCS: 100, 200, 300 e 400 (x 103 células/mL), assim como a correlação entre a CCS e composição do leite. Não houve efeito do rebanho sobre o logCCS para amostras individuais de quartos mamários e compostas, mas vaca dentro de rebanho foi o principal fator responsável pela variação do logCCS. Houve efeito do rebanho sobre a composição do leite, assim como o mês de coleta apresentou efeito tanto sobre o logCCS quanto para a composição do leite, considerando as duas unidades experimentais. A presença de infecção intramamária afetou negativamente a composição do leite, exceto sobre o teor de gordura; sendo que os maiores teores de lactose, proteína e ESD foram encontrados em amostras sem isolamento bacteriano. Os maiores logCCS foram obtidos em amostras infectadas. O limiar da CCS de 100 x 103 células/mL apresentou, em ambas as unidades experimentais, maiores valores de sensibilidade e valor preditivo negativo. O limiar de 200 x 103 células/mL apresentou maior chance da ocorrência de mastite do que o limiar de 100 x 103 células/mL. Foi observada correlação negativa entre CCS com lactose e extrato seco desengordurado (ESD), mas a correlação foi positiva entre CCS com gordura e proteína, tanto em nível de quarto mamário quanto de vaca. Portanto, a composição do leite foi influenciada pela CCS, os teores de lactose e ESD diminuíram em altas CCS, enquanto que as concentrações de gordura e proteína aumentaram. / The aim of this study was to determine the sensibility and specificity of somatic cell count (SCC) threshold in Gyr cows to diagnosis the subclinical mastitis caused by primary and secondary pathogens, and to evaluate the effect of herd, cows, month, mammary quarter, intramammary infection, type of microorganism and their interactions on logSCC and milk composition. The hypothesis to be tested was that the SCC threshold to detection of subclinical mastitis is the same for Holstein and Gir cows. A total of 221 lactation Gir cows from three commercial dairy farms was selected. Composed and quarter individual milk samples were collected once a month, during one year for SCC, milk composition and bacteriological analysis. The mammary quarter and the cow were considered experimental units. To determine the sensibility, specificity and odds ratio (OR) from SCC threshold to identify the infected quarters four values of SCC: 100, 200, 300 and 400 (x 103 cells/mL) were used. It was also evaluated the correlation between SCC and milk composition. There was no effect of herd on logSCC in individuals and composed samples, but cow nested within herd was major factor responsible for the logSCC variation. The month of sampling presented significant effect on logSCC and milk composition in both experimental units. The intramammary infection presence affected negatively the milk composition, except of fat concentration. Higher lactose, protein and non-fat solids (NFS) percentages were found in negative samples and higher logSCC were observed in infected samples. The SCC threshold of 100 x 103 cells/mL presented the major sensibility and negative predictive value for subclinical mastitis detection. The threshold of 200 x 103 cells/mL had higher chance to have mastitis than the threshold of 100 x 103 cells/mL. It was observed a negative correlation between SCC with lactose and NFS; but the correlation was positive between SCC with fat and protein in mammary quarters and cow level. Milk composition was influenced by SCC, once the lactose and NFS percentages decreased in samples with high SCC and the protein and fat concentration increased.
|
125 |
Alignment of Middle Grades Tennessee Comprehensive Assessment Program (TCAP) Practice Tests to the Common Core StandardsNivens, Ryan Andrew 01 March 2012 (has links)
No description available.
|
126 |
Carbon capture and storage and the Australian climate policy frameworkGoldthorpe, Ward Hillary January 2009 (has links)
Australia’s economy is heavily dependent on coal-based energy and greenhouse gas intensive natural resource extraction and processing industries. As part of an international climate change mitigation effort Australia will have to undergo a national transformation to a low emissions society by mid century. Federal and State Governments in Australia, like their counterparts in other major developed economies, have been persuaded that reliance on fossil fuels in stationary energy industries such as electricity generation and minerals processing will be able to continue with the deployment of a value chain of technologies fitted to these installations for capturing carbon dioxide, transporting it to a disposal site, and then injecting it into subsurface geological formations for permanent storage (carbon capture and storage, or CCS). Understanding the likely effectiveness of CCS for reducing greenhouse gas emissions from stationary energy industries is therefore critical to policy formulation for, and management of, Australia’s emissions mitigation effort and national transformation over the decades ahead. / This thesis aims to offer a clearer understanding of the practicalities, limitations and uncertainties surrounding future CCS use in Australia and of the contribution CCS can make to mitigating emissions from the Australian stationary energy sector in the period to 2050. It considers two central questions: Is CCS a realistic option for emissions mitigation in Australia? Are Australian climate policies formulated to facilitate CCS deployment and optimise its potential contribution? The criteria employed in this thesis for answering these questions are restricted to those having an ascertainable causal impact on the timing, pace and ultimate scale of CCS deployment within Australia. The methodology used for the research is grounded in critical approaches and integrated assessment within a holistic, trans-disciplinary paradigm. / This thesis finds that under Australia’s existing climate policy framework it is unrealistic to expect CCS can contribute more than 75 million tonnes of CO2 per annum to emissions mitigation by 2050. Australia does have sufficient potential geological storage resources to expect some environmentally safe CCS infrastructure could be engineered over time, but commencement of large scale build-out is not likely before 2025. When CCS will become a commercial mitigation option in Australia is unpredictable and dependent more on the political economy of climate change than on Australian research, development and demonstration activities. / The thesis also finds that the existing climate policy framework is increasing rather than decreasing the risks to timing and usefulness of CCS even to the level of 75 million tonnes of CO2 per annum by 2050. This thesis concludes that Australian Governments are not developing the institutional capability to oversee a holistic decarbonisation of the stationary energy sector. This capability is required not only to address the risks to CCS deployment but also to prevent market failures that foreclose an optimal contribution from all other potential mitigation technologies. The thesis proposes that an Australian national CCS company be created with responsibility for CCS integration, transport and storage services in order to develop Australian capability rather than that of international corporations.
|
127 |
Fast Generation of Order StatisticsHörmann, Wolfgang, Derflinger, Gerhard January 2001 (has links) (PDF)
Generating a single order statistic without generating the full sample can be an important task for simulations. If the density and the CDF of the distribution are given it is no problem to compute the density of the order statistic. In the main theorem it is shown that the concavity properties of that density depend directly on the distribution itself. Especially for log-concave distributions all order statistics have log-concave distributions themselves. So recently suggested automatic transformed density rejection algorithms can be used to generate single order statistics. This idea leads to very fast generators. For example for the normal and gamma distribution the suggested new algorithms are between 10 and 60 times faster than the algorithms suggested in the literature. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
|
128 |
Enhanced CO2 Storage in Confined Geologic FormationsOkwen, Roland Tenjoh 30 September 2009 (has links)
Many geoscientists endorse Carbon Capture and Storage (CCS) as a potential strategy
for mitigating emissions of greenhouse gases. Deep saline aquifers have been reported to
have larger CO
2 storage capacity than other formation types because of their availability
worldwide and less competitive usage. This work proposes an analytical model for screening
potential CO
2 storage sites and investigates injection strategies that can be employed to
enhance CO
2 storage.
The analytical model provides of estimates CO 2
storage efficiency, formation pressure
profiles, and CO 2
–brine interface location. The results from the analytical model were
compared to those from a sophisticated and reliable numerical model (TOUGH 2
). The
models showed excellent agreement when input conditions applied in both were similar.
Results from sensitivity studies indicate that the agreement between the analytical model
and TOUGH2 strongly depends on irreducible brine saturation, gravity and on the relationship
between relative permeability and brine saturation.
A series of numerical experiments have been conducted to study the pros and cons of
different injection strategies for CO 2 storage in confined saline aquifers. Vertical, horizontal,
and joint vertical and horizontal injection wells were considered. Simulations results
show that horizontal wells could be utilized to improve CO 2 storage capacity and efficiency
in confined aquifers under pressure-limited conditions with relative permeability
ratios greater than or equal to 0:01. In addition, joint wells are more efficient than single
vertical wells and less efficient than single horizontal wells for CO 2 storage in anisotropic
aquifers.
|
129 |
Rejection-Inversion to Generate Variates from Monotone Discrete DistributionsHörmann, Wolfgang, Derflinger, Gerhard January 1996 (has links) (PDF)
For discrete distributions a variant of rejection from a continuous hat function is presented. The main advantage of the new method, called rejection-inversion, is that no extra uniform random number to decide between acceptance and rejection is required which means that the expected number of uniform variates required is halved. Using rejection-inversion and a squeeze, a simple universal method for a large class of monotone discrete distributions is developed. It can be used to generate variates from the tails of most standard discrete distributions. Rejection-inversion applied to the Zipf (or zeta) distribution results in algorithms that are short and simple and at least twice as fast as the fastest methods suggested in the literature. (author's abstract) / Series: Preprint Series / Department of Applied Statistics and Data Processing
|
130 |
Monitoring sub-surface storage of carbon dioxideCowton, Laurence Robert January 2017 (has links)
Since 1996, super-critical CO$_2$ has been injected at a rate of $\sim$0.85~Mt~yr$^{-1}$ into a pristine, saline aquifer at the Sleipner carbon capture and storage project. A suite of time-lapse, three-dimensional seismic reflection surveys have been acquired over the injection site. This suite includes a pre-injection survey acquired in 1994 and seven post-injection surveys acquired between 1999 and 2010. Nine consistently bright reflections within the reservoir, mapped on all post-injection surveys, are interpreted to be thin layers of CO$_2$ trapped beneath mudstone horizons. The areal extents of these CO$_2$ layers are observed to either increase or remain constant with time. However, volume flux of CO$_2$ into these layers has proven difficult to measure accurately. In addition, the complex planform of the shallowest layer, Layer 9, has proven challenging to explain using reservoir simulations. In this dissertation, the spatial distribution of CO$_2$ in Layer~9 is measured in three dimensions using a combination of seismic reflection amplitudes and changes in two-way travel time between time-lapse seismic reflection surveys. The CO$_2$ volume in this layer is shown to be growing at an increasing rate through time. To investigate CO$_2$ flow within Layer~9, a numerical gravity current model that accounts for topographic gradients is developed. This vertically-integrated model is computationally efficient, allowing it to be inverted to find reservoir properties that minimise differences between measured and modelled CO$_2$ distributions. The best-fitting reservoir permeability agrees with measured values from nearby wells. Rapid northward migration of CO$_2$ in Layer~9 is explained by a high permeability channel, inferred from spectral decomposition of the seismic reflection surveys. This numerical model is found to be capable of forecasting CO$_2$ flow by comparing models calibrated on early seismic reflection surveys to observed CO$_2$ distributions from later surveys. Numerical and analytical models are then used to assess the effect of the proximity of an impermeable base on the flow of a buoyant fluid, motivated by the variable thickness of the uppermost reservoir. Spatial gradients in the confinement of the reservoir are found to direct the flow of CO$_2$ when the current is of comparable thickness to the reservoir. Finally, CO$_2$ volume in the second shallowest layer, Layer~8, is measured using structural analysis and numerical modelling. CO$_2$ in Layer~8 is estimated to have reached the spill point of its structural trap by 2010. CO$_2$ flux into the upper two layers is now $\sim$40\% of total CO$_2$ flux injected at the base of the reservoir, and is increasing with time. This estimate is supported by observations of decreasing areal growth rate of the lower layers. The uppermost layers are therefore expected to contribute significantly to the total reservoir storage capacity in the future. CO$_2$ flow within Layer~9 beyond 2010 is forecast to be predominantly directed towards a topographic dome located $\sim$3~km north of the injection point. This dissertation shows that advances in determining the spatial distribution and flow of CO$_2$ in the sub-surface can be made by a combination of careful seismic interpretation and numerical flow modelling.
|
Page generated in 0.0321 seconds