591 |
Otimização por nuvem de partículas aplicada ao problema de atribuição de tarefas dinâmicoPierobom, Jean Lima 13 February 2012 (has links)
A Inteligência de Enxame (Swarm Intelligence) é uma área de estudos que busca soluções para problemas de otimização utilizando-se de técnicas computacionais inspiradas no comportamento social emergente encontrado na biologia. A metaheurística Particle Swarm Optimization (PSO) é relativamente nova e foi inspirada no comportamento social de bandos de pássaros. PSO tem apresentado bons resultados em alguns trabalhos recentes de otimização discreta, apesar de ter sido concebido originalmente para a otimização de problemas contínuos. Este trabalho trata o Problema de Atribuição de Tarefas - Task Assignment Problem (TAP), e apresenta uma aplicação: o problema de alocação de táxis e clientes, cujo objetivo da otimização está em minimizar a distância percorrida pela frota. Primeiramente, o problema é resolvido em um cenário estático, com duas versões do PSO discreto: a primeira abordagem é baseada em codificação binária e a segunda utiliza permutações para codificar as soluções. Os resultados obtidos mostram que a segunda abordagem é superior à primeira em termos de qualidade das soluções e tempo computacional, e é capaz de encontrar as soluções ótimas para o problema nas instâncias para as quais os valores ótimos são conhecidos. A partir disto, o algoritmo é adaptado para a otimização do problema em um ambiente dinâmico, com a aplicação de diferentes estratégias de resposta às mudanças. Os novos resultados mostram que a combinação de algumas abordagens habilita o algoritmo PSO a obter boas soluções ao longo da ocorrência de mudanças nas variáveis de decisão problema, em todas as instâncias testadas, com diferentes tamanhos e escalas de mudança. / Swarm Intelligence searches for solutions to optimization problems using computational techniques inspired in the emerging social behavior found in biology. The metaheuristic Particle Swarm Optimization (PSO) is relatively new and can be considered a metaphor of bird flocks. PSO has shown good results in some recent works of discrete optimization, despite it has been originally designed for continuous optimization problems. This paper deals with the Task Assignment Problem (TAP), and presents an application: the optimization problem of allocation of taxis and customers, whose goal is to minimize the distance traveled by the fleet. The problem is solved in a static scenario with two versions of the discrete PSO: the first approach that is based on a binary codification and the second one which uses permutations to encode the solution. The obtained results show that the second approach is superior than the first one in terms of quality of the solutions and computational time, and it is capable of achieving the known optimal values in the tested instances of the problem. From this, the algorithm is adapted for the optimization of the problem in a dynamic environment, with the application of different strategies to respond to changes. The new results show that some combination of approaches enables the PSO algorithm to achieve good solutions along the occurrence of changes in decision variables problem, in all instances tested, with different sizes and scales of change.
|
592 |
Heur?sticas usando constru??o de vocabuil?rio aplicadas ao problema da atribui??o de localidades a an?is em redes SONET/SDH / Heuristics using vocabulary building to the Sonet ring assigment problemSoares, Werner Kleyson da Silva 31 October 2009 (has links)
Made available in DSpace on 2014-12-17T14:52:44Z (GMT). No. of bitstreams: 1
WernerKSS.pdf: 2229557 bytes, checksum: 7a64dc1b94612cd78d88c6eb822d29e6 (MD5)
Previous issue date: 2009-10-31 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The SONET/SDH Ring Assignment Problem (PALAS) treats to group localities in form of some rings, being respected the traffic's limitations of the equipment. Each ring uses a DXC
(Digital Cross Connect) to make the communication with the others, being the DXC the equipment most expensive of the net, minimizing the number total of rings, will minimize the
total net cost, problem's objective . This topology in rings provides a bigger capacity of regeneration. The PALAS is a problem in Combinatorial Optimization of NP-hard Class. It
can be solved through Heuristics and Metaheuristics. In this text, we use Taboo Search while we keep a set of elite solutions to be used in the formation of a part of the collection of vocabulary's parts that in turn will be used in the Vocabulary Building. The Vocabulary Building will be started case Taboo Search does not reach the best solution for the instance. Three approaches had been implemented: one that only uses vocabulary's parts deriving of Taboo Search, one that it only uses vocabulary's parts randomly generated and a last one that it uses half come of the elite and half randomly generated / O Problema da Atribui??o de Localidades a An?is em Redes SONET/SDH (PALAS) trata de agrupar localidades em forma de v?rios an?is, respeitando as limita??es de tr?fego dos
equipamentos. Cada anel utiliza um DXC (Digital Cross Connect) para fazer a comunica??o com os outros, sendo o DXC o equipamento mais caro da rede, minimizando o total de an?is, minimizaremos o custo total, objetivo do problema. Essa topologia em an?is proporciona uma maior capacidade de regenera??o. O PALAS ? um problema de Otimiza??o Combinat?ria da Classe NP-dif?cil. Pode ser resolvido atrav?s de Heur?sticas e Metaheur?sticas. Neste trabalho, utilizamos a Busca Tabu enquanto guardamos um conjunto de solu??es elite para serem utilizadas na forma??o de uma parte da cole??o de voc?bulos que por sua vez ser?o usados na Constru??o de Vocabul?rio para a solu??o desse problema. A Constru??o de Vocabul?rio ser? acionada caso a Busca
Tabu n?o atinja o ?timo para a inst?ncia. Foram implementadas tr?s abordagens: uma que utiliza somente voc?bulos oriundos da Busca Tabu, uma que utiliza somente voc?bulos gerados
aleatoriamente e uma ?ltima que utiliza metade vinda da elite e metade aleat?ria
|
593 |
Metaheur?sticas evolutivas para o problema de roteamento de unidades m?veis de pistoneio / Evolutionary metaheuristics applied to routing problem of units mobile recovery of oilNascimento, Jo?o Paulo Lima do 23 December 2010 (has links)
Made available in DSpace on 2014-12-17T14:53:02Z (GMT). No. of bitstreams: 1
JoaoPLN_DISSERT.pdf: 2086259 bytes, checksum: 2a57554e118e00d9a44cdf572e29af7a (MD5)
Previous issue date: 2010-12-23 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / This paper presents metaheuristic strategies based on the framework of evolutionary
algorithms (Genetic and Memetic) with the addition of Technical Vocabulary Building for
solving the Problem of Optimizing the Use of Multiple Mobile Units Recovery of Oil (MRO
units). Because it is an NP-hard problem, a mathematical model is formulated for the
problem, allowing the construction of test instances that are used to validate the evolutionary
metaheuristics developed / O presente trabalho apresenta estrat?gias metaheur?sticas baseadas no framework dos
Algoritmos Evolutivos (Gen?ticos e Mem?ticos) com a adi??o da t?cnica Vocabulary
Building para a resolu??o do Problema de Otimiza??o do Emprego de Unidades M?veis de
Pistoneio (UMPs). Por se tratar de um problema NP-?rduo, uma modelagem matem?tica ?
formulada para o problema, permitindo a constru??o de inst?ncias testes que s?o utilizadas
para validar as metaheur?sticas evolutivas desenvolvidas
|
594 |
Algoritmo mem?tico com infec??o viral: uma aplica??o ao problema do caixeiro viajante assim?trico / Memetic algorithm with viral infection: an application to the assimetric travelling salesman problemFontes, F?bio Francisco da Costa 19 May 2006 (has links)
Made available in DSpace on 2014-12-17T14:53:23Z (GMT). No. of bitstreams: 1
FabioFCF.pdf: 875120 bytes, checksum: 089fb9e8e722351411a9dbd3d86bbef4 (MD5)
Previous issue date: 2006-05-19 / The Combinatorial Optimization is a basic area to companies who look for competitive advantages in the diverse productive sectors and the Assimetric Travelling Salesman Problem,
which one classifies as one of the most important problems of this area, for being a problem of the NP-hard class and for possessing diverse practical applications, has increased interest of researchers in the development of metaheuristics each more efficient to assist in its resolution, as it is the case of Memetic Algorithms, which is a evolutionary algorithms that it is used of the genetic operation in combination with a local search procedure. This work explores the technique of Viral Infection in one Memetic Algorithms where the infection
substitutes the mutation operator for obtaining a fast evolution or extinguishing of species (KANOH et al, 1996) providing a form of acceleration and improvement of the solution . For this it developed four variants of Viral Infection applied in the Memetic Algorithms for resolution of the Assimetric Travelling Salesman Problem where the agent and the virus pass for a symbiosis process which favored the attainment of a hybrid evolutionary algorithms and
computational viable / A Otimiza??o Combinat?ria ? uma ?rea fundamental para empresas que buscam vantagens competitivas nos diversos setores produtivos, e o Problema do Caixeiro Viajante Assim?trico, o qual se classifica como um dos mais importantes problemas desta ?rea, devido a ser um
problema da classe NP-dif?cil e tamb?m por possuir diversas aplica??es pr?ticas, tem despertado interesse de pesquisadores no desenvolvimento de Metaheur?sticas cada vez mais eficientes para auxiliar na sua resolu??o, como ? o caso do Algoritmo Mem?tico, o qual ? um algoritmo evolutivo que se utiliza dos operadores gen?ticos em combina??o com um procedimento de busca local. Este trabalho explora a t?cnica de Infec??o Viral em um Algoritmo Mem?tico, onde a infec??o substitui o operador de muta??o por conseguir uma
r?pida evolu??o ou extin??o de esp?cies (KANOH et al., 1996), proporcionando uma forma de acelera??o e melhoria da solu??o. Para isto se desenvolveu quatro variantes de Infec??o Viral aplicadas no Algoritmo Mem?tico para resolu??o do Problema do Caixeiro Viajante Assim?trico, onde o agente e o v?rus passam por um processo de Simbiose, as quais
favoreceram a obten??o de um algoritmo evolutivo h?brido e computacionalmente vi?vel
|
595 |
Aplicação de algoritmos genéticos para minimização do número de objetos processados e o setup num problema de corte unidimensional / Analysis of cutting stock problem using genetic algorithmJulliany Sales Brandão 22 May 2009 (has links)
Esta dissertação apresenta a aplicação de uma nova abordagem utilizando Algoritmo Genético na resolução do Problema de Corte Unidimensional na minimização de dois objetivos, geralmente conflitantes, o número de objetos processados e o setup, simultaneamente. O problema de corte consiste, basicamente, em encontrar a melhor maneira de obter peças de tamanhos distintos (itens) a partir do corte de peças maiores (objetos) com o objetivo de minimizar alguma espécie de custo ou maximizar o lucro. A disposição dos itens no objeto para a realização de cortes durante sua produção é denominada padrão de corte. E o setup é o tempo de preparação de máquina. O modelo do problema, a função objetivo e o método proposto denominado SingleGA, bem como os passos utilizados para sua resolução, também são apresentados. Os resultados obtidos pelo SingleGA são comparados com os métodos SHP, Kombi234, ANLCP300 e Symbio, encontrados na literatura, a fim de verificar a capacidade de encontrar soluções viáveis e competitivas. Os resultados computacionais mostram que o método proposto, o qual utiliza apenas um algoritmo genético para resolver esses dois objetivos inversamente relacionados, proporciona bons resultados.
|
596 |
Scalable cost-efficient placement and chaining of virtual network functions / Posicionamento e encadeamento escalável e baixo custo de funções virtualizados de redeLuizelli, Marcelo Caggiani January 2017 (has links)
A Virtualização de Funções de Rede (NFV – Network Function Virtualization) é um novo conceito arquitetural que está remodelando a operação de funções de rede (e.g., firewall, gateways e proxies). O conceito principal de NFV consiste em desacoplar a lógica de funções de rede dos dispositivos de hardware especializados e, desta forma, permite a execução de imagens de software sobre hardware de prateleira (COTS – Commercial Off-The-Shelf). NFV tem o potencial para tornar a operação das funções de rede mais flexíveis e econômicas, primordiais em ambientes onde o número de funções implantadas pode chegar facilmente à ordem de centenas. Apesar da intensa atividade de pesquisa na área, o problema de posicionar e encadear funções de rede virtuais (VNF – Virtual Network Functions) de maneira escalável e com baixo custo ainda apresenta uma série de limitações. Mais especificamente, as estratégias existentes na literatura negligenciam o aspecto de encadeamento de VNFs (i.e., objetivam sobretudo o posicionamento), não escalam para o tamanho das infraestruturas NFV (i.e., milhares de nós com capacidade de computação) e, por último, baseiam a qualidade das soluções obtidas em custos operacionais não representativos. Nesta tese, aborda-se o posicionamento e o encadeamento de funções de rede virtualizadas (VNFPC – Virtual Network Function Placement and Chaining) como um problema de otimização no contexto intra- e inter-datacenter. Primeiro, formaliza-se o problema VNFPC e propõe-se um modelo de Programação Linear Inteira (ILP) para resolvêlo. O objetivo consiste em minimizar a alocação de recursos, ao mesmo tempo que atende aos requisitos e restrições de fluxo de rede. Segundo, aborda-se a escalabilidade do problema VNFPC para resolver grandes instâncias do problema (i.e., milhares de nós NFV). Propõe-se um um algoritmo heurístico baseado em fix-and-optimize que incorpora a meta-heurística Variable Neighborhood Search (VNS) para explorar eficientemente o espaço de solução do problema VNFPC. Terceiro, avalia-se as limitações de desempenho e os custos operacionais de estratégias típicas de aprovisionamento ambientes reais de NFV. Com base nos resultados empíricos coletados, propõe-se um modelo analítico que estima com alta precisão os custos operacionais para requisitos de VNFs arbitrários. Quarto, desenvolve-se um mecanismo para a implantação de encadeamentos de VNFs no contexto intra-datacenter. O algoritmo proposto (OCM – Operational Cost Minimization) baseia-se em uma extensão da redução bem conhecida do problema de emparelhamento ponderado (i.e., weighted perfect matching problem) para o problema de fluxo de custo mínimo (i.e., min-cost flow problem) e considera o desempenho das VNFs (e.g., requisitos de CPU), bem como os custos operacionais estimados. Os resultados alcaçados mostram que o modelo ILP proposto para o problema VNFPC reduz em até 25% nos atrasos fim-a-fim (em comparação com os encadeamentos observados nas infra-estruturas tradicionais) com um excesso de provisionamento de recursos aceitável – limitado a 4%. Além disso, os resultados evidenciam que a heurística proposta (baseada em fix-and-optimize) é capaz de encontrar soluções factíveis de alta qualidade de forma eficiente, mesmo em cenários com milhares de VNFs. Além disso, provê-se um melhor entendimento sobre as métricas de desempenho de rede (e.g., vazão, consumo de CPU e capacidade de processamento de pacotes) para as estratégias típicas de implantação de VNFs adotadas infraestruturas NFV. Por último, o algoritmo proposto no contexto intra-datacenter (i.e. OCM) reduz significativamente os custos operacionais quando comparado aos mecanismos de posicionamento típicos uti / Network Function Virtualization (NFV) is a novel concept that is reshaping the middlebox arena, shifting network functions (e.g. firewall, gateways, proxies) from specialized hardware appliances to software images running on commodity hardware. This concept has potential to make network function provision and operation more flexible and cost-effective, paramount in a world where deployed middleboxes may easily reach the order of hundreds. Despite recent research activity in the field, little has been done towards scalable and cost-efficient placement & chaining of virtual network functions (VNFs) – a key feature for the effective success of NFV. More specifically, existing strategies have neglected the chaining aspect of NFV (focusing on efficient placement only), failed to scale to hundreds of network functions and relied on unrealistic operational costs. In this thesis, we approach VNF placement and chaining as an optimization problem in the context of Inter- and Intra-datacenter. First, we formalize the Virtual Network Function Placement and Chaining (VNFPC) problem and propose an Integer Linear Programming (ILP) model to solve it. The goal is to minimize required resource allocation, while meeting network flow requirements and constraints. Then, we address scalability of VNFPC problem to solve large instances (i.e., thousands of NFV nodes) by proposing a fixand- optimize-based heuristic algorithm for tackling it. Our algorithm incorporates a Variable Neighborhood Search (VNS) meta-heuristic, for efficiently exploring the placement and chaining solution space. Further, we assess the performance limitations of typical NFV-based deployments and the incurred operational costs of commodity servers and propose an analytical model that accurately predict the operational costs for arbitrary service chain requirements. Then, we develop a general service chain intra-datacenter deployment mechanism (named OCM – Operational Cost Minimization) that considers both the actual performance of the service chains (e.g., CPU requirements) as well as the operational incurred cost. Our novel algorithm is based on an extension of the well-known reduction from weighted matching to min-cost flow problem. Finally, we tackle the problem of monitoring service chains in NFV-based environments. For that, we introduce the DNM (Distributed Network Monitoring) problem and propose an optimization model to solve it. DNM allows service chain segments to be independently monitored, which allows specialized network monitoring requirements to be met in a efficient and coordinated way. Results show that the proposed ILP model for the VNFPC problem leads to a reduction of up to 25% in end-to-end delays (in comparison to chainings observed in traditional infrastructures) and an acceptable resource over-provisioning limited to 4%. Also, we provide strong evidences that our fix-and-optimize based heuristic is able to find feasible, high-quality solutions efficiently, even in scenarios scaling to thousands of VNFs. Further, we provide indepth insights on network performance metrics (such as throughput, CPU utilization and packet processing) and its current limitations while considering typical deployment strategies. Our OCM algorithm reduces significantly operational costs when compared to the de-facto standard placement mechanisms used in Cloud systems. Last, our DNM model allows finer grained network monitoring with limited overheads. By coordinating the placement of monitoring sinks and the forwarding of network monitoring traffic, DNM can reduce the number of monitoring sinks and the network resource consumption (54% lower than a traditional method).
|
597 |
Correspondência inexata entre grafos. / inexact graph correspondenceAlexandre da Silva Freire 02 July 2008 (has links)
Sejam GI = (VI ,AI) e GM = (VM,AM) dois grafos simples. Um mapeamento de GI para GM é um conjunto de associações, tal que cada vértice de VI está associado a um vértice de VM, e cada aresta de AI está associada a um par de vértices de VM. A cada possível associação é atribuído um custo. O problema de correspondência inexata entre grafos (PCIG) consiste em encontrar um mapeamento de GI para GM, tal que a soma dos custos de suas associações seja mínima. Nesta dissertação, resumimos os resultados encontrados na literatura sobre o PCIG e algumas de suas variações. Os resultados que incluímos aqui tratam sobre a questão de como formular o PCIG e algumas de suas variações, através de programação linear inteira. Provamos alguns resultados de complexidade computacional que relacionam variações do PCIG a problemas clássicos, como isomorfismo e partição de grafos. Fornecemos uma formulação através de programação linear inteira para o PCCA (uma variante do PCIG com conexidade e cobertura de arestas). Mostramos que o PCCA é NP-difícil quando os grafos de entrada são completos ou árvores (chamamos o segundo caso de PCCA para árvores). Apresentamos uma formulação linear inteira e um algoritmo - que é polinomial se o grau máximo dos vértices de VM for limitado por uma constante - para o PCCA para árvores. Mostramos um caso especia em que o PCCA para árvores pode ser resolvido em tempo polinomial. Por último, exibimos alguns resultados experimentais, inclusive com instâncias reais de uma aplicação do problema. / Let GI = (VI ,AI) and GM = (VM,AM) be two simple graphs. A mapping from GI to GM is an association set, such that each vertex in VI is associated to a vertex in VM, and each edge in AI is associated to a pair of vertices of VM. A cost is defined to each possible association. The inexact graph correspondence problem (IGCP) consists in finding a mapping from GI to GM, such that the sum of its associations costs is minimized. In this dissertation, we summarize the results found in the literature about the IGCP and some variations. The results included here address the question of how to formulate the IGCP and some variations, using integer linear programming. We prove some computational complexity results which relate IGCP variations with classical problems, like graph isomorphism and partitioning. We give an integer linear programming formulation to the ICEC (IGCP with connectivity and edges cover). We show that the ICEC is NP-hard when the input graphs are complete or trees (we call the second case ICEC for trees). We introduce an integer linear formulation and an algorithm - which has polynomial running time if the vertices of VM have maximum degree bounded by a constant - to the ICEC for trees. We show a especial case in which the ICEC for trees can be solved in polynomial time. Finally, we present some experimental results, also with instances of a real application of the problem.
|
598 |
Belief Propagation and Algorithms for Mean-Field Combinatorial OptimisationsKhandwawala, Mustafa January 2014 (has links) (PDF)
We study combinatorial optimization problems on graphs in the mean-field model, which assigns independent and identically distributed random weights to the edges of the graph. Specifically, we focus on two generalizations of minimum weight matching on graphs. The first problem of minimum cost edge cover finds application in a computational linguistics problem of semantic projection. The second problem of minimum cost many-to-one matching appears as an intermediate optimization step in the restriction scaffold problem applied to shotgun sequencing of DNA.
For the minimum cost edge cover on a complete graph on n vertices, where the edge weights are independent exponentially distributed random variables, we show that the expectation of the minimum cost converges to a constant as n →∞ For the minimum cost many-to-one matching on an n x m complete bipartite graph, scaling m as [ n/α ] for some fixed α > 1, we find the limit of the expected minimum cost as a function of α. For both problems, we show that a belief propagation algorithm converges asymptotically to the optimal solution. The belief propagation algorithm yields a near optimal solution with lesser complexity than the known best algorithms designed for optimality in worst-case settings.
Our proofs use the machinery of the objective method and local weak convergence, which are ideas developed by Aldous for proving the ζ(2) limit for the minimum cost bipartite matching. We use belief propagation as a constructive proof technique to supplement the objective method.
Recursive distributional equations(RDEs) arise naturally in the objective method approach. In a class of RDEs that arise as extensions of the minimum weight matching and travelling salesman problems, we prove existence and uniqueness of a fixed point distribution, and characterize its domain of attraction.
|
599 |
Modèles et méthodes pour la gestion logistique optimisée dans le domaine des services et de la santé / Models and optimization approaches for logistic problems in health care systems and services sectorAit Haddadene, Syrine Roufaida 30 September 2016 (has links)
Cette thèse aborde le problème de tournées de véhicules (VRP) intégrant des contraintes temporelles : fenêtres de temps (TW), synchronisation (S) et précédence (P), appliqué au secteur de soins à domicile, donnant le VRPTW-SP. Il s’agit d’établir un plan de visite journalier des soignants, aux domiciles des patients ayant besoin d’un ou plusieurs services. Tout d’abord, nous avons abordé ce problème sous angle mono-objectif. Ensuite, le cas bi-objectif est considéré. Pour la version mono-objectif, un Programme Linéaire à Variables Mixtes Entières (PLME), deux heuristiques constructives, deux procédures de recherches locales et trois métaheuristiques à base de voisinages sont proposés : une procédure de recherche constructive adaptative randomisée (GRASP), une recherche locale itérée (ILS) et une approche hybride (GRASP × ILS). Concernant le cas bi-objectif, différentes versions de métaheuristiques évolutionnaires multi-objectifs sont proposées, intégrant différentes recherches locales : l’algorithme génétique avec tri par non-dominance version 2 (NSGAII), une version généralisée de ce dernier avec démarrages multiples (MS-NSGAII) et une recherche locale itérée avec tri par non-dominance (NSILS). Ces algorithmes ont été testés et validés sur des instances adaptées de la littérature. Enfin, nous avons étendu le VRPTW-SP sur un horizon de planification, donnant le VRPTW-SP multi-période. Pour résoudre cette extension, un PLME ainsi qu’une matheuristique sont proposés / This work addresses the vehicle routing problem (VRP) including timing constraints: time windows (TW), synchronization (S) and precedence (P), applied in Home Health Care sector; giving the VRPTW-SP. This problem consists in establishing a daily caregivers planning to patients' homes asking for one or several services. We have started by considering the problem as a single objective case. Then, a bi-objective version of the problem is introduced. For solving the single-objective problem, a Mixed Integer Linear Program (MILP), two constructive heuristics, local search procedures and three local search based metaheuristics are proposed : a Greedy Randomized Adaptive Search procedure (GRASP), an Iterated Local Search (ILS) and a hybrid approach (GRASP × ILS). Regarding the bi-objective VRPTW-SP, different versions of multi-objective evolutionary algorithm, including various local research strategies are proposed: the Non-dominated Sorting Genetic Algorithm version 2 (NSGAII), a generalized version of this latter with multiple restarts (MS-NSGAII) and an Iterated Local Search combined with the Non-dominated Sorting concept (NSILS). All these algorithms have been tested and validated on appropriate instances adapted from the literature. Finally, we extended the VRPTW-SP on a multi-period planning horizon and then proposed a MILP and a matheuristic approach
|
600 |
Connaissance inter-entreprises et optimisation combinatoire / Inter-companies knowledge and combinatorial optimizationOuld Mohamed Lemine, Mohamed 17 June 2014 (has links)
La connaissance inter-entreprises permet à chaque société de se renseigner sur ses clients, ses fournisseurs et de développer son activité tout en limitant le risque lié à la solvabilité ou retard de paiement de ses partenaires. Avec les tensions de trésorerie, la nécessité de la croissance et l'augmentation de la concurrence, ce domaine devient plus que jamais stratégique aussi bien pour les PME que pour les grands groupes. La quantité de données traitée dans ce domaine, les exigences de qualité et de fraîcheur, la nécessité de croiser ces données pour déduire des nouvelles informations et indicateurs, posent plusieurs problèmes pour lesquels l'optimisation en général et l'optimisation combinatoire en particulier peuvent apporter des solutions efficaces. Dans cette thèse, nous utilisons l'optimisation combinatoire, l'algorithmique du texte et la théorie des graphes pour résoudre efficacement des problèmes issus du domaine de la connaissance inter-entreprises et posés par Altares D&B. Dans un premier temps, nous nous intéressons à la qualité de la base de données des dirigeants. Ce problème combine la détection et suppression des doublons dans une base de données et la détection d'erreurs dans une chaîne de caractères. Nous proposons une méthode de résolution basée sur la normalisation des données et l'algorithmique de texte et de comparaison syntaxique entre deux chaînes de caractères. Les résultats expérimentaux montrent non seulement que cette méthode est pertinente dans la détection et la suppression des doublons mais aussi qu'elle est efficace de point du vue temps de traitement. Nous nous focalisons par la suite sur les données des liens capitalistiques et nous considérons le problème de calcul des liens indirects et l'identification des têtes des groupes. Nous présentons une méthode de résolution basée sur la théorie des graphes. Nous testons cette méthode sur plusieurs instances réelles. Nous prouvons l'efficacité de cette méthode par son temps de traitement et par l'espace de calcul qu'elle utilise. Enfin, nous remarquons que le temps de calcul de celui-ci augmente de façon logarithmique en fonction de la taille d'instance. Enfin, nous considérons le problème de l'identification des réseaux d'influence. Nous formalisons ce problème en termes de graphes et nous le ramenons à un problème de partitionnement de graphe qui est NP-difficile dans ce cas général. Nous proposons alors une formulation en programme linéaire en nombre entier pour ce problème. Nous étudions le polyèdre associé et décrivons plusieurs classes de contraintes valides. Nous donnons des conditions nécessaires pour que ces contraintes définissent des facettes et discutons des algorithmes de séparations de ces contraintes. En utilisant les résultats polyédraux obtenus, nous développons un algorithme de coupes et branchements. Enfin, nous donnons quelques résultats expérimentaux qui montrent l'efficacité de notre algorithme de coupes et branchements / The inter-companies knowledge allows to every partner to learn about its customers, its suppliers and to develop its activity. Also this permits to limit the risk related to the creditworthiness, or the late payment of its partners. With the cash flow pressures, the need for growth and increased competition, this area becomes more strategic than ever, for both small (PME) and large groups. The amount of data processed in this domain, the requirements of quality and freshness, the need to cross these data to obtain new information and indicators, yield several optimization problems for which the recent techniques and computational tools can bring effective solutions. In this thesis, we use combinatorial optimization, text algorithms as well as graph theory to solve efficiently problems arising in the field of inter-companies knowledge. In particular, such problems was encountered in Altares D&B. First, we focus on the quality of the managers database. This problem combines the detection and removal of duplicates in a database, as well as the error detection in a string. We propose a method for solving this problem, based on data normalization, text algorithms and syntactic comparison between two strings. Our experimental results show that this method is relevant for the detection and removal of duplicates, and it is also very efficient in terms of processing time. In a second part of the thesis, we address a problem related to the data of ownership links. We compute the indirect links, and identify the group heads. We propose a method for solving this problem using graph theory and combinatorial optimization. We then perform a set of experiments on several real-world instances. The computational results show the effectiveness of our method in terms of CPU-time and resource allocation. In fact, the CPU time for computation increases logarithmically with the size of the instances. Finally, we consider the problem of identifying influence networks. We give a description of this problem in terms of graphs, and show that it can reduce to a graph partitioning problem. The latter is NP-hard. We then propose an integer linear programming formulation to model the problem. We investigate the associated polyhedron and describe several classes of valid inequalities. We give some necessaryand sufficient conditions for these inequalities to define facets of the considered polyhedron, and we discuss the related separation problems. Based on the obtained polyhedral results, we devise a Branch-and-Cut algorithm to solve the problem. Some numerical results are presented to show the efficiency of our algorithm.
|
Page generated in 0.0299 seconds