Spelling suggestions: "subject:"datareduktion"" "subject:"bioreduktion""
1 |
Übergangsmetallkomplexe für die photokatalytische CO2-Reduktion und der Einfluss von PhotosensibilisatorenObermeier, Martin 30 October 2023 (has links)
Photokatalytische Systeme sind in der Lage, lichtinduziert kleine Moleküle zu aktivieren. Für diesen komplexen Katalysevorgang ist ein Zusammenspiel mehrerer Komponenten wichtig, wie dem Photosensibilisator (PS) und dem Katalysator. Im Rahmen der vorliegenden Dissertation wurde auf verschiedenen Wegen versucht, photokatalytische Systeme auf Basis von Rhenium und 3d-Metallen zu optimieren. So konnten neue Komplexe auf Rheniumbasis synthetisiert und charakterisiert werden, welche zugleich als Photosensibilisator sowie Katalysator fungieren. Die Komplexe zeigen dabei nicht nur eine höhere Absorption, sondern auch eine höhere katalytische Produktivität, als deren mononuklearer Verwandte. Mittels DFT-Rechnungen und spektroskopischen Untersuchungen konnte gezeigt werden, dass ein kooperativer Vorgang stattfindet, bei dem eine Rheniumeinheit als PS, und eine als Katalysator agiert. Durch Zugabe eines externen PS konnte die katalytische Produktivität nochmals deutlich erhöht werden. Durch den zusätzlichen PS wird intermediär eine Rhenium-Rhenium-Spezies ausgebildet, welche CO2 kooperativ über beide Rheniumeinheiten aktivieren kann. Neben literaturbekannten PS auf Iridiumbasis wurden zudem neuartige Kupferphotosensibilisatoren genutzt. Verschiedene Derivate des Kupferphotosensibilisators wurden in der CO2-Reduktion und H2-Produktion getestet. Es zeigte sich, dass verschiedene elektronische Eigenschaften der PS Auswirkungen auf die Katalyseproduktivität haben. Zusätzlich wurden Katalysatoren auf Basis von 3d-Metallen konzipiert, welche abhängig von einem zusätzlichen PS sind. Bestrahlungsexperimente mit Iridium- und Kupfer-PS wurden durchgeführt und somit die Produktivität der einzelnen Katalysatoren bestimmt. Es konnte gezeigt werden, dass sowohl die Wahl des Liganden, als auch des Katalysatormetalls Einfluss auf Menge und Selektivität der Produkte hat. / Photocatalytic systems are capable of light-induced activation of small molecules. Among other things, this allows CO2 to be reduced to higher-energetic molecules. The interaction of several components, such as the photosensitizer (PS) and the catalyst, is important for this complex catalysis process. In this dissertation, attempts were made to optimize systems based on rhenium and 3d metals in various ways. One approach was to synthesize and characterize new rhenium-based complexes, which can act as PSs and catalysts at the same time. The complexes showed not only higher absorption but also higher catalytic activity than their mononuclear relative. Using DFT calculations and spectroscopic investigations, it was shown that a cooperative process takes place, in which one rhenium unit acts as a PS and one as a catalyst. By adding an external PS, the activity was significantly increased again. This forms a rhenium-rhenium species which is able to activate CO2 cooperatively via both rhenium units. In addition to iridium-based PS known from the literature, novel copper photosensitizers were also used for this purpose. In order to get a better understanding of the interaction of both components, different derivatives of the copper photosensitizer were tested in the activity towards CO2 reduction and H2 evolution reaction. The electronic influence of the PS on the catalytic activity could be elucidated by means of Stern-Vollmer quenching studies and DFT calculations. In addition, catalysts based on 3d metals were designed. Iron, cobalt and nickel were used as the central atom together with two different macrocyclic ligands. These monomolecular compounds are dependent on a PS. Furthermore, irradiation experiments with iridium and copper PS were carried out and the activity of the individual catalysts was thereby determined. It was shown that the choice of the ligand as well as the catalyst has an influence on the quantity and selectivity of the resulting products.
|
2 |
Estimating CO2 reductions from renewable energy sources : The impact of power system nonlinearities / Uppskattning av förnybara energikällors inverkan på koldioxidutsläppen från elsystemet : en undersökning av icke-linjära faktorerBerglund, Kristoffer January 2022 (has links)
Replacing conventional generation with renewable generation in power systems is essential for reducing CO2 emissions. It is important to know how effective renewables are in reducing CO2 emissions. Since CO2 reduction cannot be measured directly, different methods have been used to estimate reduction of CO2 emissions. The two most common methods are econometric models and dispatch models. Econometric models apply regression analysis using historical data for CO2 emissions, power production, and electricity demand to estimate CO2 reduction. On the other hand, dispatch models are detailed optimization simulations of power systems where the objective is to calculate the cost-optimal dispatch of the power plants. The dispatch model finds the optimal dispatch for a base case and counterfactual case. In the counterfactual case, the renewable generation in the system is modified. From the difference in CO2 emissions between the two cases, an estimation of CO2 reduction can be made. Recent studies have shown that dispatch models and econometric models can give different estimations of CO2 reduction. However, these studies did not include several factors that can increase CO2 emissions, such as; transmission constraints, security requirements, and non-linear factors. Examples of non-linear factors are; minimum dispatched energy of generating units, start up emissions, minimum up- and downtime for generating units, and energy generated during start-up and shut-down. This thesis examines if there is an agreement between econometric models and dispatch models for estimating CO2 reduction and if the agreement changes when more non-linear factors are considered. To examine these questions a systematic comparison has been done. Two econometric models are constructed, a linear econometric model and a polynomial linear econometric model. The polynomial linear econometric model is constructed to take into account non-linear factors. Eight dispatch models are constructed with increasing modelling complexity. Four model versions do not include any non-linear factors and four include non-linear factors. The results showed that the agreement between econometric and dispatch models is fairly good, except for versions that contain transmission constraints. The simulation is executed in a fictional test system that is not dimensioned for wind power generation at the given buses. Therefore is possible that transmission constraints impacts the reduction of CO2 too heavily. Furthermore, the results show that the non-linear factors contribute to CO2 emission and consequently lower the estimation of CO2 reduction. However, no conclusion can be made if the agreement between econometric and dispatch models divert when more non-linear factors are considered. / Världens utsläpp av CO2 måste minska för att inte jorden ska drabbas av drastiska klimatförändringar som temperaturhöjningar. Idag står elproduktionen för ungefär en fjärdedel av världens utsläpp av CO2. Därmed måste dagens elproduktion och elkraftsystem minska sina utsläpp av CO2 . Ett viktigt verktyg för att kraftsystem ska minska sina utsläpp av CO2 är expansion av förnybar elproduktion. Dock så går det inte att mäta direkt hur mycket CO2-utsläppen minskar vid expansion av förnybar elproduktion. Därför har flera olika estimeringsmetoder utvecklats för att uppskatta CO2-reduktion. De två vanligaste metoderna är ekonometriska modeller och produktionssimuleringsmodeller. Ekonometriska modeller använder sig av regressionsanalys med historiska tidsserier som; CO2 -utsläpp, kraftproduktion och elförbrukning för att uppskata CO2 -minskningen. Produktionssimuleringsmodeller är detaljerade optimeringssimuleringar där avsikten är att beräkna den kostoptimala användningen av kraftverk i ett system. Tidigare studier har visat att ekonometriska modeller och produktionssimuleringsmodeller kan ge olika uppskattningar av CO2 -reduktion. Dock har produktionssimuleringsmodellerna i studierna inte tagit hänsyn till flera faktorer som kan påverka CO2-utsläppen, som t.ex. överföringsbegränsningar, säkerhetsbegräsningar och icke-linjära faktorer. Exempel på icke-linjära faktorer är minimal produktion av energi för varje kraftverk, CO2 -utsläpp vi uppstart, minimal upp- och nertid och produktion vid uppstart och nedstänging för varje generator. Den här uppsatsen undersöker om de två metoderna ekonometriska modeller och produktionssimuleringsmodeller liknade uppskattningar av CO2 -reduktion och hur överrenstämmelsen mellan modellerna påverkas när man beaktar icke-linjära faktorer. För att försöka besvara dessa frågor har en systematisk jämförelse utförts. Två ekonometriska modeller har konstruerats, en linjär och en polynom-linjär ekonometrisk modell. Den polynom-linjära ekonometriska modellen tar i beaktning icke-linjära faktorer. Åtta produktionssimuleringsmodeller har konstruerats och de åtta olika modellerna har formulerats i en ökande ordning av noggrannhet. Fyra av modellerna tar inte hänsyn till några icke-linjära faktorer och fyra av modellerrna tar hänsyn till icke-linjära faktorer.
|
3 |
On the coupling of the catalytical activities of the CODH/ACS complex from Carboxydothermus hydrogenoformansRuickoldt, Jakob 01 February 2023 (has links)
Der Komplex aus Kohlenmonoxid-Dehydrogenase und Acetyl-CoA-Synthase (CODH/ACS Komplex) des thermophilen Bakteriums Carboxydothermus hydrogenoformans katalysiert die Fixierung von CO2 in Acetyl-CoA und ist damit ein potenzieller Katalysator für die Erzeugung erneuerbarer Kraftstoffe aus CO2. Die Katalyse erfolgt an zwei verschiedenen Stellen: CO2 wird am Cluster C in der CODH-Untereinheit zu CO reduziert, das dann durch einen Tunnel innerhalb des Proteins zum Cluster A in der ACS-Untereinheit wandert, wo es mit einer Methylgruppe und CoA zu Acetyl-CoA reagiert. Die Art und Weise, wie die beiden katalytischen Aktivitäten zusammenwirken, sind noch unklar. Um hier mehr Licht ins Dunkel zu bringen, verfolgte diese Arbeit drei Ziele: die Bestimmung der Struktur des CODH/ACS-Komplexes von C. hydrogenoformans, die Untersuchung der CO2-Reduktionsaktivität von CODHasen und die Analyse der Rolle des internen Tunnels im CODH/ACS-Komplex.
Die Struktur des CODH/ACS-Komplexes von C. hydrogenoformans wurde durch Röntgenkristallographie mit einer Auflösung von 2,04 Å bestimmt. Die CO2-Reduktion am Cluster C wurde kinetisch untersucht. Es zeigte sich, dass die CO2-Reduktion durch einen Ping-Pong-Mechanismus mit zwei Reaktionsstellen erfolgen könnte, der in früheren Studien vorgeschlagen wurde, aber auch durch andere Mechanismen. Um eine Struktur-Funktionsbeziehung für CODHs zu ermitteln, wurde die CO2-Reduktionsaktivität für drei CODHasen von C. hydrogenoformans untersucht, deren Strukturen bekannt sind: CODH-II, CODH-IV, und der CODH/ACS-Komplex. Das Tunnelsystem im CODH/ACS-Komplex ist viel enger als in den anderen CODHs und könnte somit der Grund für die vergleichsweise geringe Aktivität des CODH/ACS-Komplexes sein. Dies wurde auch durch die Manipulation und Analyse des internen Tunnels des CODH/ACS-Komplexes unterstützt. Die Ergebnisse deuten darauf hin, dass der Hauptzweck des Tunnels im CODH/ACS-Komplex die Kompartimentierung von CO und nicht der schnelle Substrattransport ist. / The complex of carbon monoxide dehydrogenase and acetyl-CoA synthase (CODH/ACS complex) of the thermophilic bacterium Carboxydothermus hydrogenoformans catalyses the fixation of CO2 into acetyl-CoA and is thus a potential catalyst for the production of renewable fuels from CO2. Catalysis occurs at two different sites: CO2 is reduced to CO at cluster C in the CODH subunit, which then travels through a tunnel within the protein to cluster A in the ACS subunit, where it reacts with a methyl group and CoA to form acetyl-CoA. The way in which the two catalytic activities interact is still unclear. To shed more light on this, this work pursued three goals: to determine the structure of the CODH/ACS complex of C. hydrogenoformans, to investigate the CO2 reduction activity of CODHases and to analyse the role of the internal tunnel in the CODH/ACS complex.
The structure of the CODH/ACS complex of C. hydrogenoformans was determined by X-ray crystallography at 2.04 Å resolution. The CO2 reduction at cluster C was investigated kinetically. It was found that CO2 reduction could occur by a two-site ping-pong mechanism proposed in previous studies, but also by other mechanisms. To establish a structure-function relationship for CODHs, CO2 reduction activity was investigated for three CODHases of C. hydrogenoformans whose structures are known: CODH-II, CODH-IV, and the CODH/ACS complex. The tunnel system in the CODH/ACS complex is much narrower than in the other CODHs and could thus be the reason for the comparatively low activity of the CODH/ACS complex. This was also supported by the manipulation and analysis of the internal tunnel of the CODH/ACS complex. The results suggest that the main purpose of the tunnel in the CODH/ACS complex is to compartmentalise CO and not to rapidly transport substrate.
|
4 |
Online gas analysis of electrochemical reactionsGeisler, Jonas 13 July 2023 (has links)
In dieser Arbeit wurden zwei Messaufbauten für die online Gasanalyse von elektrochemischen Reaktionen entwickelt und im Hinblick auf ihre Unterschiede und Gemeinsamkeiten sowie auf den Designprozess im Allgemeinen verglichen:
Differenzielle elektrochemische Massenspektrometrie (DEMS) zur Untersuchung von Nebenreaktionen in Natriumionenbatterien (SIBs). Verschiedene Designansätze aus der Literatur wurden verglichen, um den für die Anwendung in SIBs am besten geeigneten zu finden. Danach wurde ein selbst entwickeltes Design implementiert und validiert. Für die Datenauswertung wird ein neuartiger Ansatz für DEMS in Alkaliionenbatterien vorgestellt, der eine interne Validierung der Ergebnisse ermöglicht. Eine Zusammenfassung der Literatur über bekannte Reaktionen, die zur Gasbildung in Alkali-Ionen-Batterien führen, wird als Referenz die Gasentwicklung in den in dieser Arbeit untersuchten Materialien herangezogen. Das System wird zur Messung der Gasentwicklung verschiedener Elektrodenmaterialien in Halbzellenkonfiguration und zur Bewertung des Zusammenspiels einiger Elektroden in Vollzellenkonfiguration verwendet. Bei den untersuchten Materialien handelt es sich um: Natrium-Mangan-Nickeloxid (NaMNO), Natrium-Vanadium-Phosphat (NVP), Preußisch Weiß (PW), Graphit und Hartkohlenstoff. Als Elektrolyte wurden überwiegend 1M NaPF6 in Diglyme (2G), bzw. Propylencarbonat (PC) verwendet.
Das zweite System ist eine rotierende Scheibenelektrode in Verbindung mit Gaschromatographie (RDE-GC). Es wurde entwickelt, um kinetische Effekte bei der elektrokatalytischen CO2-Reduktion an Kupferelektroden zu untersuchen. Die Korrelation von Massentransporteigenschaften und der Gasproduktanalyse kann Aufschluss über die Massentransportabhängigkeit von Selektivität und Aktivität der Reaktion geben. Hier wird die Gasanalyse genutzt, um die elektrochemischen Daten in Teilstromdichten zu dekonvolutieren, die unter definierten Stofftransportbedingungen zur Bildung verschiedener Produkte führen. / In this thesis two independent measurement setups for online gas analysis, in electrochemical reactions are developed and compared in terms of their differences and similarities and on the design:
Differential electrochemical mass spectrometry (DEMS) for the investigation of side reactions in sodium-ion batteries (SIBs). Different design approaches from literature are evaluated to find the most suitable for the application in SIBs. After that a custom design is implemented and validated. A novel approach to DEMS in alkali-ion batteries for the data evaluation is presented, that enables internal verification of the results. Known reactions that lead to gas formation in alkali-ion batteries are reviewed form the literature, as a reference to discuss the gas evolution found in materials investigated. The system is used to measure the gas evolution of different electrode materials in half-cell configuration, and to evaluate the interplay of some of the electrodes in full-cell configuration. Materials that are studied are: sodium manganese nickel oxide (NaMNO), sodium vanadium phosphate (NVP), prussian white (PW), graphite and hard carbon. To do that two model electrolytes were selected 1M NaPF6 in diglyme (2G) and propylene carbonate (PC).
The second system is a rotating disc electrode coupled with gas chromatography (RDE-GC). It is designed to study kinetic effects on the electrocatalytic CO2 reduction (CO2RR) on copper electrodes. The correlation of defined mass transport properties and gas product analysis can give insight into the mass transport dependencies on the selectivity and activity of the reaction. Here the gas analysis is used to deconvolute the electrochemical data into partial current densities, that lead to the formation of different products, under defined mass transport conditions. While some challenges remain, preliminary data that underlines the capability of such system as well as the findings on how to design such a system are presented.
|
5 |
CCS via Electrochemical CO2 Reduction to Ethylene-based Polymeric Construction Materials / CCS via elektrokemisk CO2-reduktion till etenbaserade polymera konstruktionsmaterialTaylor, Christian January 2021 (has links)
IPCC SR15 rapporterade att alla framtida scenarier för att begränsa klimatförändringen till 1,5°C är starkt beroende av negativa utsläppstekniker, såsom geografisk CO2-lagring som används av Stockholm Exergi’s Värtaverket. Men kan man uppnå starkare klimatvinster genom en cirkulär koldioxidekonomi? Bildandet av en cirkulär koldioxidekonomi är absolut nödvändigt för att uppnå global koldioxidneutralitet, men hur kommer vi dit? Elektrolys av CO2 erbjuder en ekonomiskt och miljömässigt attraktiv väg för att uppgradera CO2-utsläpp till värdefulla bränslen och råvaror, vilket minskar användningen av fossila resurser och CO2-utsläpp till atmosfären. Detta examensarbete undersöker möjligheten att ta bort 720 000 ton-CO2-utsläpp från det avfallseldade kraftvärmeverket i Högdalen som fallstudie, via elektrokemisk reduktion av CO2 till eten, med målet att producera polymera konstruktionsmaterial, för att fungera som en kolsänka. Dessa polymerer har utvärderats utifrån kriterier som kapacitet som kolsänka, marknadsstorlek och LCA. Eten är den mest användbara råvarukemikalien för polymerproduktion och har ett betydande koldioxidavtryck på 1,73 ton CO2 per producerade eten. Att använda eCO2RR skulle minska betydande CO2-utsläpp och överbrygga luckan mellan fossila och förnybara resurser. Detta examensarbete föreslår en preliminär processdesign, komplett med en teknoekonomisk modell för att beräkna ekonomin, mass- och energibalanser för ett flertal scenarier. Över hundra elektrokatalysatorer har studerats i en litteraturgenomgång, där 5 st elektrokatalysator har valts ut baserat på olika styrkor i särskilda meritvärden, för att fastställa prestationsmål för lönsamhet. Den teknoekonomiska modellen drog slutsatsen att vid nuvarande prisläge på 700 SEK/MWh kunde ingen av elektrokatalysatorerna uppnå lönsamhet. Att sänka elpriset till LCOE för vindkraft till 335 SEK/MWh, blev resultaten mycket lönsamma, inklusive IRR upp till 41,3%. Modellparametrar ändrades för att fastställa de viktigaste variablerna i en omfattande känslighetsanalys. Vi kan dra slutsatsen att strömtätheter på 400-600 mA/cm2 är gynnsamma och med så låg bibehållen cellspänning som möjligt (<2,4V). Om man specifikt inriktar sig på eten som produkt kan det vara fördelaktigt att ytterligare öka lönsamheten genom att producera myr- eller ättiksyra som ett nästa steg, vilket har fördelen av enklare vätskegasseparering och för att undvika produktion av metan och etanol. För lönsamhet krävs en livstid på minst 2-4 år för elektrokatalysatorn (CCM), 10 år för stacken och 20 år för elektrolyssystemet. I miljöanalysen studerades massbalans-lagringen av CO2. Detta uppnåddes genom att ta bort de direkta utsläppen från Högdalenverket. De indirekta utsläppen förhindrades genom att ersätta konventionella processer av elkällans kolintensitet. Baserat på genomsnittet av elektrokatalysatorerna skulle värdlandet behöva kräva en kolintensitet för elproduktionen under 101 och 153 tCO₂/GWh för NET-direkt respektive indirekt CO2-avlägsnande. Följaktligen kan högre CO2-besparingar uppnås genom handel med koldioxidsnål svensk el till grannländer med mycket högre koldioxidintensitet. Totalt sett var den direkta koldioxidminskningen mellan 487 300 till 575 000 ton CO₂ och en indirekt minskning på mellan 1 065 000 till 1 219 000 ton CO₂, beroende på energieffektivitet och produkter. Den största utmaningen för kommersiell framgång för alla eCO2RR-projekt bortsett från de tekniska prestandaaspekterna är att nödvändiga förändringar i skatteregelverket behövs, så att el från elektrolysprojekt till gröna kemikalier blir skattebefriade, som jämförbart med förbränning av förnybar biomassa är befriad från CO2-skatter. / The IPCC SR15 reported that all future scenarios to limit climate change to 1.5°C are heavily reliant on negative emission technologies, such as geographical CO2 storage employed by Stockholm Exergi’s Värtaverket. But can stronger climate benefits be achieved through a circular carbon economy? The formation of a carbon circular economy is imperative towards achieving global carbon neutrality, but how do we get there? Electrolysis of CO2 offers an economically and environmentally attractive route to upgrade CO2 emissions to valuable fuels and feedstocks, thus reducing the use of fossil resources and CO2 emissions to the atmosphere, hence closing the cycle. This thesis explores the possibility of removing the 720,000 tCO2 emissions of the case study waste-fired CHP plant, Stockholm Exergi’s Högdalenverket, via the electrochemical reduction of CO2 (eCO2RR) towards ethylene, with the goal of producing polymeric construction materials, to act as a carbon sink. These polymers were evaluated on criteria such as, capacity as a carbon sink, market size and LCA. Ethylene is the prevailing commodity chemical for polymer production and has a significant carbon footprint of 1.73 tonCO2 per tonne of ethylene produced. Displacement via the eCO2RR would prevent substantial CO2 emissions and bridge the gap between fossil and renewable resources. This thesis describes a preliminary process design, complete with technoeconomic model to calculate the economics, mass and energy balances of numerous scenarios. Electrocatalyst data from an in-depth literature review comprising of over 100 catalysts was drawn, with 5 electrocatalyst candidates selected based on strengths in particular figures of merit, to determine performance targets for profitability. The technoeconomic model concluded that at the current price point of 700 SEK/MWh, none of the electrocatalysts could achieve profitability. Lowering the electricity price to the levelized-cost of electricity (LCOE) for wind, 335 SEK/MWh, yielded highly profitable results, including IRR up-to 41.3%. Model parameters were changed to determine the most important variables in an extensive sensitivity analysis. Concluding that performance targets require current densities of 400-600 mA/cm2 whilst maintaining as low cell voltage as possible (<2.4 V). When specifically targeting ethylene, it is beneficial to increase profitability through targeting more valuable, formic, or acetic acid, which has the advantage of easier liquid-gas separation and to avoid production of methane and ethanol. For stability, 2-4 years minimum is required for the catalyst-coated membrane (CCM), 10 years for the stack and 20 years for the electrolyser systems. In the environmental analysis, capabilities for carbon storage were studied via CO2 balance. This was achieved by taking the direct emissions removed from Högdalenverket, the indirect emissions prevented by replacing conventional processes and by the carbon intensity of the electricity source. Based on the average energy efficiency and performance of the electrocatalysts, the host country would require a carbon intensity of electricity production below 101 and 153 tCO₂/GWh for NET direct and indirect CO2 removal, respectively. Consequently, higher CO2 savings were achieved by trading low-carbon Swedish electricity to neighbouring countries with much higher carbon intensities. Overall, the direct carbon reduction was between 487,300 to 575,000 tCO₂ and indirect reduction of between 1,065,000 to 1,219,000 tCO₂, subject to energy efficiency and targeted products. It remains that aside from the technical performance aspects of the eCO2RR catalysts, the major roadblock towards the commercial success of all eCO2RR projects is the required adjustments to regulatory framework, such that electricity for electrolysis projects towards green chemicals exempt from taxes in a similar way to renewable biomass combustion exempt from CO2 taxes.
|
Page generated in 0.0545 seconds