• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 50
  • 2
  • Tagged with
  • 52
  • 52
  • 27
  • 24
  • 24
  • 21
  • 21
  • 21
  • 20
  • 18
  • 16
  • 16
  • 14
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Geologia, petrografia e geoquímica da associação tonalitotrondhjemito-granodiorito (TTG) do extremo leste do subdomínio de transição, Província Carajás

SANTOS, Patrick Araujo dos 31 July 2013 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-02-25T20:39:13Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_GeologiaPetrografiaGeoquimica.pdf: 9291928 bytes, checksum: bf465ad7da671242b950110ac4d1452b (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-02-27T13:21:11Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_GeologiaPetrografiaGeoquimica.pdf: 9291928 bytes, checksum: bf465ad7da671242b950110ac4d1452b (MD5) / Made available in DSpace on 2015-02-27T13:21:11Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_GeologiaPetrografiaGeoquimica.pdf: 9291928 bytes, checksum: bf465ad7da671242b950110ac4d1452b (MD5) Previous issue date: 2013 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / INCT/GEOCIAM - Instituto Nacional de Ciência e Tecnologia de Geociências da Amazônia / Os estudos geológicos realizados no extremo leste do Subdomínio de Transição da Província Carajás demonstraram que a área estudada é composta dominantemente por associações tonalito-trondhjemito-granodiorito (TTG). De modo subordinado, ocorrem rochas monzograníticas deformadas, associadas aos granitos tipo Planalto, e gabros inseridos na associação máfico-enderbítica. Granitos isotrópicos e diversos diques máficos desprovidos de deformação expressiva seccionam os litotipos arqueanos mapeados. A associação TTG aflora na forma de blocos ou lajedos, geralmente em áreas de relevo arrasado. São rochas de cor cinza e granulação média, mostrando bandamento composicional ou, por vezes, aspecto homogêneo, frequentemente englobando enclaves quartzo-dioríticos. Apresentam-se intensamente deformadas, com foliação dominante segundo E-W e mergulhos fortemente inclinados a subverticais. Localmente apresentam estruturas NE-SW, transpostas por cisalhamentos E-W. Em algumas ocorrências, exibem feições miloníticas a protomiloníticas, registradas nas formas ovaladas dos porfiroblastos de plagioclásio ou de veios leucograníticos boudinados. São reconhecidas duas variedades petrográficas para esta associação: Biotitatrondjhemito e, subordinados, biotita-granodioritos, ambos com conteúdos modais variáveis de muscovita e epidoto. Essas variedades possuem aspectos texturais similares e mostram trama ígnea pouco preservada, mascarada por intensa recristalização, acompanhada do desenvolvimento de foliação milonítica incipiente a marcante. Análises por EDS efetuadas em microscópio eletrônico de varredura revelaram que o plagioclásio possui composição de oligoclásio cálcico (An27-19), com teores de Or variando de 0,6 a 2,3%. As biotitas são ferromagnesianas, com ligeira dominância de Fe sobre Mg (Fe/[Fe+Mg] variando de 0,54 a 0,59) e os epidotos analisados apresentam teores de pistacita que variam de 23 a 27,6%, situados em sua maioria no intervalo de epidotos magmáticos. Estudos litogeoquimicos identificaram duas composições distintas: uma de afinidade trondhjemitica (dominante) e outra granodiorítica e cálcico-alcalina. A primeira apresenta características típicas das suítes TTG arqueanas. A última apresenta enriquecimento em LILE, especificamente K2O, Rb e Ba, quando comparada com os trondhjemitos dominantes, mas ainda preserva alguns aspectos afins das associações TTG arqueanas. Diferentes mecanismos são propostos para explicar a origem e evolução desses dois litotipos. Os dados geoquímicos são inconsistentes com as hipóteses de diferenciação desses dois grupos de rochas por meio de processos de cristalização fracionada a partir de magma tonalítico/trondhjemítico ou derivação dos granodioritos por anatexia das rochas TTG dominantes. Os tonalitos e trondhjemitos exibem afinidade com os grupos de TTG de alta razão La/Yb e Sr/Y da Província Carajás, sugerindo que foram derivados de fontes à base de granada anfibolitos em altas pressões (ca. 1,5 GPa), ou no mínimo apresentam uma evolução magmática controlada pelo fracionamento de granada, fato normalmente admitido para os TTG arqueanos. O estudo comparativo apontou maiores similaridades entre os TTG estudados e o Tonalito Mariazinha e o Trondhjemito Mogno, do Domínio Rio Maria, e com o Trondhjemito Colorado e, em menor grau, Trondhjemito Rio Verde, do Domínio Carajás. As características geoquímicas particulares das rochas granodioríticas podem ser devidas à contaminação de magmas ou rochas TTG a partir de metassomatismo litosférico ou à assimilação de sedimentos oriundos da crosta oceânica em subducção durante a gênese do liquido trondhjemítico. Em ambas as hipóteses, haveria a preservação de parte das características de associações TTG. As associações arqueanas identificadas neste trabalho implicam existência expressiva de rochas TTG no Subdomínio de Transição. Esse fato tende a fortalecer a hipótese de que o Subdomínio de Transição representa uma extensão do Domínio Rio Maria, mas afetado por eventos de retrabalhamento crustal durante o Neoarqueano. Na porção leste da área ocorrem pequenos corpos monzograníticos alongados segundo E-W, claramente condicionados por cisalhamentos. Suas rochas apresentam texturas miloníticas, caracterizadas por porfiroclastos de feldspatos com formas amendoadas, contornados principalmente por micas e quartzo recristalizados. Apresentam assinaturas geoquímicas de granitos tipo-A reduzidos e são similares aos granitos da Suíte Planalto, da área de Canaã dos Carajás. Rochas máficas afloram restritamente na porção centro-norte da área na forma de blocos. São rochas com textura dominantemente granoblástica, com arranjos em mosaico, constituídas basicamente por anfibólio e plagioclásio, com quartzo e biotita subordinados. Na porção norte da área mapeada foi identificado um corpo de granito isotrópico, sem deformação expressiva, com texturas rapakivi localizadas. Apresenta relevo de colinas suaves, com padrão morfológico distinto dos granitóides arqueanos. Este corpo granítico foi correlacionado aos granitos tipo-A paleoproterozoicos, representados no Domínio Carajás pela Suíte Serra dos Carajás e pelo Granito Rio Branco. Esses granitos não são objeto desta pesquisa e, portanto, não foram estudados em maior detalhe. / The eastern border of the Transition Subdomain of the Carajás Province is constituteddominantly of Archean tonalite-trondhjemite-granodiorite (TTG). Deformed monzogranites, similar to the Planalto granite suite, and metagabbros inserted in association mafic-enderbitic also occur. Paleoproterozoic isotropic granites and mafic dykes devoid of significant deformation crosscut the Archean lithologies. The TTGs are exposed as blocks or as flat outcrops in areas of low relief and commonly include quartz-diorite enclaves. The TTG rocks display gray colour and are generally medium-grained, showing compositional banding or, sometimes, homogeneous aspect. They show commonly a NW-SW to E-W trending foliation with vertical to subvertical dips and were submitted to NE-SW stress. Locally, it was identified a NE-SW foliation transposed to E-W along shear zones. In some instances, they exhibit mylonitic to protomilonitics features, registered in the oval form of plagioclase porphyroclasts or boudinated leucogranitics veins. Two petrographic varieties are recognized for this association: biotite-trondjhemite and subordinate biotite-granodiorites, both have similar mineralogical and textural aspects and are characterized by a poorly preserved igneous texture, partially overwritten by an intense recrystallization. EDS analyses revealed that the plagioclase is a calcic oligoclase (An27-19), with Or ranging from 0.6 - 2.3%. The biotites are ferromagnesian, with dominance of Fe over Mg (Fe / [Fe + Mg] ranging from 0.54 to 0.59) and the analyzed epidote presents pistacite contents ranging from 23 to 27.6 % and plot mostly in the range of magmatic epidotes. The trondhjemite shows all typical characteristics of Archean TTG suites. They have high La/Yb and Sr/Y ratios, suggesting they were derived from the partial melting of garnet amphibolite sources at high pressures (ca. 1.5 GPa) or, at least, that their magmatic evolution was controlled by the fractionation of garnet and possibly amphibole, without significant influence of plagioclase. The studied TTGs show similarities with Mariazinha tonalite and Mogno trondjemite, of the Rio Maria Domain, Colorado trondhjemite and, in at a lesser degree, to the Rio Verde trondhjemite, of the Carajás Domain. The granodiorites display a calc-alkaline signature and shows LILE enrichment, specifically K²O, Rb and Ba, when compared to the trondhjemites, but still preserving some geochemical features of the TTG. The geochemical data indicate that the trondhjemite and granodiorite are not related by fractional crystallization. An origin of the granodiorite by partial melting of the TTG rocks is also discarded. The granodiorite could, however, result of contamination of TTG magmas by lithosphere metasomatism or assimilation of sediments from subducted oceanic crust along trondhjemite liquid genesis. In the eastern portion of the mapped area, it was identified a small, E-W trending granite stock clearly controlled by shear zones. The rocks have mylonitic textures, characterized by ovoid-shaped feldspar porphyroclasts, wrapped by recrystallized quartz and mica. These granitic rocks have geochemical signatures of reduced A-type granites and are similar to the Planalto granite suite. Boulders of mafic rocks crop out locally in the northern portion of the area. These rocks show a dominant granoblastic texture, and are mainly composed of amphibole and plagioclase, with subordinate biotite and quartz. In the northern part of the mapped area, it was identified a body of isotropic granite without significant deformation and showing locally rapakivi textures. This granitic pluton was correlated to the Paleoproterozoic A-type granites, represented in the Carajás Domain by the Serra dos Carajás suite and Rio Branco Granite. These granites were not studied in detail. The geological and geochemical aspects shown by the Archean granitoids identified in the eastern part of the Transition Subdomain implies in the existence of significant TTG rocks in the Transition Subdomain. This reinforces the hypothesis that the Transition Subdomain could represent an extension of the Rio Maria Domain, but affected by crustal reworking events in the Neoarchean.
32

Estudos de inclusões fluidas e de isótopos estáveis no depósito Moreira Gomes do campo mineralizado do Cuiú-Cuiú, Província Aurífera do Tapajós, Estado do Pará

ASSUNÇÃO, Rose de Fátima Santos 29 August 2013 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-02-26T17:01:47Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosInclusoesFluidas.pdf: 3761378 bytes, checksum: d5c01cb5bad707e8d73d79e69f149711 (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-02-27T15:24:10Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosInclusoesFluidas.pdf: 3761378 bytes, checksum: d5c01cb5bad707e8d73d79e69f149711 (MD5) / Made available in DSpace on 2015-02-27T15:24:10Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosInclusoesFluidas.pdf: 3761378 bytes, checksum: d5c01cb5bad707e8d73d79e69f149711 (MD5) Previous issue date: 2013 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Moreira Gomes é um dos depósitos do campo mineralizado do Cuiú-Cuiú, província Aurífera do Tapajós, com recursos de 21,7 t de ouro. A zona mineralizada, com 1200 metros de comprimento, 30-50 metros de largura e, pelo menos, 400 metros de profundidade é controlada por uma estrutura subvertical de orientação E-W, associada a um sistema de falhas transcorrentes sinistrais. As rochas hospedeiras nesse depósito são predominantemente tonalitos de 1997 ± 2 Ma (Suite Intrusiva Creporizão). O estilo da alteração hidrotermal relacionado à mineralização é predominantemente fissural e localmente pervasivo. Os tipos de alteração hidrotermal são sericitização, carbonatação, cloritização, sulfetação, silicificação e epidotização, além da formação de veios de quartzo de espessuras variadas. Pirita é principal sulfeto e contém inclusões de galena, esfalerita, calcopirita e, em menor quantidade, de hessita e bismutinita. O ouro ocorre mais comumente como inclusão em cristais de pirita e, secundariamente, na forma livre em veios de quartzo. Ag, Pb e Bi foram detectados por análise semi-quantitativa como componentes das partículas de ouro. Estudo de inclusões fluidas identificou fluidos compostos por CO2 (Tipo 1), H2O-CO2-sal (Tipo 2) e H2O-sal (Tipo 3). O volátil CO2 é predominante na fase carbônica. O fluido do Tipo 2 apresenta densidade baixa a moderada, salinidade entre 1,6 e 11,8 % em peso equivalente de NaCl e foi aprisionado principalmente entre 280° e 350°C. No fluido do Tipo 3 o sistema químico pode conter a Cl2 e, talvez, MgCl2, e a salinidade varia de zero a 10,1% em peso equivalente de NaCl. Apenas localmente a salinidade atingiu 25% em peso equivalente de NaCl. Esse fluido foi aprisionado principalmente entre 120° e 220°C e foi interpretado como resultado de mistura de fluido aquoso mais quente e levemente mais salino, com fluido mais frio e diluído. Globalmente, o estudo das inclusões fluidas indica estado heterogêneo durante o aprisionamento e ocorrência de separação de fases, mistura, flutuação de pressão e reequilíbrio das inclusões durante aprisionamento. A composição isotópica do fluido em equilíbrio com minerais hidrotermais (quartzo, clorita e calcita e pirita) e de inclusões fluidas apresenta valores de δ 18 O e δD entre +0,5 e +9,8 ‰, e -49 a -8 ‰, respectivamente. Os valores de 34 S de pirita (-0,29 ‰ a 3,95 ‰) são provavelmente indicativos da presença de enxofre magmático. Pares minerais forneceram temperaturas de equilíbrio isotópico em geral concordante com as temperaturas de homogeneização de inclusões fluidas e compatíveis com as relações texturais. Os resultados isotópicos, combinados com os dados mineralógicos e de inclusões fluidas são interpretados como produto da evolução de um sistema magmático hidrotermal em três estágios. (1) Exsolução de fluido magmático aquoso e portador de CO2 entre 400°C e 320-350°C, seguido de separação de fases e precipitação principal da assembleia clorita-sericita-pirita-quartzo-ouro sob pressões menores que 2,1 kb e a 6-7 km de profundidade. (2) Resfriamento e continuação da exsolução do CO2 do fluido magmático geraram fluido aquoso, mais pobre a desprovido de CO2 e levemente mais salino, com aprisionamento dominantemente a 250°-280°C. A assembleia hidrotermal principal ainda precipitou, mas epidoto foi a principal fase nesse estágio. (3) Mistura do fluido aquoso do estágio 2, mais quente e mais salino, com um fluido aquoso mais frio e menos salino, de origem meteórica. Carbonatação está associada com esse estágio. A assembleia hidrotermal e os valores isotópicos indicam que fluido foi neutro a levemente alcalino e relativamente reduzido, que H2S (ou HS-) pode ter sido a espécie de enxofre predominante, e que Au(HS) -2 deve ter sido o complexo transportador de ouro. A deposição do ouro em Moreira Gomes ocorreu em resposta a diversos mecanismos, envolvendo a separação de fases, mistura e reações fluido-rocha. O depósito Moreira Gomes é interpretado como o produto de um sistema magmático-hidrotermal, mas não possui feições clássicas de depósitos relacionados a intrusões graníticas, tanto oxidadas como reduzidas. A idade de deposição do minério (1,86 Ga) sugere que o sistema magmático-hidrotermal pode estar relacionado com a fase final do extenso magmatismo cálcio-alcalino da Suíte Intrusiva Parauari, embora o magmatismo transicional a alcalino da Suíte Intrusiva Maloquinha não possa ser descartado. / Moreira Gomes is a recently discovered deposit (preliminary resources of 21.7 t Au) of the Cuiú-Cuiú goldfield, an importante and historical mining área of the Tapajós Gold Province, Amazonian Craton. The mineralized zone is about 1200 m long, 30-50 m wide, and is followed to at least 400 m in depth. The zone is controlled by a subvertical, east-west-trending structure that is related to a left-handed strike-slip fault system. The host rocks in the deposit are predominantly tonalites dated at 1997 ± 2 Ma that are attributed to the magmatic arc or post-collision Creporizão Intrusive Suite. Hydrothermal alteration and mineralization are predominantly of the fissure-filling type and locally pervasive. Sericitization, chloritization, sulfidation, silicification, carbonatization and epidotization are the observed alteration types. Pyrite is by far the predominant sulfide mineral and bears inclusions of chalcopyrite, galena, sphalerite and minor hesite and bismuthinite. Gold occurs predominantly as inclusions in pyrite and subordinately in the free-milling state in quartz veins. Ag, Pb and Bi have been detected by semi-quantitatiive analysis. Three types of fluid inclusions, hosted in quartz veins and veinlets, have been identified. (1) Type 1: one- and two-phase CO2 inclusions; (2) Type 2: two- and three-phase H2O-CO2-salt inclusions, and (3) Type 3: two-phase H2O-salt inclusions. CO2 is largely the predominat volatile phase in the CO2-bearing inclusions. The CO2-bearing types 1 and 2 are interpreted as the product of phase separation of an immiscible fluid. This fluid presentes low to moderate density, low to moderate salinity (1.6 to 11,8 wt.% NaCl equivalent) and was trapped chiefly at 280° to 350°C. In Type 3 fluid, the chemical system may contain CaCl2 and/or MgCl2, salinitye varies from zero to 10.1 wt.% NaCl equivalent. Only locally salinities up to 25% have been recorded. This fluid was trapped mainly between 120° and 220°C and is interpreted as resulting from mixing of a hotter and more saline aqueous fluid (in part derived from phase separation of the H2O-CO2 fluid) with a cooler and dilute aqueous fluid. As a whole, the fluid inclusions indicate phase separation, pressure fluctuations, mixing, and reequilibration during trapping. The isotopic composition of inclusion fluids and of the fluid in equilibrium with hydrothermal minerals (quartz, chlorite, and calcite) show δ18O and δD values that range from +0.5 to +9.8‰, and from -49 to -8‰, respectively. The δ34S values of pyrite (-0.29‰ to 3.95‰) are probably related to magmatic sulfur. Mineral pairs show equilibrium isotopic temperatures that are compatible with the fluid inclusion homogenization temperatures and with textural relationships of the hydrothermal minerals. Isotopic results combined with mineralogical and fluid inclusion data are interpreted to reflect a magmatic-hydrothermal system that evolved in at least three stages. (1) Exsolution of a CO2-bearing magmatic fluid between 400°C and 320-350°C and up to 2.1 kbars (6-7 km in depth) followed by phase separation and main precipitation of the hydrothermal assemblage composed of chlorite-sericite-pyrite-quartz-gold. (2) Cooling and continuous exolution of CO2 producing a CO2-depleted and slightly more saline aqueous fluid that was trapped mainly at 250°-280°C. The predominant hydrothermal assemblage of stage 1 continued to form, but epidote is the main phase at this stage. (3) Mixing of the stage 2 aqueous fluid with a cooler and dilute aqueous fluid of meteoric origin, whis was responsible for the main carbonatization phase. The composition of the hydrothermal assemblage and the fluid and isotopic composition indicate that the mineralizing fluid was neutral to slightly alkaline, relatively reduced (only locally, more oxidezed conditions have been attained, resulting in the precipitation of barite). H2S (and/or HS-) might have been the main súlfur species in the fluid and Au(HS)-2 was probably the gold transporting complex. Gold deposition occurred as a consequence of a combination of mechanisms, such as phase separation, mixing and fluid-rock interaction. The Moreira Gomes is a granite-hosted gold deposit that interpreted to be a product of a magmatic-hydrothermal gold system. The age of ore formation (~1.86 Ga) is consistent with the final stages of evolution of the widespread high-K, calc-alkaline Parauari Intrusive Suite, although the ttransitional to predominantly alkaline Maloquinha Intrusive Suite cannot be ruled out. Notwithstanding, the deposit does not show the classic features of (oxidized or reduced) intrusion-related gold deposits of Phanerozoic magmatic arcs.
33

Estudos isotópicos e de inclusões fluidas no depósito central do campo mineralizado do Cuiú-Cuiú, província aurífera do Tapajós, estado do Pará

ARAÚJO, Ana Claudia Sodré 09 January 2014 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2015-02-27T18:02:40Z No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosInclusoes.pdf: 5400718 bytes, checksum: 8eae84db6a618036eae606d7b618a71f (MD5) / Approved for entry into archive by Ana Rosa Silva (arosa@ufpa.br) on 2015-03-02T12:44:19Z (GMT) No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosInclusoes.pdf: 5400718 bytes, checksum: 8eae84db6a618036eae606d7b618a71f (MD5) / Made available in DSpace on 2015-03-02T12:44:19Z (GMT). No. of bitstreams: 2 license_rdf: 22974 bytes, checksum: 99c771d9f0b9c46790009b9874d49253 (MD5) Dissertacao_EstudosIsotopicosInclusoes.pdf: 5400718 bytes, checksum: 8eae84db6a618036eae606d7b618a71f (MD5) Previous issue date: 2014 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / Central é um depósito aurífero do campo mineralizado do Cuiú-Cuiú, Província Aurífera do Tapajós, Cráton Amazônico. A zona mineralizada está hospedada em falha e compreende 800m de comprimento na direção NW-SE, seguindo o trend regional da província Tapajós, com largura entre 50 e 70m e profundidade vertical de pelo menos 450m. A mineralização está hospedada em monzogranito datado em 1984±3 Ma e atribuído à Suíte Intrusiva Parauari. Os recursos auríferos preliminarmente definidos são de 18,6t de ouro. A alteração hidrotermal é predominantemente fissural. Sericitização, cloritização, silicificação, carbonatação e sulfetação foram os tipos de alteração identificados. Pirita é o sulfeto principal e os demais sulfetos (calcopirita, esfalerita e galena) estão em fraturas ou nas bordas da pirita. O ouro preenche fraturas da pirita e análises semi-quantitativas detectaram Ag associada ao ouro. Foram identificados três tipos de inclusões fluidas hospedados em veios e vênulas de quartzo. O tipo 1 é o menos abundante e consiste em inclusões fluidas compostas por uma (CO2vapor) ou duas fases (CO2liq-CO2vapor), o tipo 2 tem abundância intermediária e é formado por inclusões fluidas compostas por duas (H2Oliq-CO2liq) ou três fases (H2Oliq-CO2liq-CO2vapor) e o tipo 3 é o mais abundante e consiste em inclusões fluidas compostas por duas fases (H2Oliq- H2Ovapor). O CO2 representa o volátil nas inclusões com CO2 e essas (tipo 1 e 2) foram geradas pelo processo de separação de fases oriundo de um fluido aquo-carbônico. A densidade global (0,33 - 0,80 g/cm³) e a salinidade (11,15 - 2,42 % em peso equivalente de NaCl) desse fluido são baixas a moderadas e a temperatura de homogeneização mostra um máximo em 340ºC. Quanto ao tipo 3, o NaCl é o principal sal, a densidade global está no intervalo de 0,65 a 1,11 g/cm³, a salinidade compreendida entre 1,16 e 13,3 % em peso equivalente de NaCl e a temperatura de homogeneização é bimodal, com picos em 120-140ºC e 180ºC. A composição isotópica das inclusões fluidas presentes no quartzo e do quartzo, calcita e clorita mostram valores de δ18O e δD de +7,8 a +13,6 ‰ e -15 a -35 ‰, respectivamente. Os valores de δ34S na pirita são de +0,5 a +4,0 ‰ e δ13C na calcita e CO2 de inclusões fluidas de -18 a -3,7 ‰. Os valores de δ18OH2O e de δDH2O no quartzo e inclusões fluidas, respectivamente, plotam no campo das águas metamórficas, com um desvio em direção à linha da água meteórica. Considerando a inexistência de evento metamórfico na região do Tapajós à época da mineralização, o sistema hidrotermal responsável pela mineralização no Central, inicialmente, deu-se a partir de fluidos aquo-carbônicos magmático-hidrotermais, exsolvidos por magma félsico relacionado com a fase mais tardia de evolução da Suíte Intrusiva Parauari. As inclusões aquo-carbônicas e carbônicas formaram-se nessa etapa, predominantemente em torno de 340°C. A contínua exsolução de fluido pelo magma levou ao empobrecimento em CO2 nas fases mais tardias e, com o resfriamento do fluido, as inclusões aquosas passaram a predominar. A partir daí o sistema pode ter interagido com água meteórica, responsável pelo aprisionamento da maior parte das inclusões aquosas de mais baixa temperatura. É possível que parte das inclusões aquosas (as de maior temperatura) represente a mistura local dos fluidos de origens distintas. Essas observações e interpretações permitem classificar Central como um depósito de ouro magmático-hidrotermal relacionado à fase final da formação da Suíte Intrusiva Parauari. / Central is a gold deposit of the Cuiú-Cuiú goldfield, located in the Tapajós Gold Province, Amazonian Craton. The deposit is hosted in a NW-SE-trending structure and the mineralized zone is followed by 800 m along the strike and 450 m along the dip, and is 50-70 m thick. The ore bodies are hosted in a monzogranite dated at 1984±3 Ma and ascribed to the Parauari Intrusive Suite. Resources are estimated in 18.6 t Au. The hydrothermal alteration is predominantly of the fissure-filling type and sericitization, chloritization, silicification, carbonatization and sulfidation are the main alteration types. Pyrite is the predominant sulfide mineral, whereas chalcopyrite, sphalerite and galena are subordinated phases occurring in fractures and rims of pyrite. Gold particles occur in fractures of pyrite and contain subordinate amounts of silver. Three types of fluid inclusions are hosted in quartz veins and veinlets. Type 1 is the least abundant and is composed of one- (CO2vapor) and two-phases (CO2liq-CO2vapor) inclusions; Type 2 comprises two- (H2Oliq-CO2liq) and three-phases (H2Oliq-CO2liq-CO2vapor) inclusions; Type 3 is the most abundant type and consists of two-phases (H2Oliq-H2Ovapor) inclusions. CO2 is the volatile phase in CO2-bearing inclusions (types 1 and 2) and these inclusions were produced by phase separation of an aqueous-carbonic fluid. The density of this fluid is low to moderate (0,33 - 0,80 g/cm³), as is the salinity (11.15 - 2.42 wt.% NaCl equiv.). The homogenization temperatures show a peak at 340ºC. Type 3 inclusions have NaCl as the main salt component, the global density varies from 0.65 to 1.11 g/cm³, and the salinity ranges from 1.16 to 13.3 wt.% NaCl equiv. The homogenization temperature shows bimodal distribution, with peaks at 120-140ºC and 180ºC. Fluid inclusion and mineral (quartz, chlorite, calcite) isotopic compositions show δ18O and δD values of +7.8 to +13.6 ‰ and -15 a -35 ‰, respectively. Pyrite shows δ34S values of +0.5 to +4.0 ‰ and δ13C values ranging from -18 to -3.7 ‰ were obtained in calcite and CO2 inclusion fluids. The fluid δ18OH2O and δDH2O values plot in the field of metamorphic waters with a weak shift towards the meteoric water line. However, considering the absence of known metamorphic event at the time of mineralization at Central, the fluids are interpreted as belonging to a magmatic-hydrothermal system. Accordingly, the aqueous-carbonic fluids were exsolved from felsic magmas related to the latest phases of evolution of the Parauari Intrusive Suite and the carbonic and aqueouscarbonic fluid inclusions were trapped in this phase, predominantly at 340°C. The continuous exsolution lead to progressive decrease in the CO2 contents of the magmas and to increasing predominance of aqueous fluids. At this time, the fluids might have interacted with meteoric waters and most of the low-temperature aqueous inclusions were trapped. It is possible that part of the aqueous fluid inclusions (those with the highest trapping temperatures) represent local mixing of the different fluid sources. These observations allow to interpret Central as a magmatic-hydrothermal gold deposit related to the final stages of evolution of the Parauari Intrusive Suite.
34

Geologia e petrogênese do “Greenstone Belt” identidade: implicações sobre a evolução geodinâmica do terreno granito - “Greenstone” de Rio Maria, SE do Pará

SOUZA, Zorano Sérgio de Souza 07 October 1994 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-02-14T12:12:11Z No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaPetrogeneseGreenstone_V1.pdf: 71676863 bytes, checksum: 533a6c11ec5056e6d7d5e3c25ec0a9fc (MD5) Tese_GeologiaPetrogeneseGreenstone_V2.pdf: 25031034 bytes, checksum: a1f5f43677654e5f560b4c78f08e5e4f (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-02-14T12:28:05Z (GMT) No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaPetrogeneseGreenstone_V1.pdf: 71676863 bytes, checksum: 533a6c11ec5056e6d7d5e3c25ec0a9fc (MD5) Tese_GeologiaPetrogeneseGreenstone_V2.pdf: 25031034 bytes, checksum: a1f5f43677654e5f560b4c78f08e5e4f (MD5) / Made available in DSpace on 2017-02-14T12:28:05Z (GMT). No. of bitstreams: 3 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaPetrogeneseGreenstone_V1.pdf: 71676863 bytes, checksum: 533a6c11ec5056e6d7d5e3c25ec0a9fc (MD5) Tese_GeologiaPetrogeneseGreenstone_V2.pdf: 25031034 bytes, checksum: a1f5f43677654e5f560b4c78f08e5e4f (MD5) Previous issue date: 1994-10-07 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / FINEP - Financiadora de Estudos e Projetos / Este trabalho trata da geologia e petrogênese do "greenstone belt" Identidade, situado entre as cidades de Xinguara e Rio Maria, SE do Estado do Pará. Os dados obtidos permitiram discutir a evolução geodinâmica do terreno granito - "greenstone" da região de Rio Maria, inserindo-a no contexto da Província Mineral de Carajás (PMC), SE do cráton Amazônico. O "greenstone" em lide compõe um cinturão "sinformal" direcionado WNW-ESE, correspondendo a um pacote metavulcãnico, com xistos ultramáficos (UM), basaltos (BAS) e gabros (GB) na base, e, no topo, rochas hipabissais dacíticas (DAC - ca. 2,94 Ga, Pb/Pb). O conjunto foi intrudido por metaplutônicas Mesoarqueanas, os tipos mais precoces sendo quartzo dioríticos, seguidos sucessivamente por granodioritos (com enclaves máficos), trondhjemitos / tonalitos e leucogranitos. O embasamento gnáissico (GN - aflorante a norte e reconhecido por conter uma fábrica mais antiga Sn-1/D1), o "greenstone" e os metagranitóides foram intrudidos no final do Paleoproterozôico por enxames de diques riolíticos (ca. 1,60 Ga, Rb/Sr) e diabásicos. O "greenstone" apresenta estruturas e texturas ígneas reconhecíveis, porém obliteradas em regiões de contato com metagranitóides e em zonas de cisalhamento. As ultramáficas ocorrem como tremolititos, tremolita - talco xistos e talco xistos; o anfibólio é bastante alongado e fino, comumente em arranjos paralelos, interpretados como fantasmas de texturas "spinifex". Os basaltos são maciços ou almofadados, freqüentemente variolíticos. Mostram diferentes graus de recristalização, sendo identificados restos de texturas hialofiticas, pilotaxíticas e traquitóides. Clinoanfibólio (hornblenda actinolítica), epídotos e plagioclásio (albita - andesina) são os minerais mais abundantes. Os gabros são maciços a porfiriticos, distinguindo-se relíquias de texturas subofiticas e granofiricas. Os dacitos são porfiríticos, com fenocristais de quartzo e plagioclásio (oligoclásio), além de hornblenda e nódulos máficos (biotita, clorita, opacos, epidotos, titanita, apatita) nas variedades menos evoluídas. Dentre os metagranitóides, os leucogranitos e trondhjemitos contêm biotita cloritizada, enquanto granodioritos e parte dos tonalitos portam biotita ou biotita + hornblenda (também em quartzo dioritos). O "greenstone" e os metagranitóides foram afetados por uma deformação dúctil, heterogênea, que evoluiu para zonas miloníticas. A estruturação da área é marcada por uma fábrica planar (Sn//Sm/D2) direcionada WNW-ESE a E-W, de mergulhos divergentes. Lineações de estiramento E-W, WNW-ESE ou NW-SE, meso e microestruturas assimétricas S-C, peixes de micas e de clinoanfibólios, e rotações de porfiroclastos a e 15 indicaram uma megaestrutura resultante de um binário com encurtamento NW-SE. A geometria atual do "greenstone" seria derivada de transpressão dextrógira, com o "greenstone" compondo uma estrutura em flor positiva. O regime transpressivo favoreceu a criação de regiões transtrativas, onde se alojaram plútons graníticos no NW, além de clivagens de crenulação extensional (Sn+i/D2) no SW. A quantificação da deformação revelou encurtamento da ordem de 60%, extensão subhorizontal, paralela ao "trend" do "greenstone", de 68 a 500%, e extensão vertical de 101 a 280%. O elipsóide de deformação variou de oblato a prolato, com mudanças de densidade e rotação do eixo de estiramento máximo (X) nas zonas miloníticas. A inversão da deformação permitiu reconstruir a forma original do "greenstone", que seria também alongada WNW-ESE, embora de excentricidade menor que a atual. Estes dados, juntamente com a petrofábrica do eixo c do quartzo, sugeriram que a deformação progressiva envolveu mecanismos de cisalhamento puro e simples, sendo o arcabouço final resultante deste último. Falhas e fraturas rúpteis diversas, afetando também diques riolíticos e diabásicos, marcaram o último evento (D3). As paragêneses minerais do metamorfismo principal (Mn/M2) originaram-se de recristalização estática, pré-tectônica, que modificou parte das texturas e quase totalmente a mineralogia das rochas do "greenstone". Formaram-se anfibólio verde azulado (hornblenda actinolítica), epídotos (pistacita predominante), titanita e quartzo em BAS e GB; tremolita, talco e clorita em UM. Saussuritização e sericitização de plagioclásio, biotitização de anfibólio, cloritização de biotita e transformação de hornblenda em titanita verificaram-se nos metagranitóides. A coexistência de hornblenda + plagioclásio (An> 17) e/ou hornblenda actinolítica + epidotos + clorita em rochas metabásicas mostrou que o evento supra foi de pressão baixa e temperaturas transicionais entre as fácies xisto verde e anfibolito. Este episódio essencialmente térmico refletiu o aquecimento crustal produzido pelo plutonismo do final do Mesoarqueano, tendo obliterado as associações prévias do metamorfismo de fundo oceânico. Ligeiramente concomitante a francamente subseqüente, houve um evento de recristalização dinâmica extensiva (Mm/M2) na fácies xisto verde, particularmente em zonas de cisalhamento e contatos litológicos. Em tais locais, existem evidências de aporte de fluidos (blastomilonitos xistosos e abundantes veios de quartzo) e remobilização da maioria dos elementos químicos (Al, Fe, Ca, K, Na, Rb, Sr, Zr). Em condições PT ainda menores, deu-se finalmente a ação de um evento discreto, relacionado com crenulações e formando clorita, epídotos e quartzo (Mn+1/M2). O evento M2, bem como aquele detectado somente em GN (M1 em fácies anfibolito), foram de natureza dúctil, o que os distinguiu nitidamente do último episódio (D3/M3). Este foi posicionado no final do Paleoproterozóico, tendo caráter hidrotermal e associado á feições rúpteis de alto nível crustal. A evolução progressiva do metamorfismo M2, com pico térmico precoce ao pico da deformação, sugeriu uma trajetória P-T-t anti-horária, correspondente á evolução metamórfica de bacias marginais fanerozóicas. Algumas análises químicas de rochas metavulcânicas permitiram a definição de séries magmáticas e discussão de modelos petrogenéticos. Reconheceram-se três séries geoquímicas, a saber, da mais antiga para a mais nova, komatiítica (UM), toleitica (BAS e GB) e cálcio-alcalina (DAC). A primeira corresponde a komatiitos peridotíticos, com MgO>18% em peso (base anidra), com um "trend" de enriquecimento em Al, tal como em Geluk e Munro, e menos cálcico do que Barberton. Os padrões de terras raras leves são irregulares, com razões (La/Sm)N entre 0,42 e 4,2 e anomalias negativas de Eu. Os terras raras pesadas pareceram menos afetados por processos pós-eruptivos, sendo planos ou ligeiramente fracionados (1,0<(Gd1Yb)N<2,3). Modelos quantitativos foram de dificil execução em virtude da remobilização de vários elementos, porém, em termos qualitativos, foi possível estimar cumulados ricos em olivina e ortopiroxênio. Dentre os toleítos, BAS e GB apresentaram padrões geoquímicos muito similares entre si. Ambos são toleítos de baixo potássio, comparáveis a toleítos arqueanos empobrecidos. Os elementos terras raras são quase planos, com valores 10X o condrito, e anomalias fracas ou inexistentes de Eu. Modelos preliminares sugeriram cumulados semelhantes para BAS e GB, compostos essencialmente de clinopiroxênio e plagioclásio. De acordo com alguns cálculos geoquímicos, a fonte dos magmas que originaram os komatiitos e toleítos seria o lherzolito a granada. Os DAC apresentaram características geoquímicas afins à metavulcânicas e metaplutônicas cálcio-alcalinas tanto modernas quanto arqueanas, seguindo o "trend" trondhjemítico. A diferenciação magmática teria decorrido por fracionamento de plagioclásio>quartzo>hornblenda>K-feldspato, com quantidades accessórias de biotita, magnetita, titanita, alanita e zircão. A fonte do magma dacítico seria crustal do tipo toleíto metamorfisado em fácies granada anfibolito e ligeiramente enriquecido em terras raras leves. No modelo geodinâmico proposto, já existia um embasamento gnáissico antes de 2,96 Ga. Entre 2,96 e 2,90 Ga, a conjugação de alto gradiente geotérmico com extensão litosférica provocou o rifteamento continental, formando bacias marginais, onde se daria a extrusão de komatiitos e toleítos. Em torno de 2,94(?)-2,90 Ga, geraram-se os DAC através de fusão de crosta oceânica em zonas de subducção, evoluindo por fracionamento a baixas pressões. Os mesmos mecanismos geradores dos DAC também seriam responsáveis pelo plutonismo cálcio-alcalino, culminando com a inversão estrutural do "greenstone", espessamento crustal e forma final do terreno granito - "greenstone" (transpressão dextrógira ca. 2,88-2,86 Ga). A região sofreu ainda um episódio de (rea)quecimento, detectado a nível de minerais, sem deformação e metamorfismo correlatos, ao final do Eoarqueano (2,69-2,50 Ga), e intrusão de enxames de diques riolíticos (1,60 Ga, Rb/Sr) e diabásicos ao final do Paleoproterozóico. A correlação com o conhecimento atual da PMC permitiu admitir que o terreno granito - "greenstone" de Rio Maria já estava configurado quando da implantação do Supergrupo Itacaiúnas (ca. 2,76 Ga) e da granitogênse alcalina na Serra dos Carajás. Assim, a transpressão sinistrógira que inverteu aquele supergrupo corresponderia a um evento posterior e bem distinto da transpressão dextrógira da região de Rio Maria. / This thesis deals to the geology and petrogenesis of the Identidade greenstone belt, located between Xinguara and Rio Maria towns, SE of Pará state. The data of this area permitted the discussion of the tectonic evolution of the gravite greenstone terrain of the Rio Maria region in the context of the Província Mineral de Carajás, SE of the Amazonian craton. The greenstone studied compose a synformal belt in the WNW-ESE direction, corresponding to one metavolcanic pile, formed predominantly by ultramafic schists (UM), basalts (BAS) and gabbros (GB) at the base, and hypabyssal dacitic rocks (DAC - ca. 2.94 Ga, Pb/Pb) at the top. The whole was intruded by metaplutonic rocks of Mesoarchean ages, the older one being quartz diorites, followed successively by granodiorites, trondhjemites / tonalites and leucogranites. The gneissic basement (GN - outcroping toward north and recognized for having an older fabric Sn-1/D1), the greenstone and the metagranitoids were intruded by hypabyssal rhyolitic (ca. 1.60 Ga, Rb/Sr) and basic dykes at the end of the Paleoproterozoic. The greenstone presents igneous structures and textures still recognized, although obliterated near the contacts with the metagranitoids and shear zones. The ultramafics occur as tremolitites, tremolite - talc schists and talc schists; the amphibole is very elongated and thin, commonly in parallel arrays, interpreted as ghosts of spinifex textures. The basalts are massive or pillowed and frequently variolitic. They show different degrees of recrystallization, with some relicts of hyalophitic, pilotaxitic and traquitoid textures. Clinoamphibole (actinolitic hornblende), epidotes and plagioclase (albite - andesine) are the most abundant minerais. The gabbros may be massives to porphyritics (plagioclase phenocrysts), still with some relicts of subophitic and granophyric textures. The dacites are porphyritic, with phenocrysts of quartz and plagioclase (oligoclase), besides hornblende and mafic clots (biotite, chlorite, opaque minerais, epidotes, sphene, apatite) in the less evolved samples. Concerning the metagranitoids, the leucogranites and trondhjemites have chloritized biotite, whereas the granodiorites and some tonalites comprise biotite or biotite + hornblende (also in quartz diorites). The greenstone and the metagranitoids were affected by one event of heterogeneous, ductile deformation, that evolved to mylonitic zones. The structural framework of the area is marked by a planar fabric (Sn//Sm/D2) in the WNW-ESE to E-W direction, with moderate to strong dips in a divergent fan. E-W, WNW-ESE or NW-SE stretching lineations, meso and asymmetric S-C microstructures, mica and clinoamphibole fishes, and rotation of o and i porphyroclasts indicated one megastructure resulting from a binary system with NW-SE shortening direction. The actual geometry of the greenstone would be derived from a dextral transpression, with the greenstone forming a positive flower structure. The transpressional regime favored the grow of transtensional cites and subsequent emplacement of granitic plutons on the NW contact, and extensional crenulation cleavage (Sn+1/D2) on the SW of the greenstone. Strain measurements displayed a ca. 60% shortening, subhorizontal extension of ca. 60 to 500% parallel to the greenstone trend, and vertical extension of ca. 101 to 280%. The strain ellipsoid may be oblate to prolate, with changes in density and rotation of the axis of maximum stretching (X) toward the mylonitic zones. The inversion of the deformation permitted the reconstruction of the original shape of the greenstone, that would be also elongated WNW-ESE, but with lesser eccentricity than today. These data, together with the quartz petrofabric, suggested that the deformation has been accommodated by pure and simple shear mechanisms, the final framework resulting essentially from the later. The last event (D3) are represented by faults and fractures which also affected the felsic and basic dykes. The paragenesis of the main metamorphic event (Mn/M2) is represented by static recrystallization, which modified some textures and almost ali minerais within the greenstone. The minerais formed phases were bluish green amphibole (actinolitic hornblende), epidotes, sphene and quartz in BAS and GB; tremolite, talc and chlorite in UM. The metagranitoids show transformations of plagioclase (saussurite, fine white mica), amphibole (to biotite and/or sphene) and biotite (to chlorite). The coexistence of hornblende + plagioclase (An>17) and/or actinolitic hornblende + chlorite in metabasic rocks shows that this event was of low pressures and temperatures in the transitional field of the greenschist and amphibolite facies. This episode should reflect a regional crustal heating produced by the plutonism at the end of the Mesoarchean, that obliterated the previous associations of ocean floor metamorphism. Slightly coeval to subsequently, it occurred one event of extensive dynamic recrystallization (Mm/M2) in the greenschist facies, specially within shear zones and lithological contacts. In these places, there are evidences of fluid incoming (schistose blastomylonites and abundant quartz veins) and remobilization of chemical elements (Al, Fe, Ca, K, Na, Rb, Sr, Zr). Finally, under lower PT conditions, it occurred a less expressive event related to crenulation cleavages and forming chlorite, epidotes and quartz (Mn+1/M2). The M2 event, as well as the one detected only in GN (M1 under amphibolite facies), was of ductile nature and cleary distinguished from the last one (D3/M3). The later was placed at the end of the Paleoproterozoic, being of hydrothermal character and associated to high crustal structures. The progressive evolution of the M2 metamorphism with its thermal peak predating the deformation suggested a counterclockwise P-T-t path, corresponding to the metamorphic evolution of Phanerozoic marginal basins. Some chemical analysis of the metavolcanic rocks permitted the definition of magmatic series and a discussion of petrogenetical modeling. It was possible to recognize three geochemical series, that is, from the older to the younger, komatiitic (UM), tholeiitic (BAS and GB) and calc-alkaline (DAC). The first one corresponds to peridotitic komatiites with MgO>18 weight % (volatile-free basis), with an enrichment trend in Al, such as in Geluk and Munro, and less calcic than the Barberton one. The light rare earth element patterns are irregular with (La/Sm)N ratios between 0.42 and 4.2 and negative Eu anomalies. The heavy rare earth elements seem less affected by post-eruptive processes, being plate or slightly fractionated (1.0<(Gd/Yb)N<2.3). The quantitative models were of hard execution due to the remobilization of several elements. It was possible estimate cumulates rich in olivine and orthopyroxene. With regarding to tholeiites, the BAS and GB showed very similar geochemical signatures, both being low potassium tholeiites comparable to depleted Archean tholeiites. The rare earth elements are almost plate, with values 10X the chondrite, and slight or no Eu anomaly. Preliminary modeling suggested similar cumulates for BAS and GB, composed essentially by clinopyroxene and plagioclase. The magma sources that originated the komatiites and tholeiites would be a garnet lherzolite. The DAC presented geochemical characteristics of modern and Archean metavolcanics and metaplutonics of trondhjemitic nature. The magmatic differentiation would be achieved by fractionation of plagioclase>quartz>hornblende>K-feldspar, with subordinated amount of biotite, magnetite, sphene, allanite and zircon. The source of the dacitic magma would be a tholeiite metamorphosed to the garnet amphibolite facies and somewhat enriched in light rare earth elements. The geodynamical model proposed admit the existence of a gneissic basement prior to 2.96 Ga. Between 2.96 and 2.90 Ga, the interplay of high geothermal gradients and lithospheric extension was responsible for extensive rifting, forming marginal basin systems, where extruded the komatiitic and tholeiitic rocks. At 2.94(?)-2.90 Ga, the DAC were generated from partia' melting of oceanic crust in subduction zone settings, and evolved by low pressure fractional crystallization. The same mechanisms that generated the DAC are extended also to the calc-alkaline plutonism, this one being responsible for the structural inversion of the greenstone, crustal thickening and final shape of the granite - greenstone terrain (dextral transpression ca. 2.88-2.86 Ga). The region still suffered a late episode (end of Eoarchean, 2.69-2.50 Ga) of (re)heating, registered only in sorne mineral, without any evidente of deformation and/or metamorphism. Finally, it occurred the intrusion of felsic (1.60 Ga, Rb/r) and basic dykes at the end of the Paleoproterozoic. The correlation with the actual understanding of the Província Mineral de Carajás permitted envisage that the Rio Maria granite - greenstone terrain was then configured at the moment of implantation of the Itacaiúnas Supergroup (ca. 2.76 Ga) and alkaline granitic plutonism at the Serra dos Carajás. So the sinistrai transpression that inverted that supergroup would correspond to a newer event, very distinct as regards as the dextral transpression of the Rio Maria region.
35

Geologia, geoquímica e geocronologia do magmatismo paleoproterozóico da região de Vila Riozinho, Província Aurífera do Tapajós, Cráton Amazônico

LAMARÃO, Cláudio Nery 27 September 2001 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-12T13:30:19Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaGeoquimicaGeocronologia.pdf: 70010912 bytes, checksum: 246141d661634494d43810aa22911925 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-12T16:20:58Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaGeoquimicaGeocronologia.pdf: 70010912 bytes, checksum: 246141d661634494d43810aa22911925 (MD5) / Made available in DSpace on 2017-04-12T16:20:58Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeologiaGeoquimicaGeocronologia.pdf: 70010912 bytes, checksum: 246141d661634494d43810aa22911925 (MD5) Previous issue date: 2001-09-27 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / A Província Aurífera do Tapajós (PAT), situada na porção centro-meridional do Cráton Amazônico, é caracterizada pela ocorrência de extensas suítes de rochas plutônicas e vulcânicas. Muitas destas estão representadas na região de Vila Riozinho, localizada na porção nordeste da PAT, próxima ao contato entre as províncias Ventuari-Tapajós ou Tapajós-Parima e Amazônia Central. O magmatismo da porção sul da região de Vila Riozinho é representado pelas rochas vulcânicas da Formação Vila Riozinho e pelo maciço São Jorge, no qual foram individualizados os granitos São Jorge Antigo e São Jorge Jovem, além de pequenas ocorrências de granitos pórfiros. A Formação Vila Riozinho é constituída por andesitos basálticos, traquiandesitos basálticos, traquitos, riolitos, tufos e brechas com assinatura geoquímica cálcico-alcalina alto-K a shoshonítica. Datações Pb-Pb em zircão em traquitos desta unidade revelaram idades de 2004±4 Ma e 1998±3 Ma. O Granito São Jorge Antigo corresponde a maior parte do pluton São Jorge. Este é composicionalmente zonado, sendo formado por uma série expandida à base de monzodioritos a quartzo-monzodioritos nas bordas nordeste, norte e leste, monzogranitos a quartzo-monzonitos nas porções intermediária-central e leucomonzogranitos a sienogranitos no centro, correspondendo às rochas mais evoluídas do corpo. Apresenta composição metaluminosa a fracamente peraluminosa, afinidade cálcico-alcalina alto-K e características geoquímicas de granitos gerados em ambiente de arco vulcânico. Datações Pb-Pb em zircão em rochas monzograníticas forneceram idades de 1981±2 Ma e 1983±8 Ma, interpretadas como idades de cristalização do corpo. O Granito São Jorge Jovem foi identificado inicialmente em testemunhos de sondagens na área de garimpo São Jorge, sendo o hospedeiro da mineralização aurífera primária. É mineralógica e petrograficamente similar ao Granito São Jorge Antigo, porém apresenta feições geoquímicas contrastantes e idade de cristalização de 1891±3 Ma. A porção norte da região de Vila Riozinho é dominada por rochas vulcânicas efusivas e piroclásticas félsicas pertencentes à Formação Moraes Almeida, associadas ao Granito Maloquinha. A Formação Moraes Almeida é constituída predominantemente por ignimbritos com riolitos e traquitos subordinados. Os ignimbritos forneceram idade Pb-Pb em zircão de 1875±4 Ma, enquanto riolitos e traquitos de 1890±6 Ma e 1881+4 Ma, respectivamente. O Granito Maloquinha, com idade Pb-Pb em zircão de 1880±9 Ma, é formado por leuco-sienogranitos com leucomonzogranitos subordinados. Os estudos realizados mostraram que as rochas pertencentes a essas duas unidades possuem fortes similaridades petrográficas e assinaturas geoquímicas semelhantes a de granitos do tipo-A aluminosos. Tais fatos evidenciam uma ligação genética entre o Granito Maloquinha e a Formação Moraes Almeida. Além desses, foi estudado, ainda que de modo preliminar, o Granito Jardim do Ouro situado na extremidade noroeste da área. Corresponde a um anfibólio-biotita-monzogranito com idade de 1880 +3 Ma similar a do Granito Maloquinha, porém com feições mineralógicas e geoquímicas distintas deste. Os escassos dados disponíveis indicam que o Granito Jardim do Ouro diverge igualmente dos granitos São Jorge Antigo e São Jorge Jovem, por ser comparativamente mais alcalino e formado em condições menos oxidantes. Pelo menos dois tipos de granitos pórfiros foram identificados na região de Vila Riozinho. O primeiro, provavelmente mais velho, associa-se espacialmente e mostra muitas similaridades geoquímicas com a fácies anfibólio-biotita-monzogranito a quartzo-monzonito do Granito São Jorge Antigo. O segundo, ocorre no contato entre os ignimbritos da Formação Moraes Almeida e o Granito Maloquinha. Mostra uma assinatura geoquímica similar à do Granito Jardim do Ouro e à do traquito da Formação Vila Riozinho. Dois importantes períodos de intensa atividade magmática foram identificados na região de Vila Riozinho no final do Paleoproterozóico. No primeiro, compreendido entre 2010 e 1970 Ma, foram gerados a Formação Vila Riozinho e o Granito São Jorge Antigo. No segundo, situado entre 1900 e 1870 Ma, foram originados a Formação Moraes Almeida e os granitos São Jorge Jovem, Maloquinha e Jardim do Ouro. Admite-se que o magmatismo cálcico-alcalino alto potássio formado no período de 2010 a 1970 Ma teve sua origem relacionada a processos de subducção. As manifestações magmáticas que ocorreram em torno de 1,88 Ga poderiam representar uma fase tardia, ainda vinculada aos processos de subducção ou corresponder às primeiras manifestações de processos de tafrogênese que afetaram globalmente o Cráton Amazônico a partir de 1,88 Ga e se estenderam durante o Mesoproterozóico. A segunda hipótese implica admitir fontes crustais para o magmatismo e é adotada neste trabalho. / Several Paleoproteroic granitoids and two volcanic sequences were studied in the Vila Riozinho region. This region is located in the eastern area of the Tapajós Gold Province, near the border between the Tapajós and Central Amazonian tectonic provinces in the south-central part of the Amazonian craton. In the southern part of the region, it was identified the Vila Riozinho volcanic sequence composed of basaltic andesite, basaltic trachyandesite, trachyte and rhyolite, with a high-K calc-alkaline to shoshonitic geochemical signature. Pb-Pb zircon dating indicate ages of 2000 + 4 Ma and 1998 + 3 Ma for this sequence. The São Jorge granite pluton is spatially associated with this volcanic sequence. Two granitoids were distinguished in the pluton, the Old São Jorge granite, with Pb-Pb zircon ages of 1981 + 2 Ma and 1983 + 8 Ma, and the Younger São Jorge granite with an age of 1891 + 3 Ma. The Older São Jorge granite, largely dominant in the pluton, is composed of an expanded magmatic series including biotite-amphibole monzodiorite/quartz monzodiorite, amphibole-biotite monzogranite/quartz monzonite, biotite leucomonzogranite/syenogranite and granite porphyry. It has a metaluminous to mildly peraluminous character, and high-K cale-alkaline signature, similar to that of volcanic arc granitoids. The Younger São Jorge granite was initially identified in drill cores obtained in the gold mineralized area of the pluton. In that area, it corresponds to a hornblende-biotite monzogranite, but biotite leucogranites occur in the southern part of the pluton. This granite also has a high-K calc-alkaline signature, but it differs from the Older São Jorge granite in some geochemical and mineralogical aspects and it is comparatively younger. In the northern part of the Vila Riozinho region, it was identified the Moraes Almeida volcanic sequence, the Maloquinha and Jardim do Ouro granites and a granite porphyry distinct from that associated with the Older São Jorge granite. The Moraes Almeida Formation is composed of ignimbrite and rhyolite with subordinate trachyte, with Pb-Pb zircon ages of 1875 + 4 Ma, 1890 + 6 Ma and 1881 + 4 Ma, respectively. The 1880 + 9 Ma old Maloquinha granite is composed of leucosyenogranite and subordinate leucomonzogranite. This granite and the rhyolite and ignimbrite of the Moraes Almeida Formation show affinities with aluminous, A-type series. The strong petrographic and geochemical similarities between these rocks suggest that they are cogenetic. An age of 1880 + 3 Ma, similar to that of the Maloquinha grafite, was obtained for the Jardim do Ouro hornblende-biotite monzogranite. However, preliminary data indicate that it differs from the former, as well as from the Older São Jorge and Younger São Jorge granites, in petrographic and geochemical aspects. Geochemical and mineralogical data allow the distinction of two different types of grafite porphyries. The first one is spatially associated and similar to the Older São Jorge granite. The second occurs along the contact between the Maloquinha granite and the ignimbrite of the Moraes Almeida Formation and is geochemically similar to the Jardim do Ouro granite and trachyte of the Moraes Almeida Formation. The magmatic activity in the Vila Riozinho region is concentrated into two distinct periods, near the end of the Paleoproterozoic. The Vila Riozinho Formation and the Older São Jorge granite formed during the first period between 2010 and 1970 Ma. At the second period, between 1900 and 1870 Ma, the Moraes Almeida Formation, Maloquinha, Younger São Jorge and Jardim do Ouro granites were formed. The high-K calc-alkaline magmatism that was formed during the first period is probably related to subduction processes. Two hypotheses are considered to explain the diversified magmatic activity registered during the second period: (1) the different magmas could result from late tectonic activity related to the subduction processes; (2) these magmas are related to taphrogenetic processes that affected the Amazonian craton at 1.88 Ga and lasted the entire Mesoproterozoic. It implies to admit a crustal source for the magmas originated during the second period. The second hypothesis is assumed as the more plausible at this stage, but the need for additional isotopic information is emphasized.
36

Evolução geológica das seqüências do embasamento na porção sul do Cinturão Araguaia - Região de Paraíso do Tocantins

ARCANJO, Silvia Helena de Souza 12 September 2002 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-17T13:13:47Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_EvolucaoGeologicaSequencias.pdf: 13246701 bytes, checksum: 03019e18343f52273b123eb40b406f07 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-04-17T16:28:00Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_EvolucaoGeologicaSequencias.pdf: 13246701 bytes, checksum: 03019e18343f52273b123eb40b406f07 (MD5) / Made available in DSpace on 2017-04-17T16:28:00Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_EvolucaoGeologicaSequencias.pdf: 13246701 bytes, checksum: 03019e18343f52273b123eb40b406f07 (MD5) Previous issue date: 2002-09-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As unidades litoestratigráficas do embasamento do segmento sul do Cinturão Araguaia, em função dos restritos registros geocronológicos, foram inicialmente consideradas como de idade arqueana. Este posicionamento estratigráfico começou a ser modificado após as primeiras investigações geocronológicas sistemáticas que surgiam, a partir da segunda metade da última década, revelaram um predomínio de processos geológicos do Paleoproterozóico, contrastando com as idades arqueanas encontradas em ortognaisses do embasamento do segmento setentrional do cinturão. Um estudo isotópico foi realizado nas rochas que constituem as seqüências do embasamento no segmento sul do Cinturão Araguaia, arredores de Paraíso do Tocantins e os resultados do mesmo, apresentados neste trabalho, tiveram como base as metodologias de evaporação de Pb em monocristais de zircão (Pb-Pb em zircão) e Sm-Nd (rocha total). Estes foram empregados com intuito de aperfeiçoar o quadro estratigráfico e reconstituir a evolução geológica desse segmento crustal, onde ocorrem o Grupo Rio do Coco, o Complexo Rio dos Mangues e o Granito Serrote, bem como à Suíte Monte Santo, que também aparece nesse contexto. Os processos geológicos identificados para a região aconteceram a partir do Arqueano e estenderam-se até o Neoproterozóico. Os primeiros indícios de fontes arqueanas foram obtidos em alguns restritos corpos ortoderivados no setor leste da área mapeada, cujas idades TDM situaram-se entre 3,25 e 2,78 Ga. De maneira clara, o Arqueano, ocorre na porção noroeste da área estudada, sendo representado por uma rocha metabásica pertencente ao Grupo Rio do Coco (seqüência greenstone belt), com idade de 2.618 ± 14 Ma, que é interpretada como a idade de extrusão do protólito vulcânico. Representariam assim dois segmentos crustais pretéritos individualizados na região. No Paleoproterozóico foi constituído o Complexo Rio dos Mangues, a unidade de maior expressão no embasamento, cujos registros das idades (Pb-Pb em zircão) encontrados nos ortognaisses que o compõem variaram desde 2.054 ± 4 Ma até 2.086 ± 16 Ma, formados a partir de fonte mantélica, juvenil, com uma menor contribuição crustal e idades TDM entre 2,35 e 2,21 Ga. Os processos geológicos que marcaram este período, de maneira geral, envolveram encurtamento crustal, com a participação de colisões e cavalgamentos que facilitaram a fusão parcial de compartimentos crustais, espessados, resultando na geração de alguns corpos ígneos (1,85 e 1,82 Ga) e do Granito Serrote (1,86 Ga). O Granito Serrote, apesar de ter se colocado ao final do Paleoproterozóico, foi gerado a partir de fontes ainda mais antigas que aquelas do Complexo Rio dos Mangues, situadas entre 2,50 e 2,43 Ga. O segmento crustal continental então estabelecido, com rochas de idades e origens diversas, pode ser projetado para leste, muito além da área aqui enfocada, no contexto da arquitetura do Supercontinente Atlântica, consolidado de forma definitiva no final do Paleoproterozóico. Ao término de um longo período durante o qual não se registraram eventos tectônicos significativos, no final do Mesoproterozóico, sobreveio na região, uma nova fase de instabilidade marcada por processos tafrogenéticos, cujas evidências seriam o aparecimento de magmatismo alcalino e máfico, além de bacias deposicionais que assinalam um contexto distensivo por toda a área. Em uma dessas bacias tem destaque a que acolheu os sedimentos que originaram as supracrustais do Cinturão Araguaia, a qual, durante o seu processo evolutivo, alcançou o estágio de proto-rifte. Mais distalmente, ao norte do Maciço de Goiás, este processo de quebramento aparentemente permitiu a constituição de um domínio oceânico, que por evolução e reciclagem, teria gerado as rochas que compõem o Arco Magmático de Goiás. Na região trabalhada este terreno de arco seria apenas prenunciado pelo aparecimento de um gnaisse tonal ítico com idade de 840 Ma e idade modelo TDM de 1,83 Ga. Os efeitos dos processos dessa tafrogênese, dos quais os principais vestígios são os gnaisses sieníticos encontrados na Suíte Monte Santo, com idade de 1.051 ± 17 Ma, correlacionam-se aos processos de fissão ocorridos mundialmente e que levaram à fragmentação do Supercontinente Rodinha. Os protólitos desta suíte também foram gerados durante o Mesoproterozóico, conforme atestam as idades modelo TDM entre 1,49 e 1,70 Ga. Finalmente, passando ao Neoproterozóico, através da inversão nas condições geodinâmicas, seguir-se-iam na região processos de encurtamento horizontal e de espessamento crustal, além de fusões, espacial e volumetricamente distintas, que teriam gerado o Granito Matança e o Granito Santa Luzia, encontrado no domínio do Cinturão Araguaia. Este cinturão foi edificado a partir dessa movimentação tectônica, guardando registros de feições estruturais pretéritas, também presentes nos conjuntos litoestruturais mais antigos. O transporte de massas tectônicas no sentido do Cráton Amazônico teria ocorrido, resultando na atual arquitetura em que se encontram, na forma de lascas imbricadas. / The basement rocks in the south segment of the Araguaia Belt, due to the scarcity of geochronological information, were firstly considered as of Archean age. This interpretation began to be reviewed after the geochronological investigations were carried out during the last decade, which showed an important contribution of geological processes of the Paleoproterozoic in the formation of those basement rocks. In this work an isotopic study was carried out on the basement sequences of the southern segments of the Araguaia Belt and its results were based on the single zircon Pb-evaporation technique (Pb-Pb in zircon) and the Sm-Nd (whole rock) systematic. These techniques were used in order to improve and reconstruct the geological evolution of this crustal segment where Rio do Coco Group, Rio dos Mangues Complex, and Serrote Granite occur, as well as Monte Santo Suite that also appear in this context. The geological processes identified for the region took place from the Archean through the Neoproterozoic Era. The first evidences from the archean source were obtained in some restricted orthoderivated bodies in the east sector of the mapped area in which the TDM ages varied between 3.25 and 2.78 Ga. In a clear way, the Archean occurs in the northwest portion of the studied area being represented by a metabasic rock belonged to the Rio do Coco Group (greenstone belt sequence), with 2.618 ± 14 Ma. This age is interpreted as the age of the extrusion of the volcanic protolith. They would represent the two crustal preterit segments found in the region. During the Paleoproterozoic the Rio dos Mangues Complex was constituted, representing the most expressive unit of the basement. Ortogneisses of the Rio dos Mangues Complex were dated and their Pb-Pb in zircon ages varied between 2.054 ± 4 Ma and 2.086 ± 16 Ma. They were formed from a mantelic and juvenile source, with a small crustal contribution and their TDM ages are between 2.35 e 2.21 Ga. The geological processes that marked this period, involved crustal shortening with the participation of collision and thrusting that induced partial fusion of some parts of the thickened crust. The results were the generation of some igneous bodies (1.85 and 1.82 Ga) and of the Serrote Granite (1.86 Ga). Although the emplacement of the Serrote Granite took place at the end of the Paleoproterozoic, it was developed from older sources (2.50 e 2.43 Ga) than those of the Rio dos Mangues Complex. So, The continental crust established, with rocks from different ages and sources may be projected to the east, far from the studied area, inside the context of the architecture from the Atlantic Super Continent, formed definitively at the end of the Paleoproterozoic. At the end of a period without tectonic registers (end of Mesoproterozoic) a new phase took place in the region marked by tafrogenetic processes as the appearing of alkaline and basic magmatism as well as depositional basins that show an extensive context along the whole area. One of these basins received the sediments that originated the Araguaia Belt Supracrustals, which, during its evaluative process, reach the proto-rifte stage. Far from here, at the north portion of Goiás Massif, this rifting process seemed to permit the constitution of an oceanic domain, that, by evolution and recycling, may have be formed the rocks of the Magmatic Arc of Goiás. At the worked area, this arc terrain could be only be predicted by the appearing of one tonalitic gneiss with the age of 840 Ma and TDM model ages of 1.83 Ga. The effects of this tafrogenetic processes, from which the most important evidences are sienitic gneisses, found at Monte Santo Suit, with 1.051 ± 17 Ma, are related to the fission processes in the whole world which made the break up of the Rodinia Super Continent possible. The protolith of this suit were also been formed during the Mesoproterozoic as they can be seen in the TDM model age between 1.49 e 1.70 Ga. Finally, passing to the Neoproterozoic, through the inversion in the geodinamic conditions, processes of horizontal shortening again took place in the region, with the participation of crustal thickening as well as distinct volumetric and spatial fusions that may have generated the Matança and Santa Luzia Granites. The last one found inside the domain of Araguaia Belt. The Araguaia Belt was built from this tectonic motion, and has registers of past structural formations, also present in the older litostructural groups. The mass tectonic transport in the Amazonian Craton way might have occurred, resulting in the actual architecture found nowadays in the form of imbricated slices.
37

Geocronologia em zircão, monazita e granada e isótopos de Nd das associações litológicas da porção oeste do domínio Bacajá: evolução crustal da porção meridional da província Maroni-Itacaiúnas - sudeste do Cráton Amazônico

VASQUEZ, Marcelo Lacerda 16 November 2006 (has links)
Submitted by Edisangela Bastos (edisangela@ufpa.br) on 2017-05-02T20:07:43Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeocronologiaZircaoMonazita.pdf: 6498084 bytes, checksum: 1d6867735e98e0abb4607eb52f655f68 (MD5) / Approved for entry into archive by Edisangela Bastos (edisangela@ufpa.br) on 2017-05-02T22:02:58Z (GMT) No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeocronologiaZircaoMonazita.pdf: 6498084 bytes, checksum: 1d6867735e98e0abb4607eb52f655f68 (MD5) / Made available in DSpace on 2017-05-02T22:02:58Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Tese_GeocronologiaZircaoMonazita.pdf: 6498084 bytes, checksum: 1d6867735e98e0abb4607eb52f655f68 (MD5) Previous issue date: 2006-11-16 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / CNPq - Conselho Nacional de Desenvolvimento Científico e Tecnológico / CPRM - Companhia de Pesquisa de Recursos Minerais / Serviço Geológico do Brasil / FINEP - Financiadora de Estudos e Projetos / O Domínio Bacajá está localizado na porção sudeste do Cráton Amazônico e representa o segmento meridional da Província Maroni-Itacaiúnas que é constituída de orógenos paleoproterozóicos e blocos arqueanos retrabalhados durante o Ciclo Transamazônico (2,2-1,95 Ga). Este domínio é composto de granitóides, rochas charnoquíticas e supracrustais, ortognaisses, migmatitos e granulitos para e ortoderivados. Dados geocronológicos prévios das rochas desse domínio indicam retrabalhamento de crosta arqueana e formação de crosta juvenil durante o Ciclo Transamazônico. O presente estudo foi baseado em levantamentos de campo, petrografia, geoquímica isotópica e geocronologia, tendo como objetivo identificar os eventos ígneos e metamórficos de alto grau que ocorreram na porção oeste Domínio Bacajá a fim de entender sua evolução crustal. Os dados geocronológicos existentes, somados aos novos dados de geocronologia em zircão (U-Pb SHRIMP e Evaporação de Pb) e isótopos de Nd para as rochas das associações litológicas que ocorrem na área de estudo permitiram identificar e datar eventos magmáticos ocorridos do Neoarqueano ao Orosiriano, com auge da formação de crosta durante o Riaciano. Ortognaisses de 2,67-2,44 Ga e remanescentes de rochas metavulcânicas de 2,45 Ga marcam o primeiro evento de formação de crosta na porção oeste Domínio Bacajá, com uma acresção a cerca de 2,7 Ga e contaminação por crosta mesoarqueana (ca. 3,0 Ga). Um segundo evento de acresção há aproximadamente 2,5 Ga e um de retrabalhamento de crosta mesoarqueana foram respectivamente registrados em rochas metavulcânicas de 2,36 Ga e granitóides 2,34 Ga associados. Esses eventos provavelmente estão relacionados à amalgamação de um arco de ilha tardi sideriano a um microcontinente arqueano. Granitóides de 2,21-2,18, Ga, com contribuição crustal neoarqueana (ca. 2,8 Ga), e de 2,16-2,13 Ga, formados por mistura de um componente juvenil de ca. 2,3 Ga com fontes crustais arqueanas, estão relacionados a arcos magmáticos riacianos colididos contra um continente arqueano-sideriano. Esta colisão foi marcada pela formação de granitóides de 2,10 Ga (sincolisionais ?), com prováveis fontes a partir de rochas do arco magmático tardio, e de granitóides e rochas charnoquíticas de 2,09-2,07 Ga (pós-colisional) formados respectivamente por fusão de fontes arqueanas (3,0-2,7 Ga) e mistura com o componente juvenil transamazônico (ca. 2,3 Ga). Por fim, no Domínio Bacajá e adjacências ocorreram eventos magmáticos orosirianos, marcados pela formação local de granitóides de 1,99 Ga, cuja relação com o Ciclo Transamazônico é incerta, e pelo magmatismo de ca. 1,88 Ga de ambiente extensional. Ambos os eventos com contribuição crustal neoarqueana (ca. 2,8 Ga) que sugerem participação da crosta arqueana do Domínio Bacajá.. Eventos metamórficos de alto grau e de anatexia foram identificados nos gnaisses e granulitos para e ortoderivados do oeste do Domínio Bacajá. No entanto, os estudos petrológicos e geocronológicos foram enfocados nas rochas metassedimentares pelíticas de alto grau por serem melhores marcadores desses eventos. Esses eventos foram datados por U-Pb SHRIMP em zircão e monazita, Evaporação de Pb e U-Pb ID-TIMS em zircão e Sm-Nd em granada e rocha total. As rochas metassedimentares de alto grau apresentaram fontes detríticas dominantemente arqueanas (3,1-2,5 Ga) e foram afetadas por eventos tectono-termais riacianos, preliminarmente identificados pelas idades isocrônicas Sm-Nd em granada (2208 e 2025 Ma). Contudo, existem evidências sugestivas de um evento metamórfico de alto grau de cerca de 2,3 Ga que poderia estar relacionado a provável colisão tardi-sideriana. Os eventos de alto grau transamazônicos iniciaram com uma migmatização de 2147-2123 Ma em condições P-T de fácies anfibolito superior registrada nos grãos de zircão e núcleos de cristais de monazita. Este evento foi contemporâneo à formação de granitóides dos arcos magmáticos riacianos, podendo estar relacionado à colisão do arco mais precoce. Um evento anatético há 2109 Ma foi detectado nos sobrecrescimentos em cristais de zircão, sugestivamente relacionado ao principal evento de colisão continental riaciana identificado nos orógenos transamazônicos do Escudo das Guianas. Apesar de ter havido a formação de granitóides e rochas charnoquíticas contemporâneas, nos metapelitos estudados esse evento foi marcado por uma modesta anatexia. Por fim, um metamorfismo de fácies anfibolito superior a granulito, de baixas pressões (4-6 kbar / 700-800ºC), há cerca de 2070 Ma foi registrado nos cristais de monazita e zircão, seguido de um possível evento de perda de Pb na monazita há 2057 Ma. A ocorrência de intrusões quartzo dioríticas e charnoquíticas contemporâneas ao metamorfismo granulítico sugerem processo de underplating de magma máfico e adelgaçamento crustal durante o estágio pós-colisional. Os eventos ígneos e metamórficos do oeste do Domínio Bacajá são análogos aos registrados em outros domínios transamazônicos do Cráton Amazônico e da América do Sul. Em escala global, a colagem riaciana há 2,1 Ga tem sido relacionada à colisão das paleoplacas do leste da América do Sul contra o oeste da África que desencadeou a formação de um supercontinente no Paleoproterozóico. / The Bacajá domain is located in the southeastern Amazonian craton and represents the southern part of the Maroni-Itacaiúnas province, which comprises Paleoproterozoic orogens and Archean blocks reworked during the Transamazonian cycle (2.2–1.95 Ga). This domain is composed of granitoids, charnockitic and supracrustal rocks, orthogneisses, migmatites, metaigneous granulites and high-grade metasedimentary rocks. The previous geochronological data denote reworking of Archean crust and formation of juvenile crust during the Transamazonian cycle. The present study was based on field work, petrography, isotope geochemistry and geochronology in order to identify the igneous and high-grade metamorphic events in the western part of the Bacajá domain and to discuss its crustal evolution. The previous geochronological data, plus new data on zircon (U-Pb SHRIMP and Pbevaporation) and Nd isotope data for the igneous and meta-igneous rocks of the lithologic associations from the study area allowed the identification and dating of magmatic events from Neoarchean to Orosirian times, with a climax of crust formation during the Rhyacian. The 2.67- 2.44 Ga orthogneisses and 2.45 Ga metavolcanoclastic rock remnants are related to the first event of crust formation in the western Bacajá domain marked by an accretion at ca. 2.7 Ga and contamination by Mesoarchean crust (ca. 3.0 Ga). A second event of accretion at ca. 2.5 Ga and reworking of Mesoarchean crust were identified in 2.36 Ga metavolcanic rocks and associated 2.34 Ga granitoids, respectively. They are probably related to the amalgamation of a late Siderian island arc to an Archean microcontinent. The 2.21-2.18 Ga granitoids with Neoarchean crustal sources (ca. 2.8 Ga) and 2.16-2.13 Ga granitoids formed by mixture of a 2.3 Ga juvenile component with Archean crustal sources are related to Rhyacian magmatic arcs that collided against an Archean-Siderian continent. This collision was marked by the formation of 2.10 Ga granitoids (syncollisional rocks ?), probably originated from sources related to late magmatic arc rocks, and of charnockitic rocks and granitoids of 2.09-2.07 Ga (post-collisional rocks) formed respectively by mixture of Ryacian crustal sources and the 2.3 Ga juvenile component and by melting of Archean crust (3.0-2.7 Ga). There are Orosirian magmatic events identified in 1.99 Ga granitoids, whose correlation with the Transamazonian cycle is controversial, and by the extensional magmatism of ca. 1.88 Ga. Both events have Neoarchean crustal sources (ca. 2.8 Ga), probably derived from the Bacajá domain. The high-grade metamorphic events and associated anatexis were identified in the metaigneous and metasedimentary rocks from the western Bacajá domain. However, the petrologic and geochronological studies focused only on the high-grade metasedimentary rocks. These rocks have dominantly Archean detrital sources (3.1-2.5 Ga) and were affected by Rhyacian metamorphic events preliminary constrained by Sm-Nd whole rock-garnet isochrones (2208- 2025 Ma), but there is little evidence suggesting the existence of a high-grade metamorphic event at 2.3 Ga, that could be related to the collage of the late Siderian island arc. High-grade Transamazonian metamorphism commenced with a 2147-2123 Ma migmatization event that took place under upper amphibolite facies P-T conditions and was preserved in zircon overgrowths and in the cores of monazite grains. This event could be related to the collision of the early Rhyacian magmatic arc against to a Neoarchean-late Siderian continent. An anatectic event at 2109 Ma was recorded on unzoned rims of zircon crystals, which is probably it related to the continental collision at 2.1 Ga that has been identified in the Transamazonian orogens of the French Guiana shield. Despite the formation of synchronous granitoids and charnockitic rocks during this collision, in the studied metapelites it was a modest anatexis. After that, a low pressure granulite facies metamorphism (4-6 kbar / 700-800 ºC) at ca. 2070 Ma was registered on monazite and zircon grains, followed by a possible Pb-loss event at 2057 Ma. The existence of coeval quartz diorite and charnockitic intrusions suggests underplating of mafic magma and crustal thinning during the post-collisional period. The igneous and metamorphic events of the western Bacajá domain are analogue to those identified in other Transamazonian domains of the Amazonian craton and South America. In global scale, the 2.1 Ga collage has been correlated to the collision of the paleoplates of eastern South America and western Africa that triggered the formation of a Paleoproterozoic supercontinent.
38

Geologia e petrografia do Grupo Alto Jauru, na região da Fazenda Retiro, SW do Cráton Amazônico : evidências de um prisma acrescionário estateriano

Santos, Flávia Regina Pereira 17 March 2014 (has links)
Submitted by Simone Souza (simonecgsouza@hotmail.com) on 2017-11-06T14:09:28Z No. of bitstreams: 1 DISS_2014_Flávia Regina Pereira Santos.pdf: 8722372 bytes, checksum: c183f45aa009ebffa0e290e3e4ab1d3a (MD5) / Approved for entry into archive by Jordan (jordanbiblio@gmail.com) on 2018-02-02T14:48:57Z (GMT) No. of bitstreams: 1 DISS_2014_Flávia Regina Pereira Santos.pdf: 8722372 bytes, checksum: c183f45aa009ebffa0e290e3e4ab1d3a (MD5) / Made available in DSpace on 2018-02-02T14:48:57Z (GMT). No. of bitstreams: 1 DISS_2014_Flávia Regina Pereira Santos.pdf: 8722372 bytes, checksum: c183f45aa009ebffa0e290e3e4ab1d3a (MD5) Previous issue date: 2014-03-17 / CAPES / A Província Rondoniana-San Ignácio, na porção sudoeste do Cráton Amazônico, é marcada por um complexo amalgama de terrenos de diferentes idades e origens. O embasamento do Terreno Jauru é constituído por rochas metavulcano-sedimentares e intrusivas ácidas, básicas e ultrabásicas. As rochas metavulcano-sedimentares vem sendo comumente designadas de Grupo Alto Jauru. Mapeamento geológico, petrografia, análise estrutural e geocronologia realizados na região da Fazenda Retiro, a norte da cidade de Araputanga, SW do estado de Mato Grosso, revelam que este Grupo é constituído por biotita-muscovita-quartzo xistos; clorita-biotita-muscovita xistos; granada-cordierita-biotita xisto e estaurolita-andalusita-biotita xisto; associados à granada-sillimanita-biotita gnaisse, biotita gnaisse, anfibolitos e muscovita granito. A petrografia e as relações estruturais indicam que estas rochas foram afetadas por dois eventos deformacionais, Dn e Dn+1, com as foliações associadas Sn (xistosidade e bandamento gnáissico) e Sn+1 (clivagem de crenulação); e três eventos metamórficos: o primeiro evento metamórfico (M1), contemporâneo à Sn de fácies xisto verde inferior; o segundo (M2) associado a fase Sn+1 de fácies xisto verde a anfibolito; e o terceiro evento térmico (M3) de fácies hornblenda-hornfels. A idade de cristalização do biotita gnaisse obtida pelo método U/Pb (SHRIMP) em zircão é de de 1819 ± 6,7 Ma. A interpretação desses dados permite considerar que as rochas do Grupo Alto Jauru são parte de um prisma acrescionário formado no Estateriano. / The Rondoniana-San Ignácio Province, southwestern portion of the Amazonian Craton, is marked by a complex amalgam of terrains from different ages and sources. The basement of one Jauru Terrain consists of metavolcano-sedimentary rocks and intrusive acidic, basic and ultrabasic. The metavolcano-sedimentary rocks has been commonly called Alto Jauru Group. Geologic mapping, petrography, geochronology and structural analysis performed on Retiro Farm region, north of the Araputanga city, SW of Mato Grosso state, reveal that this Group consists of biotite-muscovite-quartz schists, chlorite-biotite-muscovite schists, garnet-cordierite-biotite schist and staurolite-andalusite-biotite schist, garnet-sillimanite associated with biotite-gneiss, biotite gneiss, amphibolite and muscovite granite. The petrography and structural relationships indicate that these rocks were affected by two deformational events Dn and Dn+1, Sn associated with the foliation (schistosity and gneissic banding) and Sn+1 (crenulation cleavage), and three metamorphic events: first metamorphic event (M1), the contemporary Sn lower greenschist facies, the second (M2) associated with Sn+1 phase greenschist to amphibolite facies, and the third thermal event (M3) hornblende hornfels facies. The crystallization age of the biotite gneiss obtained by the method U/Pb (SHRIMP) zircon is 1819 ± 6.7 Ma. The interpretation of these data suggest that the rocks of the Alto Jauru Group are part of a accretionary prism formed in Statherian.
39

Estratigrafia e paleoambiente da capa carbonática neoproterozóica, sul do cráton amazônico, região de Tangará da Serra (MT)

Soares, Joelson Lima 06 May 2008 (has links)
Made available in DSpace on 2015-04-22T21:58:29Z (GMT). No. of bitstreams: 1 Dissertacao_Joelson Soares.pdf: 6826963 bytes, checksum: 26430a23509522e7bc61cc5e2c669c45 (MD5) Previous issue date: 2008-05-06 / FAPEAM - Fundação de Amparo à Pesquisa do Estado do Amazonas / The Neoproterozoic is marked by major climatic changes that interfere with the Crucially in biological evolution and paleoceanográfica of our planet, and mainly characterized by periods of low overall glacial that achieved latitudes. This dramatic period in the history of the planet is recorded in layers carbonate termed carbonate layers that overlap directly diamictic glaciers. In this work one Neoproterozoic cap carbonate 20 m thick was Tangara described in Limestone mine, Tangara da Serra, Mato Grosso. That sequence comprises the Mirassol d West formations (dolomite) and Guide (limestone) belonging to the lower group macaws. The cover is composed of dolomitic dolograinstones peloidais pink with inverse grading, a parallel lamination and truncation of low angle, in addition to discontinuous layers of fibrous crystals calcite (gypsum pseudomorphs second?), interpreted as records of a shallow to moderately deep platform with hypersalinity events. The cover Limestone consists of rolled and massive, siltstone rich in iron oxide, and lime thin with wavy bedding megamarcas interpreted as deposits moderately deep mixed platform dominated by waves. Limestone with fine corrugated laminating / ripple marks and fans crystals (pseudomorphs second aragonite), intercalated with shales were interpreted as deposits deep platform and supersaturated in CaCO3. With calcareous structures Slip including convoluted laminations and syn-sedimentary faults characterized slope deposits, while Neptunian dykes, filled with limestone breccias, and deformed layers between non deformed layers suggest seismic activity. Three stratigraphic surfaces divide the carbonate succession studied: S1 separates the covers dolomitica and limestone and is interpreted as transgressive surface, while surfaces S2 and S3 within the limestone cover are considered limits facies. Facies deformed occur throughout the sequence, separated by intervals without strain, and were split into three packages (A, B and C). Packages A and C exhibit ductile-brittle structures like folds, faults and bedding convoluted, while the B package contains structures formed in brittle regime as failures and fractures. Analysis of C and O isotopes showed negative values ​​similar to found in other carbonate covers the world. The data 13C isotope values ​​between -4 and -6 in the case dolomite , limestone while in the case 13C the values ​​reaches to -7 without co- variance of the 18 O isotope indicates change by meteoric fluids or by dolomitization . The sequence described in Tangara Sierra expands the occurrence of carbonate layers in South America and corroborates the interpretation of an extensive carbonate platform post- glaciation Puga , related to Marinoano event , this part of the Amazon Craton. / O Neoproterozóico é marcado por importantes mudanças climáticas que interferiram da forma crucial na evolução biológica e paleoceanográfica do nosso planeta, sendo caracterizado principalmente por períodos de glaciação global que alcançaram baixas latitudes. Este período dramático da história do planeta está registrado em camadas carbonáticas denominadas de capas carbonáticas que sobrepõem diretamente diamictitos glaciais. Neste trabalho uma capa carbonática neoproterozóica de 20 m de espessura foi descrita na mina Calcário Tangará, região de Tangará da Serra, Mato Grosso. Essa seqüência compreende as formações Mirassol d Oeste (dolomítica) e Guia (calcária) que pertencem à parte inferior do Grupo Araras. A capa dolomítica é composta por dolograinstones peloidais rosados com gradação inversa, laminação plano-paralela e truncamentos de baixo ângulo, alem de camadas descontínuas de cristais fibrosos de calcita (pseudomorfos segundo gipsita?), interpretados como registros de uma plataforma rasa a moderadamente profunda com eventos de hipersalinidade. A capa calcária consiste em siltitos laminados e maciços, ricos em óxido de ferro e calcários finos com acamamento de megamarcas onduladas, interpretados como depósitos de plataforma mista moderadamente profunda dominada por ondas. Calcários finos com laminação ondulada/marcas onduladas e leques de cristais (pseudomorfos segundo aragonita), intercalados com folhelhos, foram interpretados como depósitos de plataforma profunda e supersaturada em CaCO3. Calcários com estruturas de escorregamento incluindo laminações convolutas e falhas sin-sedimentares caracterizam depósitos de talude, enquanto diques neptunianos, preenchidos por brechas calcárias, e camadas deformadas entre camadas não deformadas sugerem atividade sísmica. Três superfícies estratigráficas dividem a sucessão carbonática estudada: S1 separa as capas dolomitica e calcária e é interpretada como superfície transgressiva, enquanto as superfícies S2 e S3, dentro da capa calcária são consideradas limites de fácies. Fácies deformadas ocorrem ao longo de toda a sucessão, separadas por intervalos sem deformação, e foram subdivididas em três pacotes (A, B e C). Os pacotes A e C apresentam estruturas dúctil-rúptil como dobras, falhas e acamamento convoluto, enquanto o pacote B contém estruturas formadas em regime rúptil como falhas e fraturas. A análise de isótopos de C e O mostrou valores negativos semelhantes aos encontrados em outras capas carbonáticas pelo mundo. Os dados de isótopos de 13C apresentam valores entre -4 e -6 na capa dolomítica, enquanto que na capa calcária os valores de 13C alcançam até -7 sem co-variância dos isótopos de 18O, indica alteração por fluidos meteóricos ou pela dolomitização. A sucessão descrita em Tangará da Serra amplia a ocorrência de capas carbonáticas na América do Sul e corrobora com a interpretação de uma extensa plataforma carbonática pós-glaciação Puga, correlata ao evento Marinoano, nesta parte do Cráton Amazônico.
40

Geocronologia e evolução tectônica paleo-mesoproterozoica do oriente boliviano - região sudoeste do craton amazônico / Paleo-mesoproterozoic Tectonic Evolution and Geocronology of Eastern Bolivia, SW Amazonian Craton

Gerardo Ramiro Matos Salinas 03 November 2010 (has links)
Este trabalho caracteriza a evolucao tectónica, identificando a cronologia dos principais eventos tectono-magmáticos do Pré-Cambriano Boliviano. A complexa evolucao geológica do Oriente da Bolívia se estende desde o Paleo a Mesoproterozoico compreendendo as provincias Rio Negro Juruena, Rondoniana San Ignacio e Sunsás na regiao conhecida como Bloco Paragua. Diversos métodos de estudo foram adotados na pesquisa tendo em vista tratar-se de um terreno com evolução policíclica e incluiram, alem do mapeamento geológico e petrografía dos principais tipos de rocha, a metodologia U-Pb para determinação da idade de corpos graníticos e a metodologia Sm-Nd na estimativa de idade das fontes destes corpos plutônicos e inferências de ordem petrogenética, bem como dados geoquímicos obtidos para detalhamento das interpretações petrogenéticas. Nas interpretações houve ainda a avaliação critica da literatura recente, a integração de dados de campo, aeromagnéticos e aero-radiométricos, inclusive embasadas na experiência profissional do autor. Os dados obtidos na última década modificaram substancialmente a concepcao do Pré-Cambriano Boliviano, tendo sido caracterizados tres conjuntos litológicos temporalmente distintos antecedendo a orogenia San Ignacio. O granito Correreca na parte meridional da area possui idade 207Pb-206Pb de 1,92 1,89 Ga, com modelo de idades TDM de 2,8 a 2,9 Ga e valores de Nd(t) de -8,5 e -9,4. A Suite Yarituses composta pelos granitos La Cruz, Refugio e San Pablo possui quimismo calcio-alcalino. Os dados U-Pb SHRIMP, TIMS e abrasão por laser-ICPMS indicam a formação desta suíte no lapso temporal entre 1673 a 1621 Ma. A idade de cristalização U-Pb SHRIMP do granito La Cruz é de 1673 ± 21 Ma, idade modelo TDM de 1,83 Ga e valor de Nd(t) de + 2.1 indicativo de derivação mantélica. O granito Refugio tem idade U-Pb TIMS de 1673 ± 25 Ma e o pluton San Pablo idade ICPMS por laser ablasion de 1621 ± 80 Ma (idade TDM de 1,7 Ga e valor de Nd(t) de + 3,5). Este conjunto de dados sugere uma derivação mantelica principal para a suite Yarituses. O granodiorito San Ramón possui uma idade de cristalização de 1429 ± 4 Ma (SHRIMP), TDM de 1,7 Ga, e Hf(t) entre + 3,49 e +5,47 e representa um evento de geração da crosta, a partir de material juvenil. O magmatismo, deformação e metamorfismo da orogênese San Ignácio constitui o principal evento representado na área de estudo, cujo maior representante é o Complexo Granitoide Pensamiento com seus plutons sin a tardi-cinemáticos e tardi a pos-cinemáticos. Os granitos San Martín, La Junta e Diamantina possuem idades de cristalizacao de 1373- 1340 Ma, idades modelo TDM de 1,6 a 2,0 Ga, com valores de Nd(t) de + 2.0 ate -4,0. Os granitos Las Maras, Talcoso, Limonal e San Andrés produziram idades de cristalização de 1347 a 1275 Ma. As idades TDM dos granitos Limonal e San Andrés correspondem a 1,9 e 1,8 e Nd(t) de -1,4 e 1,6 respectivamente. A geoquímica em rocha total indica uma composição compatível com arco magmático, corroborando a assinatura acima dos parâmetros petrogeneticos. Em suma, a orogênese San Ignácio representa um arco acrescionário de natureza continental que construiu a arquitetura final da província Rondoniana-San Ignacio pela colisão entre o Bloco Paraguá e a província Rio Negro-Juruena. A evolução mesoproterozoica finaliza com a formação da faixa colisional Sunsás. Esta orogênese produziu plutonismo sin a tardi cinematico e tardi a cinemático marcando o limite com o bloco Paragua. A natureza alóctone e colisional do orogeno Sunsás como o evento mais jovem do Cráton Amazônico é marcada por frentes tectônicos, bem definidos de sentido sinistral, convergentes para o Bloco Paragua. / This work characterizes the tectonic and magmatic evolution of the Precambrian shield of Bolivia. The complex geological evolution of the eastern Bolivia extends from the Paleo- to Mesoproterozoic, and can be related with the magmatic and metamorphic events that are ascribed to the Rio Negro - Juruena (1.78-1.60 Ga), Rondonian - San Ignacio (1.56-1.30 Ga) and Sunsás Aguapei (1.25-1.00 Ga) provinces, known in Bolivia as the Paragua block. Several methods of study were adopted in the research with the scope that this is a land with polycyclic evolution. As such our study included, besides the geological mapping and petrography of major rock types, the U-Pb age determinations of granitoid rocks, Sm-Nd and Rb-Sr isotopic analyses, as well as geochemical data. At the interpretation there was the critical evaluation of recent papers, the integration of field data, aeromagnetic and aero-radiometric, including the field experience of the author. The data obtained in the last decade have substantially changed the geology of the Bolivian Precambrian shield. It has been characterized three temporally distinct granite suites preceding the San Ignacio orogeny (1.37-1.30 Ga): the Correreca granite in the southern part of the area has 207Pb/206Pb age from 1.92 to 1.89 Ga, with TDM model ages of 2.8 to 2.9 Ga and values of Nd(t) of -8.5 and -9.4; the Yarituses suite (La Cruz, Refugio and San Pablo granites) shows calc-alkaline signature. Data U-Pb SHRIMP, TIMS and ICPMS laser ablation indicate the formation of this suite between 1673 to 1621 Ma. The U-Pb SHRIMP crystallization age of La Cruz granite is 1673 ± 21 Ma, TDM model age of 1.83 Ga and Nd(t) of +2.1 indicative of a predominantly mantle source. The Refugio granite has U-Pb TIMS age of 1673 ± 25 Ma and the San Pablo pluton yields a ICPMS Laser ablation age of 1621 ± 80 Ma (TDM age of 1.7 Ga and Nd(t) +3.5). These data suggest again a mantle source for the Yarituses suite. The San Ramon granodiorite event has a crystallization age of 1429 ± 4 Ma (SHRIMP), TDM of 1.7 Ga, and Hf(t) between +3.49 and +5.47 and represents a juvenile accreted episode. The magmatism, deformation and metamorphism of San Ignacio orogeny is the main event of the study area, represented by the Pensamiento Granitoid Complex with sin to late-kinematic and late to post-kinematic plutons. The San Martín, La Junta and Diamantina granites have crystallization ages of 1373 - 1340 Ma, TDM model ages from 1.6 to 2.0 Ga, with values of Nd(t) from 2.0 up to -4.0. The Las Maras, Talcoso, Limonal and San Andrés granites yielded crystallization ages of 1347-1275 Ma. The TDM ages of Limonal and San Andrés granites are between 1.9 and 1.8 Ga and the Nd(t) values of -1.4 and +1.6 respectively. The whole rock geochemistry of these granites indicates a composition consistent with the magmatic arc. Thus the San Ignacio orogeny represents a continental accretionary arc that built the final architecture of the Rondonian-San Ignacio province (1.56-1.30 Ga) by the collision between the Paragua block and the Rio Negro -Juruena province (1.78-1.60 Ga). The Mesoproterozoic evolution of the SW margin of the Amazonian craton ends with the formation of the Sunsás collisional belt that produced sin to-late and late topost- kinematic plutonism. The allochthonous and collisional nature of the Sunsás orogeny is marked by tectonic fronts, with well-defined sinistral sense, converging towards the Paragua block.

Page generated in 0.0248 seconds