• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 34
  • 22
  • 10
  • 7
  • 4
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 188
  • 73
  • 66
  • 52
  • 46
  • 45
  • 29
  • 26
  • 20
  • 19
  • 17
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Techno economic assessment of CCUS for a biogas facility in Sweden : Evaluating the economic feasibility for three CCUS concepts / Tekno-ekonomisk undersökning av CCUS för en biogasanläggning i Sverige

Johansson, Tobias, Knutsson, Markus January 2022 (has links)
Many countries strengthen their commitments to reduce greenhouse gas emissions to limit climate change and meet the Paris Agreement (Masson-Delmotte et al., 2019). Commitments include achieving net-zero emissions or in some cases even negative emissions (Government offices of Sweden, 2020a; United Nations, 2021a). To achieve these goals, carbon dioxide capture, utilization, and storage (CCUS) is considered as an essential strategy. Carbon capture storage and utilization are recognized methods of reducing or avoiding greenhouse gas emissions (IEA, 2019a, 2020). However, the uncertainty regarding costs, financial incentives, and pricing is impeding adoption. Further information is needed for CCUS concepts both in respect to cost estimates and required market prices for CCUS, this to provide guidance for decision makers and market actors. In this report a study has investigated the economic feasibility of three CCUS concepts for a biogas facility. One CCS concept where CO2 was captured and liquefied on-site to be transported to a terminal for shipping and end storage injection. The CCS concept annual capacity was ~16 500 ton net stored CO2. Two CCU concepts were considered, where synthetic natural gas (SNG) was produced via biologic methanation with on-site produced hydrogen, both with annual production of ~88 GWh SNG. A techno-economic assessment (TEA) was carried out where the key cost-drivers were identified, and the economic feasibility assessed. With performance and cost estimates for each process step in the different considered concepts a model was built where a cash flow was created and a net present value (NPV) could be calculated. The study found transportation to be the most prominent cost driver for CCS where shipping and storage represented 57 % of the total cost of CO2 removal. The cost driver for CCU concepts was found to be hydrogen production, where the electricity for the electrolyser constituted 65 % of the total cost of produced SNG. None of the concepts were found economic feasible when the Swedish market was considered. The break-even price for CO2 removal in the CCS concept was found to be 151 €/ton, just above the assumed base value used in this study. As the voluntary market is still undeveloped it is difficult to know what price that could be expected, however, in discussion with market experts a range between 150-200 €/ton would not be unthinkable for the concept studied. For the CCU concepts to be economically feasible, the estimated minimum price levels for SNG were 184 and 193 €/MWh respectively. Comparing to the benchmark price of diesel of 125 €/MWh, both CCU concepts were concluded to be unfeasible. The sensitivity analysis showed that the CCU concepts were very sensitive to variations in electricity price. When the German fuel market was considered, all studied concepts yielded a positive business case. CCS was the only concept showing economic feasibility, while the CCU concepts remained unfeasible. In the German market a GHG reduction quota credit was accounted for which was valued higher than the carbon removal credits in the voluntary market. / Många länder stärker sina åtaganden att minska utsläppen av växthusgaser för att begränsa klimatförändringen och uppfylla Parisavtalet (Masson-Delmotte et al., 2019). I åtagandena ingår att uppnå nettonollutsläpp eller i vissa fall till och med negativa utsläpp (Regeringskansliet, 2020a; FN, 2021a). För att uppnå dessa mål anses avskiljning, nyttjande och lagring av koldioxid (CCUS) vara en viktig strategi. Avskiljning, lagring och utnyttjande av koldioxid är erkända metoder för att minska eller undvika utsläpp av växthusgaser (IEA, 2019a, 2020). Osäkerheten kring kostnader, ekonomiska incitament och prissättning hindrar dock införandet. Ytterligare information behövs för CCUS-koncept både när det gäller kostnadsberäkningar och nödvändiga marknadspriser för CCUS, detta för att ge vägledning för beslutsfattare och marknadsaktörer. I den här rapporten undersöks den ekonomiska genomförbarheten av tre CCUS-koncept för en biogasanläggning. Ett CCS-koncept där koldioxid avskiljs och kondenseras på plats för att sedan transporteras till en terminal för slutlig sjöfrakt och injektion i geologiskt lager. Den årliga kapaciteten för CCS-konceptet var ~16 500 ton nettolagrad koldioxid. Två CCU-koncept övervägdes, där syntetisk natur gas (SNG) producerades genom biologisk metanisering med vätgas producerad på plats, där båda koncepten hade en årlig produktion av ~88 GWh SNG. En tekno-ekonomisk undersökning genomfördes där de viktigaste kostnadsdrivande faktorerna identifierades och den ekonomiska genomförbarheten bedömdes. Med hjälp av prestanda- och kostnadsberäkningar för varje processteg i de olika tänkta koncepten byggdes en modell där ett kassaflöde skapades och ett netto-nuvärde kunde beräknas. I studien konstaterades att transport var den mest framträdande kostnadsdrivande faktorn för CCS, där sjöfrakt och lagring stod för 57 % av den totala kostnaden för koldioxidavskiljning. Kostnadsdrivande för CCU-konceptet var vätgasproduktionen, där el till elektrolysen utgjorde 65 % av den totala kostnaden för producerad SNG. Inget av koncepten befanns vara ekonomiskt genomförbart när den svenska marknaden beaktades. Nollpunktspriset för koldioxidavskiljning i CCS-konceptet fanns vara 151 euro/ton, vilket är strax över det antagna basvärde som används i denna studie. Eftersom den frivilliga marknaden fortfarande är outvecklad är det svårt att veta vilket pris som kan förväntas, men i diskussioner med marknadsexperter skulle ett prisintervall på 150-200 €/ton inte vara otänkbart för det studerade konceptet. För att CCU-koncepten ska vara ekonomiskt genomförbara var de uppskattade minimipriserna för SNG 184 respektive 193 €/MWh. Jämfört med referenspriset för diesel på 125 €/MWh, ansågs båda CCU-koncepten vara ekonomiskt ogenomförbara. Känslighetsanalysen visade att CCU-koncepten var mycket känsliga för variationer i elpriset. När den tyska bränslemarknaden beaktades gav alla studerade koncept ett positivt netto-nuvärde. CCS konceptet var det enda konceptet som ansågs vara ekonomiskt genomförbart, medan CCU-koncepten förblev ogenomförbara. På den tyska marknaden räknades en kvot för minskning av växthusgasutsläpp in, som värderades högre än de krediter för avskiljning av koldioxid som fanns på den frivilliga marknaden.
102

Carbon dioxide sequestration methodothologies - A review

Mwenketishi, G., Benkreira, Hadj, Rahmanian, Nejat 30 November 2023 (has links)
Yes / The process of capturing and storing carbon dioxide (CCS) was previously considered a crucial and time-sensitive approach for diminishing CO2 emissions originating from coal, oil, and gas sectors. Its implementation was seen necessary to address the detrimental effects of CO2 on the atmosphere and the ecosystem. This recognition was achieved by previous substantial study efforts. The carbon capture and storage (CCS) cycle concludes with the final stage of CO2 storage. This stage involves primarily the adsorption of CO2 in the ocean and the injection of CO2 into subsurface reservoir formations. Additionally, the process of CO2 reactivity with minerals in the reservoir formations leads to the formation of limestone through injectivities. Carbon capture and storage (CCS) is the final phase in the CCS cycle, mostly achieved by the use of marine and underground geological sequestration methods, along with mineral carbonation techniques. The introduction of supercritical CO2 into geological formations has the potential to alter the prevailing physical and chemical characteristics of the subsurface environment. This process can lead to modifications in the pore fluid pressure, temperature conditions, chemical reactivity, and stress distribution within the reservoir rock. The objective of this study is to enhance our existing understanding of CO2 injection and storage systems, with a specific focus on CO2 storage techniques and the associated issues faced during their implementation. Additionally, this research examines strategies for mitigating important uncertainties in carbon capture and storage (CCS) practises. Carbon capture and storage (CCS) facilities can be considered as integrated systems. However, in scientific research, these storage systems are often divided based on the physical and spatial scales relevant to the investigations. Utilising the chosen system as a boundary condition is a highly effective method for segregating the physics in a diverse range of physical applications. Regrettably, the used separation technique fails to effectively depict the behaviour of the broader significant system in the context of water and gas movement within porous media. The limited efficacy of the technique in capturing the behaviour of the broader relevant system can be attributed to the intricate nature of geological subsurface systems. As a result, various carbon capture and storage (CCS) technologies have emerged, each with distinct applications, associated prices, and social and environmental implications. The results of this study have the potential to enhance comprehension regarding the selection of an appropriate carbon capture and storage (CCS) application method. Moreover, these findings can contribute to the optimisation of greenhouse gas emissions and their associated environmental consequences. By promoting process sustainability, this research can address critical challenges related to global climate change, which are currently of utmost importance to humanity. Despite the significant advancements in this technology over the past decade, various concerns and ambiguities have been highlighted. Considerable emphasis was placed on the fundamental discoveries made in practical programmes related to the storage of CO2 thus far. The study has provided evidence that despite the extensive research and implementation of several CCS technologies thus far, the process of selecting an appropriate and widely accepted CCS technology remains challenging due to considerations related to its technological feasibility, economic viability, and societal and environmental acceptance.
103

A comprehensive review on carbon dioxide sequestration methods

Mwenketishi, G., Benkreira, Hadj, Rahmanian, Nejat 09 December 2023 (has links)
Yes / Capturing and storing CO2 (CCS) was once regarded as a significant, urgent, and necessary option for reducing the emissions of CO2 from coal and oil and gas industries and mitigating the serious impacts of CO2 on the atmosphere and the environment. This recognition came about as a result of extensive research conducted in the past. The CCS cycle comes to a close with the last phase of CO2 storage, which is accomplished primarily by the adsorption of CO2 in the ocean and injection of CO2 subsurface reservoir formation, in addition to the formation of limestone via the process of CO2 reactivity with reservoir formation minerals through injectivities. CCS is the last stage in the carbon capture and storage (CCS) cycle and is accomplished chiefly via oceanic and subterranean geological sequestration, as well as mineral carbonation. The injection of supercritical CO2 into geological formations disrupts the sub-surface’s existing physical and chemical conditions; changes can occur in the pore fluid pressure, temperature state, chemical reactivity, and stress distribution of the reservoir rock. This paper aims at advancing our current knowledge in CO2 injection and storage systems, particularly CO2 storage methods and the challenges encountered during the implementation of each method and analyses on how key uncertainties in CCS can be reduced. CCS sites are essentially unified systems; yet, given the scientific context, these storage systems are typically split during scientific investigations based on the physics and spatial scales involved. Separating the physics by using the chosen system as a boundary condition is a strategy that works effectively for a wide variety of physical applications. Unfortunately, the separation technique does not accurately capture the behaviour of the larger important system in the case of water and gas flow in porous media. This is due to the complexity of geological subsurface systems, which prevents the approach from being able to effectively capture the behaviour of the larger relevant system. This consequently gives rise to different CCS technology with different applications, costs and social and environmental impacts. The findings of this study can help improve the ability to select a suitable CCS application method and can further improve the efficiency of greenhouse gas emissions and their environmental impact, promoting the process sustainability and helping to tackle some of the most important issues that human being is currently accounting global climate change. Though this technology has already had large-scale development for the last decade, some issues and uncertainties are identified. Special attention was focused on the basic findings achieved in CO2 storage operational projects to date. The study has demonstrated that though a number of CCS technologies have been researched and implemented to date, choosing a suitable and acceptable CCS technology is still daunting in terms of its technological application, cost effectiveness and socio-environmental acceptance.
104

Assessment of Cubic Equations of State: Machine Learning for Rich Carbon-Dioxide Systems

Truc, George, Rahmanian, Nejat, Pishnamazi, M. 12 March 2021 (has links)
Yes / Carbon capture and storage (CCS) has attracted renewed interest in the re-evaluation of the equations of state (EoS) for the prediction of thermodynamic properties. This study also evaluates EoS for Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) and their capability to predict the thermodynamic properties of CO2-rich mixtures. The investigation was carried out using machine learning such as an artificial neural network (ANN) and a classified learner. A lower average absolute relative deviation (AARD) of 7.46% was obtained for the PR in comparison with SRK (AARD = 15.0%) for three components system of CO2 with N2 and CH4. Moreover, it was found to be 13.5% for PR and 19.50% for SRK in the five components’ (CO2 with N2, CH4, Ar, and O2) case. In addition, applying machine learning provided promise and valuable insight to deal with engineering problems. The implementation of machine learning in conjunction with EoS led to getting lower predictive AARD in contrast to EoS. An of AARD 2.81% was achieved for the three components and 12.2% for the respective five components mixture.
105

Kolets återkomst : Koldioxidavskiljning och lagring i vetenskap och politik / The return of Coal : Carbon dioxide capture and storage in science and politics

Hansson, Anders January 2008 (has links)
I denna avhandling studeras en ny teknik för att hantera växthuseffekten. Den nya tekniken heter koldioxidavskiljning och lagring (CCS) och granskades av FN:s klimatpanel 2005 och tillskrevs då möjligheterna att stå för 15-55% av alla CO2-reducering fram till 2100 och detta till en 30% lägre kostnad än vad som annars vore möjligt. EU är en framträdande pådrivare av CCS och för fram att växthuseffekten inte kan hanteras utan att CCS implementeras skyndsamt. CCS beskrivs i dessa sammanhang som en hållbar teknik. CCS är emellertid förbunden med långtidslagring, en betydande teknisk komplexitet och tillämpas främst på kolkraftverk. Storskaliga satsningar på CCS kan medföra att kolanvändningen ökar. Syftet med avhandlingen är att analysera de vetenskapliga och politiska ansträngningarna att visa att CCS är en eftersträvansvärd teknik för att hantera växthuseffekten. Utifrån perspektivet ekologisk modernisering och genom granskning av studier av vetenskapliga rapporter, artiklar i massmedia, politiska dokument och intervjuer genomförs studien. Scenerier och prognoser har en central funktion för att kunna påvisa att CCS är en eftersträvansvärd teknik. I flera av dessa scenarier framställs en närmast linjär teknikutveckling och flera betydelsefulla problem och hinder bortses från. CCS framstår som en teknik med stor teknisk och ekonomisk potential och i massmedia beskrivs CCS ofta som oumbärlig. En mer nyanserad bild framträder vid intervjuer med CCS-experter då fler osäkerheter och hinder lyfts fram. Förståelsen för varför denna teknik för stöd av många starka aktörer blir även tydligare. Den dominerande beskrivningen av CCS egenskaper och inverkan på energisystemen ligger i linje med det som är utmärkande för den ekologiska modernisering och således även för det dominerande sättet att bedriva energi- och klimatpolitik idag. / In this dissertation an emerging technology to manage climate change is studied. The technology is carbon dioxide capture and storage (CCS) and was reviewed by the IPCC in 2005. IPCC claims that CCS could contribute 15–55% to the cumulative mitigation effort worldwide until 2100 and reduce the costs of stabilizing CO2 concentrations by 30%. The EU promotes CCS and believes that climate change cannot be managed unless CCS is promptly implemented. In this context CCS is labelled as a sustainable technology. However CCS deals with long-term waste disposal, a significant technological complexity and is meant to be installed mainly in coal-fired power plants. Large scale implementation of CCS might lead to a rise in coal usage and concerns are raised this will impede the development of renewable energy. The aim of this dissertation is to analyze the scientific and political efforts to show that CCS is a rational and viable solution to the climate change problems. The study is conducted from the perspective of ecological modernization and is undertaken through a review of scientific reports, mass media articles, political documents and interviews. Scenarios and prognoses have a central position in making a future of large-scale CCS implementation plausible: through the scenarios, a linear development trend is visualized in which technological and scientific problems are assumed to be solved as CCS is implemented. CCS is described as a technology with substantial potential and is in the mass media often pictured as indispensable. A more nuanced picture appears when analyzing interviews with CCS-experts. The understanding of why this technology is supported by several influential actors is deepened. The dominating description of CCS and impact on the energy systems is compatible to the characteristics of ecological modernization and thus also to the predominating way of practising energy and climate politics today.
106

A novel DC-DC converter for photovoltaic applications

Nathan, Kumaran Saenthan January 2019 (has links)
Growing concerns about climate change have led to the world experiencing an unprecedented push towards renewable energy. Economic drivers and government policies mean that small, distributed forms of generation, like solar photovoltaics, will play a large role in our transition to a clean energy future. In this thesis, a novel DC-DC converter known as the Coupled Inductors Combined Cuk-SEPIC' (CI-CCS) converter is explored, which is particularly attractive for these photovoltaic applications. A topological modification is investigated which provides several benefits, including increased power density, efficiency, and operational advantages for solar energy conversion. The converter, which is based on the combination of the Cuk and SEPIC converters, provides a bipolar output (i.e. both positive and negative voltages). This converter also offers both step-up and step-down capabilities with a continuous input current, and uses only a single, ground-referenced switching device. A significant enhancement to this converter is proposed: magnetic coupling of the converter's three inductors. This can substantially reduce the CI-CCS converter's input current ripple - an important benefit for maximum power point tracking (MPPT) in photovoltaic applications. The effect of this coupling is examined theoretically, and optimisations are performed - both analytically and in simulations - to inform the design of a 4 kW prototype CI-CCS converter, switched at a high frequency (100 kHz) with a silicon carbide (SiC) MOSFET. Simulation and experimental results are then presented to demonstrate the CI-CCS converter's operation and highlight the benefits of coupling its inductors. An efficiency analysis is also undertaken and its sources of losses are quantified. The converter is subsequently integrated into a domestic photovoltaic system to provide a practical demonstration of its suitability for such applications. MPPT is integrated into the CI-CCS DC-DC converter, and a combined half bridge/T-type converter is developed and paired with the CI-CCS converter to form an entirely transformerless single-phase solar energy conversion system. The combination of the CI-CCS converter's bipolar DC output with the combined half bridge/T-type converter's bipolar DC input allows grounding at both the photovoltaic panels and the AC grid's neutral point. This eliminates high frequency common mode voltages from the PV array, which in turn prevents leakage currents. The entire system can be operated in grid-connected mode - where the objective is to maximise power extracted from the photovoltaic system, and is demonstrated in stand-alone mode - where the objective is to match solar generation with the load's power demands.
107

Koldioxidlagring - realitet eller utopi? : En komparativ fallstudie med syfte att undersöka potentialen för koldioxidlagring i geologiska formationer och biologiska sänkor och dess förmåga att bidra till hållbar utveckling

Holgerson, Line January 2013 (has links)
To curb greenhouse gases and mitigate climate change is one of the biggest challenges human society face today. Carbon dioxide (CO2) has accumulated rapidly in the atmosphere as a consequence of burning of fossil fuels and deforestation. The aim of this study is to explore two methods to store carbon dioxide in geological formations and biological sinks. The aim is also to discuss the two mitigation options from a sustainable perspective and whether it can lead to a better environment and benefits for local and global societies. The research questions are: Which method to store carbon dioxide, geological or biological, is the most effective? Which method to store carbon dioxide, geological or biological, has the greatest potential to promote sustainable development for local communities? The method used is a comparative case study and presents four case studies that explore the potential for CO2 storage offshore in Norway and Brazil; and in tropical forests in Mexico and Brazil. The mitigation options are discussed from two different theoretical perspectives. The principle of the theory of ecological modernisation is that innovation and environmentally friendly technology can solve the environmental problems human societies face today, whereas the theory of common pool resources promotes local communities to govern limited resources in order to manage them sustainably. The findings suggest that ecological modernisation legitimize environmental destruction as carbon dioxide storage in geological formations (CCS) use the technology as a mean to extract more oil and gas; which results in a rebound-effect. Therefore, carbon dioxide capture in geological formations is not a realistic method unless it can prevent further emissions. Protected forest resources can be seen as biological insurance, which safeguard ecosystem services, biodiversity, and the forest potential to hold carbon. Carbon sequestration in tropical forest has the potential to store carbon dioxide given that the forests are protected and local communities have tenure rights, knowledge, and the means to protect the forest and manage them sustainably.
108

Untersuchung von Konzepten zur CO2-Abtrennung in Kombikraftwerken mit integrierter Wirbelschichtvergasung

Rauchfuß, Hardy 19 June 2013 (has links) (PDF)
Im Rahmen dieser Arbeit werden Konzepte für Gasaufbereitung in Kombikraftwerken mit integrierter Wirbelschichtvergasung und CO2-Abtrennung untersucht (IGCC-CCS). Dabei stehen die Konvertierung von Kohlenmonoxid (CO-Shift) und die Einbindung dieses Prozeß-schrittes in ein IGCC-CCS-Kraftwerk im Mittelpunkt. Ziel der Arbeit ist die energetische und wirtschaftliche Bewertung von Konzepten zur CO2-Abtrennung für ein ab 2015 baubares, grundlastfähiges IGCC-CCS-Kraftwerk der 800-MW-Klasse. Dazu werden neben den bekannten konventionellen, mehrstufigen Konzepten der Rohgas- und Reingas-Shift weitere alternative Ansätze zur Steigerung des Anlagenwirkungsgrades sowie zur Senkung der spezifischen CO2-Emission verfolgt. Die Ergebnisse der mit Hilfe von ASPEN Plus und EBSILON Professional durchgeführten Prozesssimulationen werden im Vergleich zu Dampfkraftwerken neuester Bauart wirtschaftlich bewertet.
109

Treatment of acid mine lakes

Schipek, Mandy 26 January 2012 (has links) (PDF)
Mining of lignite in Lusatia has a long history of over 100 years. The extracted brown coal is utilized to generate electricity in three large power plants: Jänschwalde, Boxberg, and Schwarze Pumpe. With an annual carbon dioxide (CO2) output of approximately 50 million tons, these power plants are among Germany’s large-scale CO2 emitters. The environmental impact from open-pit mining is of a considerable degree and currently poses a challenging problem. The groundwater deficit in 1990 was 7 billion m3 over a surface area of approximately 2100 km2 (Luckner, 2006a) and was bisected in value until today. Due to the decline of mining activity and the termination of mine drainage at most open pits in the Lusatian region, the groundwater table has recovered forming 28 pit lakes (Zschiedrich, 2011). The majority of the post mining lakes do not meet the quality standards for pH, iron or sulfate parameters; because of pyrite oxidation that produces acid mine drainage (Luckner, 2006b, Klapper and Schultze, 1995, Schultze et al., 2010). The post mining lakes in Lusatia have low pH values (3 – 4), high sulfate contents (up to 2800 ppm) as well as high iron concentrations (100 – 150 ppm). Lakes are flooded by groundwater and using surface water from Spree and Neisse River to achieve fast filling and dilution; however, due to the limited availability of surface water, further rehabilitation strategies for the region had to be investigated. Between 1970 and 1990, approximately 26 million m3 of suspended fly ash were deposited in the lake Burghammer and settled as an ash body at its base; where it may be used for rehabilitation. In a first experiment conducted in 2001 material from the ash body was picked up and redistributed throughout the lake. By this treatment the pH of the lake was raised temporarily; however, a sustainable remediation was not achieved. Based on these experiments it was investigated whether the ash reacts more sufficiently through additional CO2 injection or not. Aim was to combine the rehabilitation of acid mine lakes with the utilization of atmospheric carbon dioxide emissions from coal-fired power plants. The CO2 sequestration is achieved through the generation and accumulation of carbonates in the lake. The following equations describe the precipitation of carbonate by using CO2 and alkaline earth cations M: CO2 + MO → MCO3 (s) CO2 + M(OH)2 → MCO3 (s) + H2O Therefore, neutral pH conditions are necessary for the long-term accumulation of carbonates in the lakes. In laboratory investigations it was shown, that the 20 to 30 years old fly ash deposits of lake Burghammer can be used for carbonate sequestration and lake water treatment. Bivalent ions (Ca2+, Mg2+) are eluable and available for carbonate precipitation; on average we assumed 1 wt.-% of reactive calcium to be contained in the settled ash sediments. Settled fly ash sediments are less reactive than fresh fly ash from a power plant (e.g. Schwarze Pumpe). During batch experiments, we increased the buffering capacity to maximum values of 7 mmol/L. Beforehand no buffering capacity exists due to the low pH of 2.9 in the lake. Batch investigations provided a sequestration potential of 17 g CO2/kg ash sediment; in comparison fresh fly ash results in a sequestration potential of 33 g CO2/kg ash (Schipek and Merkel, 2008b, Schipek and Merkel, 2008a, Schipek, 2009). Based on the laboratory results a field experiment was conducted. In this field experiment gas injection lances were installed to a sediment depth of 12 m. Gaseous CO2 was applied with a pressure of 2.2 bar and 2.2 m³/h for 3 months and lake water was monitored during injection. Variations in total inorganic carbon due to diffusion processes of CO2 saturated pore waters could be observed. As the pilot experiment comprised only a small area of lake Burghammer no initial neutralisition (e.g. by a suction excavator) was possible. Thus, no further changes in water chemistry were observed. Drilling cores in the vicinity of the injection area provided mineralogical and geochemical conditions before and after CO2 treatment. No trace metal mobilization was found during CO2 injection. Most elements showed decreasing trends or didn’t change significantly. Calculated saturation indices for calcite indicated equilibrium conditions or slightly oversaturated conditions (SICalcite,average +0.12; SICalcite,median +0.31). Geochemical and mineralogical investigations proved that CO2 sequestration is possible with an average precipitation rate of 0.5 wt.-% (2.2 g CO2/kg). The maximum rate for carbonate precipitation was determined with 7.4 wt.-% Calcite, according to 32.6 g CO2 per kilogram treated ash. Besides the use of the settled fly ash as neutralizing agent in acidic mining lakes, laboratory and field investigations were conducted in order to improve in-lake liming. In batch and columns experiments, different liming agents (synthetic marble powder and industrial products) were tested and investigated. Significant differences in reactivity were obvious at pCO2 > 3.8 • 10-4 atm. Ions typical for acid mine drainage (e.g. Mn2+, Cd2+, SO42-) do have different effects on the kinetic of carbonate dissolution. Manganese concentrations typical for acidic mining lakes inhibit calcite dissolution. Cadmium has as well a significant influence on dissolution and kinetics. Only circa 50 % of the calcium concentration was reached with cadmium as inhibitor compared to the dissolution in pure water. Increased CO2 partial pressure might be used to compensate inhibtion by material impurities and/or water constituents. Column experiments showed that a multi-stage application of liming agent increases the efficiency of a lake treatment. The combination of a first application of calcite (up to pH 4.5) and further application of Ca(OH)2 seemed to be the most promising method. This treatment sheme was successfully applied in lake Burghammer from March 2009 – December 2010 (initial neutralisation and 6 follow-up treatments). Finally, it can be concluded, that in lignite mining districts in-lake treatment of acidic mining lakes is a seminal method to handle water quality problems. Using gaseous CO2 in combination with industrial by-products can be accounted as sustainable method for CO2 sequestration and for treatment of AMD. The advantage for mining areas lays in the prevention during treatment of acid mine lakes. Nevertheless, this method presents only a niche solution due to the dependence on alkaline materials, e.g. fly ash. The development of further strategies and optimization during lake water treatment by in-lake liming might improve the effectiveness of the method. Using calcite instead of NaOH or CaO as liming agent will provide advantages in being more economic and ecological (CO2 bilance). In order to enhance efficiency the use of calcite in combination with CO2 can be a worth considering suggesting. If meteorological parameters (wind) and lake specific characteristics (morphology, currents, etc.) will be considered efforts and costs for in-lake liming will be minimized. / Der Abbau von Braunkohle im Lausitzer Bergbaurevier hat seit über 100 Jahren Tradition. Die abgebaute Braunkohle wird dabei hauptsächliche zur Energieerzeugung in den drei großen Kraftwerken Jänschwalde, Boxberg und Schwarze Pumpe genutzt. Mit einem jährlichen Kohlenstoffdioxid (CO2) – Ausstoß von circa 50 Millionen Tonnen gehören diese Kraftwerke zu Deutschlands größten CO2-Emittenten. Der Einfluss auf die Umwelt durch Tagebau-Betrieb ist von beträchtlichem Ausmaß und bringt große Probleme mit sich. Im Jahr 1990 betrug das Grundwasser-Defizit im Lausitzer Bergbaurevier 7 Milliarden m³ auf einer Fläche von circa 2100 km² (Luckner, 2006a). Dieses Defizit hat sich bis zum heutigen Zeitpunkt halbiert. Durch den Rückgang der Bergbauaktivitäten und die Beendigung der Wasserhaltungsmaßnahmen in den meisten Tagebauen, hat der ansteigende Grundwasserspiegel 28 Tagebaufolgeseen geschaffen (Zschiedrich, 2011). Der überwiegende Teil der Tagebaufolgeseen ist aufgrund der Pyritoxidation, welche AMD (acid mine drainage) produziert, hinsichtlich der Wasserqualitätsparameter stark beeinflusst (Luckner, 2006b, Klapper and Schultze, 1995, Schultze et al., 2010). Die Tagebaufolgeseen im Lausitzer Bergbaurevier sind durch niedrige pH-Werte (3 – 4), hoche Sulfat-Konzentrationen (bis zu 2800 ppm) und hohe Eisengehalte (100 – 150 ppm) gekennzeichnet. Die entstehenden Seen sind hauptsächlich durch aufsteigendes Grundwasser und Oberflächenwasser aus den Flüssen Spree und Neisse geflutet. Aufgrund der geringen Verfügbarkeit von Oberflächenwasser mussten weitere Sanierungsmaßnahmen für die Region untersucht werden. Zwischen 1970 und 1990 wurden im Tagebaufolgesee Burghammer circa 26 Millionen m³ Flugasche-Suspension als Aschekörper abgelagert, wobei eine Nutzung zu Sanierungszwecken angedacht war. Im Rahmen einer Aschesedimentumlagerung im Jahr 2001 wurde der pH-Wert des Seewassers kurzzeitig angehoben, eine nachhaltige Sanierung fand jedoch nicht statt. Auf Grundlage dieser Ergebnisse wurde im Rahmen dieser Dissertation untersucht, ob die abgelagerten Aschesedimente nachhaltiger durch Einsatz von CO2 reagieren. Ziel war es die Sanierung von Tagebaufolgeseen mit der Reduktion von CO2-Emissionen aus Kohlekraftwerken zu kombinieren. Diese CO2-Sequestrierung sollte durch die Bildung und Ablagerung von Carbonaten im Seesediment erfolgen. Die Gleichungen (1) und (2) beschreiben dabei die Fällungsreaktion von Carbonaten aus CO2 mit dem Alkalimetall M (aus Oxiden bzw. Hydroxiden): CO2 + MO → MCO3 (s) CO2 + M(OH)2 → MCO3 (s) + H2O Zur Carbonatfällung und nachhaltigen Ablagerung sind neutrale pH-Bedingungen notwendig. In Laboruntersuchungen konnte gezeigt werden, dass die 20 bis 30 Jahre alten Flugaschesedimente zur CO2-Sequestrierung in Kombination mit Seewasserbehandlung genutzt werden können. Zweiwertige Ionen (Ca2+, Mg2+) sind aus den Aschesedimenten eluierbar und stehen für die Fällungsreaktion zur Verfügung. Durchschnittlich 1 Masse-% reaktives Calcium befindet sich in den Sedimenten. Die abgelagerten Aschesedimente sind dabei weniger reaktiv als frische Flugaschen aus Kohlekraftwerken (z.B. Schwarze Pumpe). In Batch-Versuchen mit Tagebaufolgesee-Wasser konnte die Säure-Pufferkapazität auf maximal 7 mmol/L erhöht werden. Sequestrierungs-Raten von 17 g CO2/kg Aschesediment wurden im Rahmen der Versuche erreicht. Im Vergleich dazu betrugen die Sequestrierungs-Raten in Versuchen mit frischen Flugaschen bis 33 g CO2/kg Asche (Schipek and Merkel, 2008b, Schipek and Merkel, 2008a, Schipek, 2009). Auf Grundlage dieser Laborergebnisse wurde ein Feldversuch im Tagebaufolgesee Burghammer geplant. Während diesem wurden Gasinjektionslanzen bis in eine Sedimenttiefe von 12 m im abgelagerten Aschesediment installiert. Gasförmiges CO2 wurde mit einem durchschnittlichen Druck von 2.2 bar und 2.2 m³/h für eine Dauer von 3 Monaten injiziert. Während dieser Zeit fand ein kontinuierliches Monitoring des Seewassers im Bereich der Injektion statt. Veränderungen des Gehaltes an TIC (total inorganic carbon) aufgrund von Diffusionprozessen von CO2-gesättigtem Porenwasser aus dem Aschekörper waren beobachtbar. Da der Feldversuch nur in einem begrenzten Bereich des Tagebaufolgesees Burghammer stattfand und keine Initialneutralisierung vorsah, konnten keine weiteren, großmaßstäblichen Veränderungen im Wasserkörper festgestellt werden. Bohrkernentnahmen im Umfeld des Behandlungsgebietes lieferten Aussagen bezüglich der mineralogischen und geochemischen Beschaffenheit vor und nach CO2-Injektion. Im Porenwasser wurde keine Spurenmetall-(re)-mobilisierung durch die Behandlung mit CO2 festgestellt. Nahezu alle Elemente zeigten einen abnehmenden Trend durch die Behandlung mit CO2, bzw. keine signifikanten Veränderungen. Modellierte Sättigungsindizes für Calcit wiesen auf Gleichgewichtsbedingungen oder leichte Übersättigung bzgl. Calcit hin (SICalcit, Mittelwert +0.12; SICalcit, Median +0.31). Geochemische und mineralogische Untersuchungen zeigten, daß CO2-Sequestrierung mit einer durchschnittlichen Fällungsrate von 0.5 Masse-% (2.2 g CO2/kg Aschesediment) erreicht wurde. Die maximale Fällungsrate wurde mit 7.4 Masse-% Calcit bestimmt, dies entspricht einer Festlegung von 32.6 g CO2/ kg Aschesediment. Neben der Nutzung der abgelagerten Aschesedimente zur Behandlung des Tagebaufolgeseewassers wurden desweiteren Labor- und Feldversuche durchgeführt um In-Lake-Behandlungen mit industriellen Kalkprodukten zu optimieren. In Batch- und Säulenversuchen wurden verschiedene Kalkprodukte (synthetisches Marmorpulver und industrielle Produkte) getestet und untersucht. Signifikante Unterschiede auf die Reaktivität wurde bei erhöhten CO2-Partialdrücken (pCO2 > 3.8 • 10-4 bar) beobachtet. Wasserinhaltsstoffe, die typisch für AMD sind (z.B.. Mn2+, Cd2+, SO42-) zeigten einen signifikanten Einfluss auf die Calcit-Lösungskinetik. Mangankonzentrationen, wie sie in Lausitzer Tagebaufolgeseen vorkommen, zeigten – ebenso wie Cadmium - eine inhibitierende Wirkung auf die Kinetik. Im Vergleich zu Versuchen mit destilliertem Wasser wurden nur ungefähr 50 % der Calcium-Gleichgewichtskonzentration mit Cadmium als Inhibitor erreicht. Erhöhte CO2-Partialdrücke könnten genutzt werden, um die inhibitierende Wirkung von vorhanden Materialverunreinigungen und/oder Wasserinhaltsstoffen zu kompensieren. Säulenversuche zeigten, dass der mehrstufige Einsatz von Kalkprodukten die Effizienz während einer Seewasserbehandlung erhöht. Die Kombination einer Erstbehandlung mit Kalksteinmehl (bis pH 4.5), und einer Behandlungsfortsetzung mit Ca(OH)2 erwies sich als wirkungsvollste Methode. Dieses Behandlungsschema (Initialneutralisation, 6 Nachfolgebehandlungen) wurde im Tagebaufolgesee Burghammer von März 2009 – Dezember 2010 erfolgreich angewandt. Zusammenfassend lässt sich sagen, dass in ehemaligen Bergbaurevieren die In-Lake-Behandlung von Tagebaufolgeseen eine zukunftsträchtige Methode zur Behandlung von Wasserqualitätsproblemen darstellt. Die Nutzung von gasförmigen CO2 in Kombination mit industriellen „Abfall-Produkten“ kann als nachhaltige Methode zur CO2-Sequestrierung und zur Behandlung von AMD bezeichnet werden. Der Vorteil in Bergbaurevieren liegt dabei in der Vorbeugung der Entstehung von Wasserqualitätsproblemen. Dennoch stellt diese Methode nur eine Nischenlösung aufgrund der Verfügbarkeit der alkalischen Materialien (Flugasche) dar. Die Entwicklung und Optimierung weiterführender Strategien zur In-Lake-Behandlung durch Kalkung wird zur Effizienzerhöhung beitragen. Die Nutzung von Kalksteinmehl anstelle von NaOH bzw. CaO als Neutralisationsprodukt wird Vorteile hinsichtlich ökonomischer und ökologischer Sicht (CO2-Bilanz) mit sich führen. Um die Effizienz beim Einsatz von Kalksteinmehl zu steigern, kann der Einsatz von CO2 in Betracht gezogen werden. Sobald meteorologische Parameter (Wind) und see-spezifische Merkmale (Morphologie, Strömungen, etc.) berücksichtigt werden, kann der Aufwand und die Kosten für In-Lake-Behandlungen minimiert werden.
110

Numerical modeling and simulation of polymerization reactions in coiled flow inverters / Modélisation numérique et simulation de réactions de polymérisation dans des réacteurs à inversion de flux

Garg, Dhiraj Kumar 14 March 2014 (has links)
L’objectif de ce travail fut d’améliorer la modélisation et la simulation de la polymérisation radicalaire dans des réacteurs continus et discontinus. Une solution analytique explicite généralisée (AS) fut obtenue dans le cas de la polymérisation en masse/solution, homogène et isotherme menée dans un réacteur fermé de volume variable. Les différentes étapes considérées furent l'initiation, la propagation, le transfert au monomère, au solvant, à un agent de transfert de chaîne, la terminaison par combinaison et dismutation. Différents modèles rendant compte des effets de gel, de vitrification et de cage ont également été considérés. AS a été validée avec succès par comparaison avec des solutions numériques et des données expérimentales de la littérature. Par ailleurs, AS a été étendue à des conditions pour lesquelles elle ne fut pas originellement développée comme par exemple des conditions non isothermes. La polyvalence et la flexibilité de AS sur l’ensemble de l’échelle de conversion du monomère furent ainsi démontrées. Ensuite, pour élargir encore plus son champ d'application, AS fut utilisée dans des simulations numériques (CFD). Une nouvelle transformation très simple a été proposée afin d’adimensionnaliser les constantes cinétiques en terme de concentration. Cela a permis de rentrer dans les simulations les données chimiques sous leur forme originale en mole et de faciliter ainsi le codage et le débogage du code de calcul. Cette transformation a ensuite été utilisée pour évaluer trois géométries tubulaires de microréacteur, un réacteur tubulaire droit (STR), à géométrie hélicoïdale (CTR) et à inversion de flux (CFIR), dans des conditions d'alimentation différentes (fluides d’entrée non ou parfaitement mélangés) et à de très faibles nombres de Reynolds (<1). La modélisation a été réalisée avec des paramètres constants ou variables des propriétés physiques du fluide sous écoulement (densité, viscosité et conductivité thermique) ainsi qu’en variant de manière discrète les coefficients de diffusion. Leurs effets sur les résultats de simulation ont été observés et comparés avec les données expérimentales publiées pour 4 monomères différents et furent en très bon accord. Les résultats pour le cas d’un mélange parfait furent indépendants de la géométrie des microréacteurs. Le CFIR semble être le réacteur le plus prometteur puisque, dans les conditions de microréaction étudiées, il a permis le meilleur contrôle des caractéristiques du polymère synthétisé. / This thesis aimed at improving the modeling and simulation of free radical polymerization (FRP) in batch as well as in flow reactors. A generalized explicit analytical solution (AS) was obtained in case of variable volume, bulk/solution polymerization, homogeneous and isothermal batch reactor. The reaction steps included initiation, propagation, transfer to monomer, transfer to solvent, transfer to chain transfer agent (CTA), termination by combination and disproportionation. Different models of gel, glass and cage effects were also implemented explicitly. AS was validated against numerical solutions as well as published experimental data and was found in good agreement. Furthermore, its applicability was extended to conditions for which AS was not derived, i.e. non-isothermal conditions. The versatility and flexibility of AS over the complete range of monomer conversion were thus demonstrated. Then, to broaden its applications range even more, AS was used in CFD simulations. A new and simple transformation was proposed to make kinetic rate coefficients dimensionless in terms of concentration. This enabled chemical data to be fed in molar form to CFD modeling. It also enabled easy coding and debugging by keeping the original form of generation terms intact. The results were found to be improved after validation against experimental data. This transformation was then used for evaluating three tubula microreactor geometries, namely straight tube reactor (STR), coiled tube reactor (CTR) and coil flow inverter reactor (CFIR), under different feed conditions (unmixed or perfectly mixed) at very low Reynolds numbers (<1). The modeling for FRP was performed with constant or variable fluid physical parameters (density, viscosity and thermal conductivity) along with discrete variation of diffusion coefficients. Their effects on simulation results were observed and compared with published experimental data for 4 different monomers and were found to match perfectly. Results for mixed feed condition were found to be independent of microreactor geometry. CFIR seems to be the most promising reactor design under microreaction investigated conditions as it allowed the best control over polymer characteristics.

Page generated in 0.0414 seconds