• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 404
  • 227
  • 174
  • 40
  • 33
  • 17
  • 14
  • 9
  • 9
  • 6
  • 4
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1094
  • 220
  • 212
  • 188
  • 153
  • 137
  • 120
  • 96
  • 93
  • 93
  • 91
  • 82
  • 79
  • 71
  • 68
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
781

Chaos and Learning in Discrete-Time Neural Networks

Banks, Jess M. 27 October 2015 (has links)
No description available.
782

Equidistribution on Chaotic Dynamical Systems

Polo, Fabrizio 25 July 2011 (has links)
No description available.
783

The Influence of Home and Preschool Environment on Young Children’s Behavioral Self-Regulation

Hur, Eun Hye 28 July 2011 (has links)
No description available.
784

Sliding Mode Approaches for Robust Control, State Estimation, Secure Communication, and Fault Diagnosis in Nuclear Systems

Ablay, Gunyaz 19 December 2012 (has links)
No description available.
785

Polynomial Chaos Approaches to Parameter Estimation and Control Design for Mechanical Systems with Uncertain Parameters

Blanchard, Emmanuel 03 May 2010 (has links)
Mechanical systems operate under parametric and external excitation uncertainties. The polynomial chaos approach has been shown to be more efficient than Monte Carlo approaches for quantifying the effects of such uncertainties on the system response. This work uses the polynomial chaos framework to develop new methodologies for the simulation, parameter estimation, and control of mechanical systems with uncertainty. This study has led to new computational approaches for parameter estimation in nonlinear mechanical systems. The first approach is a polynomial-chaos based Bayesian approach in which maximum likelihood estimates are obtained by minimizing a cost function derived from the Bayesian theorem. The second approach is based on the Extended Kalman Filter (EKF). The error covariances needed for the EKF approach are computed from polynomial chaos expansions, and the EKF is used to update the polynomial chaos representation of the uncertain states and the uncertain parameters. The advantages and drawbacks of each method have been investigated. This study has demonstrated the effectiveness of the polynomial chaos approach for control systems analysis. For control system design the study has focused on the LQR problem when dealing with parametric uncertainties. The LQR problem was written as an optimality problem using Lagrange multipliers in an extended form associated with the polynomial chaos framework. The solution to the Hâ problem as well as the H2 problem can be seen as extensions of the LQR problem. This method might therefore have the potential of being a first step towards the development of computationally efficient numerical methods for Hâ design with parametric uncertainties. I would like to gratefully acknowledge the support provided for this work under NASA Grant NNL05AA18A. / Ph. D.
786

Chaos in Pulsed Laminar Flow

Kumar, Pankaj 01 September 2010 (has links)
Fluid mixing is a challenging problem in laminar flow systems. Chaotic advection can play an important role in enhancing mixing in such flow. In this thesis, different approaches are used to enhance fluid mixing in two laminar flow systems. In the first system, chaos is generated in a flow between two closely spaced parallel circular plates by pulsed operation of fluid extraction and reinjection through singularities in the domain. A singularity through which fluid is injected (or extracted) is called a source (or a sink). In a bounded domain, one source and one sink with equal strength operate together as a source-sink pair to conserve the fluid volume. Fluid flow between two closely spaced parallel plates is modeled as Hele-Shaw flow with the depth averaged velocity proportional to the gradient of the pressure. So, with the depth-averaged velocity, the flow between the parallel plates can effectively be modeled as two-dimensional potential flow. This thesis discusses pulsed source-sink systems with two source-sink pairs operating alternately to generate zig-zag trajectories of fluid particles in the domain. For reinjection purpose, fluid extracted through a sink-type singularity can either be relocated to a source-type one, or the same sink-type singularity can be activated as a source to reinject it without relocation. Relocation of fluid can be accomplished using either "first out first in" or "last out first in" scheme. Both relocation methods add delay to the pulse time of the system. This thesis analyzes mixing in pulsed source-sink systems both with and without fluid relocation. It is shown that a pulsed source-sink system with "first out first in" scheme generates comparatively complex fluid flow than pulsed source-sink systems with "last out first in" scheme. It is also shown that a pulsed source-sink system without fluid relocation can generate complex fluid flow. In the second system, mixing and transport is analyzed in a two-dimensional Stokes flow system. Appropriate periodic motions of three rods or periodic points in a two-dimensional flow are determined using the Thurston-Nielsen Classification Theorem (TNCT), which also predicts a lower bound on the complexity generated in the fluid flow. This thesis extends the TNCT -based framework by demonstrating that, in a perturbed system with no lower order fixed points, almost invariant sets are natural objects on which to apply the TNCT. In addition, a method is presented to compute line stretching by tracking appropriate motion of finite size rods. This method accounts for the effect of the rod size in computing the complexity generated in the fluid flow. The last section verifies the existence of almost invariant sets in a two-dimensional flow at finite Reynolds number. The almost invariant set structures move with appropriate periodic motion validating the application of the TNCT to predict a lower bound on the complexity generated in the fluid flow. / Ph. D.
787

Modeling of Nonlinear Unsteady Aerodynamics, Dynamics and Fluid Structure Interactions

Yan, Zhimiao 29 January 2015 (has links)
We model different nonlinear systems, analyze their nonlinear aspects and discuss their applications. First, we present a semi-analytical, geometrically-exact, unsteady potential flow model is developed for airfoils undergoing large amplitude maneuvers. Towards this objective, the classical unsteady theory of Theodorsen is revisited by relaxing some of the major assumptions such as (1) flat wake, (2) small angle of attack, (3) small disturbances to the mean flow components, and (4) time-invariant free-stream. The kinematics of the wake vortices is simulated numerically while the wake and bound circulation distribution and, consequently, the associated pressure distribution are determined analytically. The steady and unsteady behaviors of the developed model are validated against experimental and computational results. The model is then used to determine the lift frequency response at different mean angles of attack. Second, we investigate the nonlinear characteristics of an autoparametric vibration system. This system consists of a base structure and a cantilever beam with a tip mass. The dynamic equations for the system are derived using the extended Hamilton's principle. The method of multiple scales is then used to analytically determine the stability and bifurcation of the system. The effects of the amplitude and frequency of the external force, the damping coefficient and frequency of the attached cantilever beam and the tip mass on the nonlinear responses of the system are determined. As an application, the concept of energy harvesting based on the autoparametric vibration system consisting of a base structure subjected to the external force and a cantilever beam with a tip mass is evaluated. Piezoelectric sheets are attached to the cantilever beam to convert the vibrations of the base structure into electrical energy. The coupled nonlinear distributed-parameter model is developed and analyzed. The effects of the electrical load resistance on the global frequency and damping ratio of the cantilever beam are analyzed by linearizion of the governing equations and perturbation method. Nonlinear analysis is performed to investigate the impacts of external force and load resistance on the response of the harvester. Finally, the concept of harvesting energy from ambient and galloping vibrations of a bluff body is investigated. A piezoelectric transducer is attached to the transverse degree of freedom of the body in order to convert the vibration energy to electrical power. A coupled nonlinear distributed-parameter model is developed that takes into consideration the galloping force and moment nonlinearities and the base excitation effects. The aerodynamic loads are modeled using the quasi-steady approximation. Linear analysis is performed to determine the effects of the electrical load resistance and wind speed on the global damping and frequency of the harvester as well as on the onset of instability. Then, nonlinear analysis is performed to investigate the impact of the base acceleration, wind speed, and electrical load resistance on the performance of the harvester and the associated nonlinear phenomena. Short- and open-circuit configurations for different wind speeds and base accelerations are assessed. / Ph. D.
788

Real-Time Ground Vehicle Parameter Estimation and System Identification for Improved Stability Controllers

Kolansky, Jeremy Joseph 10 April 2014 (has links)
Vehicle characteristics have a significant impact on handling, stability, and rollover propensity. This research is dedicated to furthering the research in and modeling of vehicle dynamics and parameter estimation. Parameter estimation is a challenging problem. Many different elements play into the stability of a parameter estimation algorithm. The primary trade-off is robustness for accuracy. Lyapunov estimation techniques, for instance, guarantee stability but do not guarantee parameter accuracy. The ability to observe the states of the system, whether by sensors or observers is a key problem. This research significantly improves the Generalized Polynomial Chaos Extended Kalman Filter (gPC-EKF) for state-space systems. Here it is also expanded to parameter regression, where it shows excellent capabilities for estimating parameters in linear regression problems. The modeling of ground vehicles has many challenges. Compounding the problems in the parameter estimation methods, the modeling of ground vehicles is very complex and contains many difficulties. Full multibody dynamics models may be able to accurately represent most of the dynamics of the suspension and vehicle body, but the computational time and required knowledge is too significant for real-time and realistic implementation. The literature is filled with different models to represent the dynamics of the ground vehicle, but these models were primarily designed for controller use or to simplify the understanding of the vehicle’s dynamics, and are not suitable for parameter estimation. A model is devised that can be utilized for the parameter estimation. The parameters in the model are updated through the aforementioned gPC-EKF method as applies to polynomial systems. The mass and the horizontal center of gravity (CG) position of the vehicle are estimated to high accuracy. The culmination of this work is the estimation of the normal forces at the tire contact patch. These forces are estimated through a mapping of the suspension kinematics in conjunction with the previously estimated vehicle parameters. A proof of concept study is shown, where the system is mapped and the forces are recreated and verified for several different scenarios and for changing vehicle mass. / Ph. D.
789

Robust State Estimation, Uncertainty Quantification, and Uncertainty Reduction with Applications to Wind Estimation

Gahan, Kenneth Christopher 17 July 2024 (has links)
Indirect wind estimation onboard unmanned aerial systems (UASs) can be accomplished using existing air vehicle sensors along with a dynamic model of the UAS augmented with additional wind-related states. It is often desired to extract a mean component of the wind the from frequency fluctuations (i.e. turbulence). Commonly, a variation of the KALMAN filter is used, with explicit or implicit assumptions about the nature of the random wind velocity. This dissertation presents an H-infinity (H∞) filtering approach to wind estimation which requires no assumptions about the statistics of the process or measurement noise. To specify the wind frequency content of interest a low-pass filter is incorporated. We develop the augmented UAS model in continuous-time, derive the H∞ filter, and introduce a KALMAN-BUCY filter for comparison. The filters are applied to data gathered during UAS flight tests and validated using a vaned air data unit onboard the aircraft. The H∞ filter provides quantitatively better estimates of the wind than the KALMAN-BUCY filter, with approximately 10-40% less root-mean-square (RMS) error in the majority of cases. It is also shown that incorporating DRYDEN turbulence does not improve the KALMAN-BUCY results. Additionally, this dissertation describes the theory and process for using generalized polynomial chaos (gPC) to re-cast the dynamics of a system with non-deterministic parameters as a deterministic system. The concepts are applied to the problem of wind estimation and characterizing the precision of wind estimates over time due to known parametric uncertainties. A novel truncation method, known as Sensitivity-Informed Variable Reduction (SIVR) was developed. In the multivariate case presented here, gPC and the SIVR-derived reduced gPC (gPCr) exhibit a computational advantage over Monte Carlo sampling-based methods for uncertainty quantification (UQ) and sensitivity analysis (SA), with time reductions of 38% and 98%, respectively. Lastly, while many estimation approaches achieve desirable accuracy under the assumption of known system parameters, reducing the effect of parametric uncertainty on wind estimate precision is desirable and has not been thoroughly investigated. This dissertation describes the theory and process for combining gPC and H-infinity (H∞) filtering. In the multivariate case presented, the gPC H∞ filter shows superiority over a nominal H∞ filter in terms of variance in estimates due to model parametric uncertainty. The error due to parametric uncertainty, as characterized by the variance in estimates from the mean, is reduced by as much as 63%. / Doctor of Philosophy / On unmanned aerial systems (UASs), determining wind conditions indirectly, without direct measurements, is possible by utilizing onboard sensors and computational models. Often, the goal is to isolate the average wind speed while ignoring turbulent fluctuations. Conventionally, this is achieved using a mathematical tool called the KALMAN filter, which relies on assumptions about the wind. This dissertation introduces a novel approach called H-infinity (H∞) filtering, which does not rely on such assumptions and includes an additional mechanism to focus on specific wind frequencies of interest. The effectiveness of this method is evaluated using real-world data from UAS flights, comparing it with the traditional KALMAN-BUCY filter. Results show that the H∞ filter provides significantly improved wind estimates, with approximately 10-40% less error in most cases. Furthermore, the dissertation addresses the challenge of dealing with uncertainty in wind estimation. It introduces another mathematical technique called generalized polynomial chaos (gPC), which is used to quantify and manage uncertainties within the UAS system and their impact on the indirect wind estimates. By applying gPC, the dissertation shows that the amount and sources of uncertainty can be determined more efficiently than by traditional methods (up to 98% faster). Lastly, this dissertation shows the use of gPC to provide more precise wind estimates. In experimental scenarios, employing gPC in conjunction with H∞ filtering demonstrates superior performance compared to using a standard H∞ filter alone, reducing errors caused by uncertainty by as much as 63%.
790

A new approach to optimal embedding of time series

Perinelli, Alessio 20 November 2020 (has links)
The analysis of signals stemming from a physical system is crucial for the experimental investigation of the underlying dynamics that drives the system itself. The field of time series analysis comprises a wide variety of techniques developed with the purpose of characterizing signals and, ultimately, of providing insights on the phenomena that govern the temporal evolution of the generating system. A renowned example in this field is given by spectral analysis: the use of Fourier or Laplace transforms to bring time-domain signals into the more convenient frequency space allows to disclose the key features of linear systems. A more complex scenario turns up when nonlinearity intervenes within a system's dynamics. Nonlinear coupling between a system's degrees of freedom brings about interesting dynamical regimes, such as self-sustained periodic (though anharmonic) oscillations ("limit cycles"), or quasi-periodic evolutions that exhibit sharp spectral lines while lacking strict periodicity ("limit tori"). Among the consequences of nonlinearity, the onset of chaos is definitely the most fascinating one. Chaos is a dynamical regime characterized by unpredictability and lack of periodicity, despite being generated by deterministic laws. Signals generated by chaotic dynamical systems appear as irregular: the corresponding spectra are broad and flat, prediction of future values is challenging, and evolutions within the systems' state spaces converge to strange attractor sets with noninteger dimensionality. Because of these properties, chaotic signals can be mistakenly classified as noise if linear techniques such as spectral analysis are used. The identification of chaos and its characterization require the assessment of dynamical invariants that quantify the complex features of a chaotic system's evolution. For example, Lyapunov exponents provide a marker of unpredictability; the estimation of attractor dimensions, on the other hand, highlights the unconventional geometry of a chaotic system's state space. Nonlinear time series analysis techniques act directly within the state space of the system under investigation. However, experimentally, full access to a system's state space is not always available. Often, only a scalar signal stemming from the dynamical system can be recorded, thus providing, upon sampling, a scalar sequence. Nevertheless, by virtue of a fundamental theorem by Takens, it is possible to reconstruct a proxy of the original state space evolution out of a single, scalar sequence. This reconstruction is carried out by means of the so-called embedding procedure: m-dimensional vectors are built by picking successive elements of the scalar sequence delayed by a lag L. On the other hand, besides posing some necessary conditions on the integer embedding parameters m and L, Takens' theorem does not provide any clue on how to choose them correctly. Although many optimal embedding criteria were proposed, a general answer to the problem is still lacking. As a matter of fact, conventional methods for optimal embedding are flawed by several drawbacks, the most relevant being the need for a subjective evaluation of the outcomes of applied algorithms. Tackling the issue of optimally selecting embedding parameters makes up the core topic of this thesis work. In particular, I will discuss a novel approach that was pursued by our research group and that led to the development of a new method for the identification of suitable embedding parameters. Rather than most conventional approaches, which seek a single optimal value for m and L to embed an input sequence, our approach provides a set of embedding choices that are equivalently suitable to reconstruct the dynamics. The suitability of each embedding choice m, L is assessed by relying on statistical testing, thus providing a criterion that does not require a subjective evaluation of outcomes. The starting point of our method are embedding-dependent correlation integrals, i.e. cumulative distributions of embedding vector distances, built out of an input scalar sequence. In the case of Gaussian white noise, an analytical expression for correlation integrals is available, and, by exploiting this expression, a gauge transformation of distances is introduced to provide a more convenient representation of correlation integrals. Under this new gauge, it is possible to test—in a computationally undemanding way—whether an input sequence is compatible with Gaussian white noise and, subsequently, whether the sequence is compatible with the hypothesis of an underlying chaotic system. These two statistical tests allow ruling out embedding choices that are unsuitable to reconstruct the dynamics. The estimation of correlation dimension, carried out by means of a newly devised estimator, makes up the third stage of the method: sets of embedding choices that provide uniform estimates of this dynamical invariant are deemed to be suitable to embed the sequence.The method was successfully applied to synthetic and experimental sequences, providing new insight into the longstanding issue of optimal embedding. For example, the relevance of the embedding window (m-1)L, i.e. the time span covered by each embedding vector, is naturally highlighted by our approach. In addition, our method provides some information on the adequacy of the sampling period used to record the input sequence.The method correctly distinguishes a chaotic sequence from surrogate ones generated out of it and having the same power spectrum. The technique of surrogate generation, which I also addressed during my Ph. D. work to develop new dedicated algorithms and to analyze brain signals, allows to estimate significance levels in situations where standard analytical algorithms are unapplicable. The novel embedding approach being able to tell apart an original sequence from surrogate ones shows its capability to distinguish signals beyond their spectral—or autocorrelation—similarities.One of the possible applications of the new approach concerns another longstanding issue, namely that of distinguishing noise from chaos. To this purpose, complementary information is provided by analyzing the asymptotic (long-time) behaviour of the so-called time-dependent divergence exponent. This embedding-dependent metric is commonly used to estimate—by processing its short-time linearly growing region—the maximum Lyapunov exponent out of a scalar sequence. However, insights on the kind of source generating the sequence can be extracted from the—usually overlooked—asymptotic behaviour of the divergence exponent. Moreover, in the case of chaotic sources, this analysis also provides a precise estimate of the system's correlation dimension. Besides describing the results concerning the discrimination of chaotic systems from noise sources, I will also discuss the possibility of using the related correlation dimension estimates to improve the third stage of the method introduced above for the identification of suitable embedding parameters. The discovery of chaos as a possible dynamical regime for nonlinear systems led to the search of chaotic behaviour in experimental recordings. In some fields, this search gave plenty of positive results: for example, chaotic dynamics was successfully identified and tamed in electronic circuits and laser-based optical setups. These two families of experimental chaotic systems eventually became versatile tools to study chaos and its possible applications. On the other hand, chaotic behaviour is also looked for in climate science, biology, neuroscience, and even economics. In these fields, nonlinearity is widespread: many smaller units interact nonlinearly, yielding a collective motion that can be described by means of few, nonlinearly coupled effective degrees of freedom. The corresponding recorded signals exhibit, in many cases, an irregular and complex evolution. A possible underlying chaotic evolution—as opposed to a stochastic one—would be of interest both to reveal the presence of determinism and to predict the system's future states. While some claims concerning the existence of chaos in these fields have been made, most results are debated or inconclusive. Nonstationarity, low signal-to-noise ratio, external perturbations and poor reproducibility are just few among the issues that hinder the search of chaos in natural systems. In the final part of this work, I will briefly discuss the problem of chasing chaos in experimental recordings by considering two example sequences, the first one generated by an electronic circuit and the second one corresponding to recordings of brain activity. The present thesis is organized as follows. The core concepts of time series analysis, including the key features of chaotic dynamics, are presented in Chapter 1. A brief review of the search for chaos in experimental systems is also provided; the difficulties concerning this quest in some research fields are also highlighted. Chapter 2 describes the embedding procedure and the issue of optimally choosing the related parameters. Thereupon, existing methods to carry out the embedding choice are reviewed and their limitations are pointed out. In addition, two embedding-dependent nonlinear techniques that are ordinarily used to characterize chaos, namely the estimation of correlation dimension by means of correlation integrals and the assessment of maximum Lyapunov exponent, are presented. The new approach for the identification of suitable embedding parameters, which makes up the core topic of the present thesis work, is the subject of Chapter 3 and 4. While Chapter 3 contains the theoretical outline of the approach, as well as its implementation details, Chapter 4 discusses the application of the approach to benchmark synthetic and experimental sequences, thus illustrating its perks and its limitations. The study of the asymptotic behaviour of the time-dependent divergent exponent is presented in Chapter 5. The alternative estimator of correlation dimension, which relies on this asymptotic metric, is discussed as a possible improvement to the approach described in Chapters 3, 4. The search for chaos out of experimental data is discussed in Chapter 6 by means of two examples of real-world recordings. Concluding remarks are finally drawn in Chapter 7.

Page generated in 0.0457 seconds