• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 309
  • 40
  • 31
  • 22
  • 14
  • 9
  • 8
  • 4
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 552
  • 552
  • 552
  • 129
  • 119
  • 119
  • 88
  • 78
  • 70
  • 69
  • 67
  • 67
  • 57
  • 50
  • 49
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Heterojunction bipolar transistors and ultraviolet-light-emitting diodes based in the III-nitride material system grown by metalorganic chemical vapor deposition

Lochner, Zachary M. 20 September 2013 (has links)
The material and device characteristics of InGaN/GaN heterojunction bipolar transistors (HBTs) grown by metalorganic chemical vapor deposition are examined. Two structures grown on sapphire with different p-InxGa1-xN base-region compositions, xIn = 0.03 and 0.05, are presented in a comparative study. In a second experiment, NpN-GaN/InGaN/GaN HBTs are grown and fabricated on free-standing GaN (FS-GaN) and sapphire substrates to investigate the effect of dislocations on III-nitride HBT epitaxial structures. The performance characteristics of HBTs on FS-GaN with a 20×20 m2 emitter area exhibit a maximum collector-current density of ~12.3 kA/cm2, a D.C. current gain of ~90, and a maximum differential gain of ~120 without surface passivation. For the development of deep-ultraviolet optoelectronics, several various structures of optically-pumped lasers at 257, 246, and 243 nm are demonstrated on (0001) AlN substrates. The threshold-power density at room temperature was reduced to as low as 297 kW/cm2. The dominating polarization was measured to be transverse electric in all cases. InAlN material was developed to provide lattice matched, high-bandgap energy cladding layers for a III-N UV laser structure. This would alleviate strain and dislocation formation in the structure, and also mitigate the polarization charge. However, a gallium auto-doping mechanism was encountered which prevents the growth of pure ternary InAlN, resulting instead in quaternary InAlGaN. This phenomenon is quantitatively examined and its source is explored.
182

Study of the nucleation mechanism of carbon nanotubes by field emission techniques / Etude du mécanisme de nucléation des nanotubes de carbone par techniques d'émission de champ

Moors, Matthieu 28 June 2010 (has links)
The present work is focused on the nucleation and growth mechanism of carbon nanotubes (CNT) that we have studied through different field emission techniques (FEM, FIM and atom-probe (PFDMS)). Reaction conditions associated with the CVD synthesis method were modeled inside the microscope aiming at studying nucleation phenomena at high resolution. The interaction between different metals (Fe, Co, Ni, conditioned as sharp tips) and gases (acetylene, ethylene and ethanol) was analyzed operando at high temperatures (500–900K), with the aim of reproducing growth conditions during the imaging process.<p>Ni was, in the end, the only metal studied, due to the poor quality of images acquired from Co and Fe. Aimed at reproducing the conditioning step of the catalyst often observed in CVD protocols, a first study showed that the crystal adopts a polyhedral morphology at the working temperature (873K) in an hydrogen atmosphere or under Ultra-High-Vacuum conditions, by the extension of dense crystal planes like {111} or {100}. The presence of hydrogen in the chamber does not seem to present any influence on the final crystal morphology at temperatures above 600K.<p>When exposed to a carbon-containing gas, nickel crystals present two distinct behaviors following the temperature region that is explored. At temperatures below ~623K, exposing Ni to ethylene or acetylene leads to the formation of a stable and poorly structured nickel carbide layer. The superficiality of this carbide is proven by the ease of its physical (by increasing the electrical field) or chemical (exposure to hydrogen or oxygen) evacuation. These three treatments initiate a clean-off phenomenon that evacuates the carbide layer. Reproducing these experiments in the atom-probe confirmed the carbidic nature of the surface as NiCy compounds were collected.<p>At temperatures above 623K, the carbide layer (formed by exposing Ni to the same gases) becomes unstable. Its formation is related to a transition period that precedes the nucleation of graphenes on the surface. The Ni crystal undergoes a massive morphological transformation when acetylene is introduced in the chamber at 873K. This phenomenon is induced by the presence of carbon on the surface which adsorbs so strongly on step sites that it provokes their creation. Carbon also induces a considerable enhancement of Ni atoms mobility that allows for this transition to occur. Once the new morphology is attained, nucleation of graphenes is observed to start on the extended and carbon-enriched step-containing crystal planes. By reproducing these experiments in the atom-probe, a high surface concentration of carbon dimers and trimers was observed. A kinetic study of their formation was thus achieved and showed that they were formed on the surface by the recombination of Cad. Their potential role as building-blocks of the CNT growth process (which had previously been proposed following theoretical considerations) is thus suggested on the basis of experimental results for the first time.<p>Two critical surface concentrations are highlighted in the present work. The first one is needed for the formation of carbon dimers and trimers and the second one has to be attained, during the morphological transformation, before the onset of graphene nucleation, probably providing a sufficient growth rate of the graphitic nuclei and allowing them to attain their critical size before their decomposition.<p>Finally, the observation of rotational circular patterns, most probably related to carbon nanotubes, suggests that CNT growth (and not only graphene nucleation) occurred episodically in our conditions, confirming the validity of our model.<p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
183

Precursor chemistry of novel metal triazenides : Solution and vapor phase elaborations of Fe and Al13Fe4 nanomaterials / Chimie des précurseurs de nouveaux triazinures métalliques : élaborations en solution et en phase gazeuse de nanomatériaux de Fe et Al13Fe4

Soussi, Khaled 27 January 2017 (has links)
La production de polyéthylène par la polymérisation de l'éthylène est un procédé industriel de grande importance. L'éthylène, issue de la pétrochimie contient des impuretés d'acétylène (1%), ce qui empoisonne le catalyseur de polymérisation, et donc le besoin d'un catalyseur qui soit sélectif pour hydrogéner l'acétylène en éthylène. Le composé intermétallique Al13Fe4 a été développé par Armbuster et al. en 2012 comme un catalyseur actif et sélectif pour la semi-hydrogénation de l'acétylène pour la production de polyéthylène. Il présente une structure cristalline avec des distances interatomiques Fe-Fe élevées et un faible nombre de coordination des atomes de fer, qui tombe sous le concept de "site isolation principle". Ce composé est également intéressant en raison de son faible coût (sans métaux nobles par rapport à Pd /Al2O3 catalyseurs industriels) et une faible toxicité. Cependant, il a été produit sous la forme de poudre non supportée par la méthode Czochralski ce qui limite son utilisation dans le domaine du génie catalytique. Dans ce contexte, supporter le catalyseur présente de nombreux avantages comme la facilité de séparation du catalyseur hétérogène à partir du mélange réactionnel obtenue par une variété de procédés telle que la filtration par exemple. Un autre avantage des catalyseurs supportés est la plus grande surface exposée du catalyseur ou dispersion. Etant donné que la catalyse est une réaction de surface, maximiser la surface d'un catalyseur, en le dispersant sur le support améliorera / optimisera l'activité catalytique. Les procédés de "chimie douce" dénommés Metal Organic Chemical Vapor Deposition (MOCVD) et Metal Organic Deposition (MOD) sont réputés pour être efficaces et économiquement compétitifs pour déposer des nanoparticules ou des films minces, à partir de précurseurs moléculaires appropriés. Notre travail vise donc à développer Al13Fe4 sous forme de films ou de nanoparticules supportées par MOCVD. La première étape pour atteindre cet objectif est le développement des précurseurs moléculaires d'aluminium métallique et de fer, dans des conditions compatibles suivies par codépôt ou dépôt séquentiel des deux précurseurs de Fe et Al pour former le composé intermétallique dans la bonne stœchiométrie. Parmi les nombreux précurseurs d'Al, le diméthyl ethylaminealane (DMEAA, [AlH3(NMe2Et)]) est utilisé en raison de sa pression de vapeur importante et des températures de dépôt faibles. En outre, l'absence de liaisons Al-O et Al-C conduit à la production de films sans impuretés carbone et oxygène. Cependant, des précurseurs moléculaires de fer pour le dépôt pour MOCVD de films de fer purs sont rares et moins développés. En dehors du pentacarbonyle de fer qui produit des films de fer pur, amidinates et guanidinates sont utilisés comme précurseurs de fer. Cependant, l'oxygène et des carbures sont présents dans des pourcentages élevés. Ainsi, l'objectif principal de ce travail de thèse est de concevoir et de synthétiser de nouveaux complexes moléculaires de fer qui servent de précurseurs pour la MOCVD. Dans ce travail, des nanoparticules de composé intermétallique Al13Fe4 sont préparées par réduction en solution et des films par dépôt séquentiel MOCVD en utilisant DMEAA et Fe(CO)5 en tant que précurseurs moléculaires. Les propriétés catalytiques ont été étudiées et ont montré d'une activité très peu active dans la réaction d'hydrogénation de l'acétylène: moins de 1% avant de se désactiver rapidement. La régénération sous hydrogène ou sous oxygène n'a qu'une faible restauration de l'activité. Les tests catalytiques ont été encore étendus à Al13Fe4 poudre préparée par réduction en solution ainsi que Al13Fe4 en poudre commerciale et a constaté que Al13Fe4 était non catalytiquement actif sous toutes ses formes (dans nos conditions de réaction) / Polyethylene production from the polymerization of ethylene is an industrial process of great importance. Ethylene stream for the polymerization of polyethylene is produced by the steam cracking of a wide range of hydrocarbon feedstock and usually contains acetylene impurities (1%) which poison the polymerization catalyst. The ethylene steam has to be purified by the selective semi-hydrogenation of acetylene which requires a catalyst with high selectivity to hydrogenate acetylene to ethylene. The intermetallic compound Al13Fe4 was introduced in 2012 by Armbuster et al. as an active and selective catalyst for the semi-hydrogenation of acetylene for polyethylene production. It has a crystal structure with high average inter-atomic distances Fe-Fe and a low coordination number of iron atoms, which falls under the concept of "site isolation principle". This compound is also attractive because of its low cost (without any noble metals compared to Pd/Al2O3 industrial catalysts) and low toxicity. However, it has been produced in the form of unsupported powder by the Czochralski method which limits its use in catalytic engineering. In this context, supporting the catalyst presents many advantages as the ease of separation of the heterogeneous catalyst from the reaction mixture. In contrast to homogeneous catalysts in which separation is often costly and difficult, separating the supported heterogeneous catalyst can be achieved by a variety of methods such as filtration for example. Another advantage of supported catalysts is the higher surface area of the catalyst. Since catalysis is a surface reaction, consequently, maximizing the surface area of a catalyst by distributing it over the support will enhance/optimize the catalytic activity.Chemical synthetic routes such as Metal Organic Chemical Vapor Deposition (MOCVD) and Metal Organic Deposition (MOD) referred as “Chimie douce” process are reputed to be flexible and economically competitive methods to prepare nanoparticles or thin films. Our work is thus aimed at developing Al13Fe4 as supported films or nanoparticles by MOCVD and/or MOD. The first step to meet our objective is the development of compatible molecular precursors of metallic aluminum and iron followed by MOCVD or MOD of those precursors to form the intermetallic compound in the good stoichiometry. Among the numerous aluminum MOCVD precursors used in the literature, dimethyl ethylamine alane (DMEAA, [AlH3(NMe2Et)]) is used due to its properties such as high vapor pressure and low deposition temperatures. Moreover, the absence of Al-O and Al-C bonds leads to the production of carbon and oxygen free films. However, iron molecular precursors for the MOCVD of pure iron films are scarce and less developed. Apart from iron pentacarbonyl that produces pure iron films, amidinates and guanidinates are used as iron precursors. However, oxygen and carbides impurities are present in high percentages. Thus the main objective of this Ph-D work is to design and synthesize novel and original iron molecular complexes that serve as precursors for the low temperature MOCVD of iron films. In this Ph-D work, nanoparticles of the intermetallic complex were prepared via solution reduction of novel Fe triazenide precursors and Al metal. Supported films were also prepared via sequential MOCVD by using DMEAA and Fe(CO)5 as molecular precursors. Its catalytic properties have been explored and showed that it is very little active in the hydrogenation reaction of acetylene. Regeneration under hydrogen or oxygen was not very successful and only some activity restored. The catalytic tests have been further extended to Al13Fe4 powder prepared by solution reduction as well as to commercial Al13Fe4 and found that Al13Fe4 was inactive catalytically in all forms (in our conditions of reactions)
184

Chemical Vapor Deposition Of Thin Films Of Copper And YBa2Cu3O7-x

Goswami, Jaydeb 12 1900 (has links) (PDF)
No description available.
185

Développement de la croissance de graphène par CVD sur cobalt, analyses morphologique et structurale / Development of graphene growth by CVD on cobalt, morphological and structural analyses

Duigou, Olivier 20 November 2015 (has links)
Le graphène, plan d'atomes de carbone agencés en nid d'abeille, possède des propriétés physico-chimiques remarquables, en particulier une excellente mobilité électronique, qui en font un matériau d'avenir pour de nombreuses applications. Si la synthèse par dépôt chimique en phase vapeur (CVD) est une méthode prometteuse en vue d'une production de graphène de qualité à grande échelle, il reste difficile de contrôler les caractéristiques du graphène formé. L'objectif de ce travail expérimental est à la fois de développer la croissance de graphène par CVD à pression atmosphérique et température modérée (600°C à 900°C) sur un substrat de cobalt et d'analyser le graphène formé par des techniques d'analyse complémentaires afin de déterminer ses caractéristiques physico-chimiques et structurales.Une étude de l'influence de plusieurs paramètres de synthèse sur les caractéristiques du graphène formé (nombre de couches, taux de recouvrement, défauts et taille des domaines cristallins) a été réalisée. En utilisant des feuilles de cobalt commerciales et en travaillant à 850°C avec une forte vitesse de refroidissement et un apport faible en carbone, un film continu de graphène de trois couches a été obtenu. De plus, en étudiant la distribution des atomes de carbone dans le cobalt après synthèse, nous avons mis en évidence une concentration de carbone extrêmement élevée, environ 100 fois supérieure à la solubilité du carbone dans le cobalt à 850°C.L'influence du cobalt sur les caractéristiques structurales a été étudiée par diffraction des rayons X sur source synchrotron. Pour cela, du graphène a été synthétisé par CVD à pression atmosphérique sur des films minces de cobalt. L'étude structurale de ce système a révélé un empilement des feuillets de graphène de type graphite turbostratique et des domaines cristallins présentant deux orientations différentes par rapport au cobalt.L'étude du système graphène/cobalt est complétée par une analyse multi-techniques et localisée du graphène permettant d'analyser la même zone de graphène lorsqu'elle est sur cobalt puis sur SiO2, après transfert. La caractérisation est réalisée par microcopie et par spectroscopie Raman. L'influence du substrat de cobalt sur le graphène formé, notamment des contraintes mécaniques et du dopage électronique, est mise en évidence.Une étude de l'influence de plusieurs paramètres expérimentaux sur les caractéristiques du graphène formé (nombre de couches, taux de recouvrement, défauts et taille des domaines cristallins) a été réalisée. En utilisant des feuilles de cobalt commerciales et en travaillant à 850°C avec une forte vitesse de refroidissement et un apport faible en carbone, un film continu de graphène de trois couches a été obtenu. De plus, en étudiant la distribution des atomes de carbone dans le cobalt après synthèse, nous avons mis en évidence une concentration de carbone extrêmement élevée, environ 100 fois supérieure à la solubilité du carbone dans le cobalt à 850°C.L'influence du cobalt sur la croissance du graphène a été étudiée par diffraction des rayons X sur source synchrotron. Pour cela, du graphène a été synthétisé par CVD à pression atmosphérique sur des films minces de cobalt. L'étude structurale de ce système a révélé un empilement des feuillets de graphène de type graphite turbostratique. De plus, il a été montré que 95 % des domaines cristallins du graphène sont orientés à 20° ± 7° par rapport au cobalt tandis que 5 % des domaines est très bien orientée à 30° ± 0,6°.L'étude du système graphène/cobalt est complétée par une analyse multi-techniques et localisée du graphène permettant d'analyser la même zone de graphène lorsqu'elle est sur cobalt puis sur SiO2, après transfert. L'influence, notamment mécanique, du substrat de croissance sur le graphène formé est mise en évidence. / Graphene, a two-dimensional material composed of carbon atoms arranged in hexagonal lattice, has outstanding physical and chemical properties, i.e. its exceptional electronic mobility. This material is thus promising for many applications in the future. However, if chemical vapour deposition (CVD) is a very promising method for large-scale graphene growth , it is still very challenging to control graphene characteristics. The objective of this experimental work is both to develop graphene growth by CVD at atmospheric pressure and moderate temperature (600°C / 850°C) on cobalt and to analyse grown graphene with complementary techniques to determine its physical, chemical and structural characteristics.A study of the influence of different synthesis parameters on graphene characteristics (number of layer, coverage, defect and crystallite size) has been achieved. By combining the use of commercial cobalt foils with growth temperature of 850°C, a high cooling rate (100°C/min) and a low carbon supply, a continuous graphene film of three layers has been synthesized. Moreover, by measuring carbon distribution in the cobalt substrate after graphene growth, we have highlighted a carbon concentration about 100 times higher than carbon solubility in cobalt at 850 °C.The influence of cobalt on graphene structure was studied by X-ray diffraction using a synchrotron beamline. Prior to experiments, graphene was grown by CVD at atmospheric pressure on cobalt thin film. The structural study of this system has revealed a turbostratic stacking of graphene and two different orientations for graphene domains with respect to cobalt.The study of the graphene/cobalt system is completed by a multi-technique and localised characterisation of graphene which enables to analyse a same area of graphene when it is on cobalt and then after transfer on SiO2 substrate. Sample characterisation is based on microscopy and Raman spectroscopy. The influence of cobalt substrate on grown graphene, especially on mechanical strain and electronic doping, is highlighted.
186

Exploring Growth Kinematics and Tuning Optical and Electronic Properties of Indium Antimonide Nanowires

Algarni, Zaina Sluman 12 1900 (has links)
This dissertation work is a study of the growth kinematics, synthesis strategies and intrinsic properties of InSb nanowires (NWs). The highlights of this work include a study of the effect of the growth parameters on the composition and crystallinity of NWs. A change in the temperature ramp-up rate as the substrate was heated to reach the NW growth temperature resulted in NWs that were either crystalline or amorphous. The as-grown NWs were found to have very different optical and electrical properties. The growth mechanism for crystalline NWs is the standard vapor-liquid-solid growth mechanism. This work proposes two possible growth mechanisms for amorphous NWs. The amorphous InSb NWs were found to be very sensitive to laser radiation and to heat treatment. Raman spectroscopy measurements on these NWs showed that intense laser light induced localized crystallization, most likely due to radiation induced annealing of defects in the region hit by the laser beam. Electron transport measurements revealed non-linear current-voltage characteristics that could not be explained by a Schottky diode behavior. Analysis of the experimental data showed that electrical conduction in this material is governed by space charge limited current (SCLC) in the high bias-field region and by Ohm's law in the low bias region. Temperature dependent conductivity measurements on these NWs revealed that conduction follows Mott variable range hopping mechanism at low temperatures and near neighbor hopping mechanism at high temperature. Low-temperature annealing of the amorphous NWs in an inert environment was found to induce a phase transformation of the NWs, causing their crystallinity to be enhanced. This thesis also proposes a new and low-cost strategy to grow p-type InSb NWs on InSb films grown on glass substrate. The high quality polycrystalline InSb film was used as the host on which the NWs were grown. The NWs with an average diameter of 150 nm and length of 20 μm were shown to have hole concentration of about 1017 cm-3 and mobility of about 1000 cm2V-1s-1. This thesis also proposes a strategy for the fabrication of metal-semiconductor nanocomposites. InSb NWs grown by electrochemical deposition were decorated with nanometer sized Au and Ag nanoparticles to form the nanocomposite.
187

Chemical vapor deposition of thin-film β-Ga2O3: an ultrawide bandgap semiconductor for next generation power electronics

Feng, Zixuan January 2021 (has links)
No description available.
188

Pyrolytic carbon coated black silicon

Shah, Ali, Stenberg, Petri, Karvonen, Lasse, Ali, Rizwan, Honkanen, Seppo, Lipsanen, Harri, Peyghambarian, N., Kuittinen, Markku, Svirko, Yuri, Kaplas, Tommi 13 May 2016 (has links)
Carbon is the most well-known black material in the history of man. Throughout the centuries, carbon has been used as a black material for paintings, camouflage, and optics. Although, the techniques to make other black surfaces have evolved and become more sophisticated with time, carbon still remains one of the best black materials. Another well-known black surface is black silicon, reflecting less than 0.5% of incident light in visible spectral range but becomes a highly reflecting surface in wavelengths above 1000 nm. On the other hand, carbon absorbs at those and longer wavelengths. Thus, it is possible to combine black silicon with carbon to create an artificial material with very low reflectivity over a wide spectral range. Here we report our results on coating conformally black silicon substrate with amorphous pyrolytic carbon. We present a superior black surface with reflectance of light less than 0.5% in the spectral range of 350 nm to 2000 nm.
189

Growth of Ultra-thin Ruthenium and Ruthenium Alloy Films for Copper Barriers

Liao, Wen, Bost, Daniel, Ekerdt, John G. 22 July 2016 (has links) (PDF)
We report approaches to grow ultrathin Ru films for application as a seed layer and Cu diffusion barrier. For chemical vapor deposition (CVD) with Ru3(CO)12 we show the role surface hydroxyl groups have in nucleating the Ru islands that grow into a continuous film in a Volmer-Weber process, and how the nucleation density can be increased by applying a CO or NH3 overpressure. Thinner continuous films evolve in the presence of a CO overpressure. We report an optimun ammonia overpressure for Ru nucleation and that leads to deposition of smoother Ru thin films. Finally, we report a comparison of amorphous Ru films that are alloyed with P or B and demonstrate 3-nm thick amorphous Ru(B) films function as a Cu diffusion barrier.
190

Deposition and properties of Co- and Ru-based ultra-thin films

Henderson, Lucas Benjamin 21 June 2010 (has links)
Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165 °C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350 °C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline. / text

Page generated in 0.0591 seconds