31 |
Significance of the Alfvén waves in the thermospheric dynamics in the cusp region / カスプ域の熱圏ダイナミクスにおけるアルフベン波の重要性Oigawa, Tomokazu 23 March 2022 (has links)
京都大学 / 新制・課程博士 / 博士(理学) / 甲第23709号 / 理博第4799号 / 新制||理||1687(附属図書館) / 京都大学大学院理学研究科地球惑星科学専攻 / (主査)教授 田口 聡, 教授 松岡 彩子, 教授 榎本 剛 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
|
32 |
Construção rigorosa de variedades de soluções de EDPs / Rigorous construction of manifolds of solutions of PDEsCardozo, Camila Leão 01 November 2017 (has links)
O objetivo deste trabalho é construir rigorosamente variedades de soluções definidas implicitamente por equações não-lineares em dimensão infinita. Usando um método de continuação a múltiplos parâmetros aplicado a uma projeção em dimensão finita, uma triangulação da variedade é construída e usada para construir localmente a variedade no espaço de dimensão infinita. Aplicamos este método para encontrar equilíbrio da equação de Cahn-Hilliard. Estudamos também bifurcações cúspides, com o objetivo de encontrar as condições necessárias para a existência das mesmas em qualquer dimensão finita. / The goal of this research is to rigorously compute implicitly defined manifolds of solutions of infinite dimensional nonlinear equations. Using a multi-parameter continuation method on a finite dimensional projection, a triangulation of the manifold is computed and is then used to construct local charts of the global manifold in the infinite dimensional domain of the operator. We apply this method to find the equilibria of the Cahn-Hilliard equation. We also studied cusp bifurcations, in order to find the necessary conditions for the existence of the same in any finite dimension.
|
33 |
Construção rigorosa de variedades de soluções de EDPs / Rigorous construction of manifolds of solutions of PDEsCamila Leão Cardozo 01 November 2017 (has links)
O objetivo deste trabalho é construir rigorosamente variedades de soluções definidas implicitamente por equações não-lineares em dimensão infinita. Usando um método de continuação a múltiplos parâmetros aplicado a uma projeção em dimensão finita, uma triangulação da variedade é construída e usada para construir localmente a variedade no espaço de dimensão infinita. Aplicamos este método para encontrar equilíbrio da equação de Cahn-Hilliard. Estudamos também bifurcações cúspides, com o objetivo de encontrar as condições necessárias para a existência das mesmas em qualquer dimensão finita. / The goal of this research is to rigorously compute implicitly defined manifolds of solutions of infinite dimensional nonlinear equations. Using a multi-parameter continuation method on a finite dimensional projection, a triangulation of the manifold is computed and is then used to construct local charts of the global manifold in the infinite dimensional domain of the operator. We apply this method to find the equilibria of the Cahn-Hilliard equation. We also studied cusp bifurcations, in order to find the necessary conditions for the existence of the same in any finite dimension.
|
34 |
Properties of SU(2, 1) Hecke-Maass cusp forms and Eisenstein seriesNowland, Kevin John January 2018 (has links)
No description available.
|
35 |
Assessing the effects of developmental stress and the shift to agriculture on tooth crown size, cusp spacing, and accessory cusp expression in modern humans through the Patterning Cascade Model of morphogenesisBlankenship-Sefczek, Erin C. January 2019 (has links)
No description available.
|
36 |
Organizational Factors of Safety Culture Associated with Perceived Success in Patient Handoffs, Error Reporting, and Central Line-Associated Bloodstream InfectionsRichter, Jason 30 August 2013 (has links)
No description available.
|
37 |
Tooth Cusp Radius of Curvature as a Dietary Correlate in PrimatesBerthaume, Michael Anthony 01 September 2013 (has links)
Tooth cusp radius of curvature (RoC) has been hypothesized to play an important role in food item breakdown, but has remained largely unstudied due to difficulties in measuring and modeling RoC in multicusped teeth. We tested these hypotheses using a parametric model of a four cusped, maxillary, bunodont molar in conjunction with finite element analysis. When our data failed to support existing hypotheses, we put forth and tested the Complex Cusp Hypothesis which states that, during brittle food items breakdown, an optimally shaped molar would be maximizing stresses in the food item while minimizing stresses in the enamel. After gaining support for this hypothesis, we tested the effects of relative food item size on optimal molar morphology and found that the optimal set of RoCs changed as relative food item size changed. However, all optimal morphologies were similar, having one dull cusp that produced high stresses in the food item and three cusps that acted to stabilize the food item.
We then set out to measure tooth cusp RoC in several species of extant apes to determine if any of the predicted optimal morphologies existed in nature and whether tooth cusp RoC was correlated with diet. While the optimal morphologies were not found in apes, we did find that tooth cusp RoC was correlated with diet and folivores had duller cusps while frugivores had sharper cusps. We hypothesize that, because of wear patterns, tooth cusp RoC is not providing a mechanical advantage during food item breakdown but is instead causing the tooth to wear in a beneficial fashion. Next, we investigate two possible relationships between tooth cusp RoC and enamel thickness, as enamel thickness plays a significant role in the way a tooth wears, using CT scans from hundreds of unworn cusps. There was no relationship between the two variables, indicating that selection may be acting on both variables independently to create an optimally shaped tooth. Finally, we put forth a framework for testing the functional optimality in teeth that takes into account tooth strength, food item breakdown efficiency, and trapability (the ability to trap and stabilize a food item).
|
38 |
Complex Dynamics and Bifurcations of Predator-prey Systems with Generalized Holling Type Functional Responses and Allee Effects in PreyKottegoda, Chanaka 15 September 2022 (has links)
No description available.
|
39 |
Équation de Monge-Ampère complexe, métriques kählériennes de type Poincaré et instantons gravitationnels ALFAuvray, Hugues 21 June 2012 (has links) (PDF)
Ce travail de thèse s'intéresse à la résolution d'équations de Monge-Ampère complexes et à ses applications sur certains types de variétés non compactes. Ce mémoire décrit plus précisément deux situations distinctes dans lesquelles on résout des équations de Monge-Ampère, avant de tirer les conséquences de ces résolutions. Dans une première partie, on travaille sur le complémentaire d'un diviseur à croisements normaux dans une variété kählérienne compacte. On fixe sur le complémentaire du diviseur une classe de métriques kählériennes à singularités cusp le long du diviseur. Pour construire des géodésiques entre métriques de cette classe, on résout une équation de Monge-Ampère homogène, sur le produit de notre ouvert de Zariski par une surface de Riemann à bord. On applique cette construction à un résultat d'unicité de métriques à courbure scalaire constante dans la classe considérée ; on résout encore pour cela une équation de Monge-Ampère avec second membre sur le complémentaire du diviseur. On exhibe enfin des obstructions topologiques à l'existence de métriques à courbure scalaire constante au sein des classes de métriques kählériennes singulières envisagées. La seconde partie du mémoire traite d'une construction analytique d'instantons gravitationnels ALF, ou variétés complètes de dimension 4, hyperkählériennes, à croissance cubique du volume. On donne la construction d'instantons diédraux ; on considère plus exactement des résolutions de singularités kleiniennes diédrales. Le traitement d'une équation de Monge-Ampère, donné pour des variétés kählériennes ALF assez générales, nous permet sur nos exemples de corriger un prototype simple pour obtenir la métrique hyperkählérienne recherchée.
|
40 |
Diviseurs sur les courbes réellesBardet, Alexandre 05 June 2013 (has links) (PDF)
Dans un article sur les sommes de carrés, SCHEIDERER a prouvé que pour toute courbe algébrique, réelle, projective, irréductible, lisse, ayant des points réels, il existait un entier N tel que tout diviseur de degré plus grand que N soit linéairement équivalent à un diviseur dont le support est totalement réel. Ensuite HUISMAN et MONNIER ont montré que dans le cas des courbes avec beaucoup de composantes connexes, ie. celle en ayant au moins autant que le genre g, ici supposé strictement positif, de la courbe, on pouvait prendre N égal à 2g − 1. MONNIER a également abordé la question pour les cas des courbes singulières : il en a exhibé pour lesquelles un tel entier n'existait pas et d'autres pour lesquelles il existait. Dans cette thèse on étend la classe des courbes singulières pour lesquelles un tel entier existe, essentiellement des courbes avec des noeuds ou des cusps, et on arrive dans certains cas a contrôlé explicitement cet entier en fonction du genre de la courbe et du nombre de ces singularités. Pour y parvenir on utilise d'une part une " singularisation successive " et d'autre part une variante de l'invariant où l'on demande qu'en plus les points du support soient deux-à-deux distincts. Pour ce nouvel invariant, on étend tel quel les résultats sur les courbes ayant beaucoup de composantes et on traite celui des courbes de genre 2 ayant une seule composante, le " premier " cas jusqu'alors inconnu : dans ce cas la borne 3 est impossible en général, mais par contre 5 convient.
|
Page generated in 0.0177 seconds