• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • Tagged with
  • 20
  • 20
  • 14
  • 8
  • 8
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Luminescence spectroscopy of CdTe/CdS based photovoltaic devices and associated materials

Potter, Mark David George January 2000 (has links)
This thesis contains primarily a study of CdTe/CdS heterojunction solar cells^ chiefly using photoluminescence spectroscopy. These solar cells show a good potential for commercial power generation in the near Aiture and are of interest to several major companies. A vital but little understood step in the manufacturing process is: annealing the cells in the presence of chlorine prior to back contact application. Studies are performed on a selection of thin film CdTe/CdS cells subjected to CdCl(_2) anneals of different duration. A chemical bevel etch was used to study the spectra at different depths into the sample and laser intensity arid sarhple temperature variations to identify the mechanisms behind the observed photoluminescence peaks. Evidence was found for the CdCl(_2) anneal promoting sulphur diffusion and subsequent grain boundary passivation in the CdTe, leading to increased minority carrier lifetimes and device efficiencies Attempts to obtain electroluminescence from the CdTe/CdS solar cells were madei By using current pulses electroluminescence was obtained in the 780-850nm range with discernible spectral features. Photoluminescence (PL) studies were also performed on a single crystal of CdTe grown to an unprecedented size of approx. 5 cm diameter at Durham university by a multi-tube seeded vapour method of crystal growth. Much higher resolution spectra were: obtained for this than for the solar cells. Several peaks were identified arid the mechanisms responsible were theorised. By taking slices of the crystal boule the PL spectra at different points-throughout the bulk of the crystal were determined. A series of high quality ion-implanted CdTe crystals were also studied! by intensity and temperature dependent PL in order to obtain a better understanding of the effects of known concentrations of known impurities on the PL spectra of CdTe. Specific PL features associated with certain dopants were observed.
12

Part A: Nanoscale semiconductors through electrodeposition Part B: Mechanistic studies of the copper-catalyzed reactions /

Chévere-Trinidad, Néstor Luis, January 2009 (has links)
Thesis (Ph. D.)--University of Massachusetts Amherst, 2009. / Includes bibliographical references (p. 153-161). Print copy also available.
13

Hall effect and photoconductivity lifetime studies of GaN, InN, and Hg₁-[subscript x]Cd[subscript x]Te

Swartz, Craig H. January 2005 (has links)
Thesis (Ph. D.)--West Virginia University, 2005. / Title from document title page. Document formatted into pages; contains ix, 72 p. : ill. Includes abstract. Includes bibliographical references (p. 68-72).
14

Caracterização óptica e elétrica de materiais fotocondutores e fotorrefrativos / Optical and electrical characterization of photoconductive and photorefractive materials

Pereira, Renata Montenegro 26 February 2007 (has links)
Orientador: Jaime Frejlich Sochaczewsky / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Made available in DSpace on 2018-08-08T07:16:03Z (GMT). No. of bitstreams: 1 Pereira_RenataMontenegro_M.pdf: 1833986 bytes, checksum: f8a736d33723868af878beb3568ddc63 (MD5) Previous issue date: 2006 / Resumo: O objetivo desta tese foi a caracterização de materiais fotocondutores e fotorrefrativos utilizando técnicas ópticas e elétricas. A propriedade mais importante nestes materiais é a fotocondutividade e por isso nos centramos na medida dessa quantidade. Um dos materiais mais estudados em nosso laboratório, o Bi12TiO20, é pouco fotocondutor e por isso, a técnica clássica, que utiliza uma lâmpada "branca" seguida de um monocromador, para selecionar o comprimento de onda com que a amostra vai ser iluminada, mostrou-se pouco sensível. Para melhorar a sensibilidade da medida, desenvolvemos um sistema baseado num conjunto de LEDs (light-emitting diodes) quase monocromáticos, de diferentes comprimentos de onda, capazes de fornecer maior intensidade de luz do que o sistema clássico. Também propomos uma sistemática diferente para a coleta e processamento dos dados, que leva em consideração, a distribuição exponencial da luz no interior da amostra, devido à absorção¸ característica de cada material. Os resultados mostraram que o novo instrumento e o novo método de processamento de dados permitem obter mais informações sobre os materiais analisados do que seria possível utilizando a técnica clássica. A nova técnica foi aplicada ao estudo de amostras de Bi12TiO20 puro e dopado assim como de Bi12GaO20 e CdTe. Os resultados, junto com outras informações disponíveis por outras técnicas (holografia e fotocorrente modulada), permitiram detectar alguns estados localizados dentro da banda proibida destes materiais, o que é muito importante no estudo da fotocondutividade / Abstract: The objective of this work was the characterization of photoconductive and photo-refractive materials using optical and electrical techniques. The most important property of these materials is photoconductivity so that we concentrated in the measurement of this quantity. One of the most studied materials in our laboratory, Bi12TiO20, is poorly photoconductive and, because of that, the standard technique using a white lamp followed by a monochromator, to select the illumination wavelength on the sample, has shown a very poor sensistivity. In order to improve the measurement we have therefore developed a system based on an array of almost monochromatic LEDs (Light-Emitting Diodes) with different wavelengths, which are able to provide with greater light intensity than with the classical system. We also propose a different system for the data collection and processing, which considers the exponential distribution of light along the sample¿s thickness, due to the characteristic bulk absorption of these materials. Our results have shown that the new instrument and the new data processing method allow us to obtain much more information about the materials under analysis than would be possible with the classical method. The new technique was applied to the study of pure and doped B i12TiO20, as well as Bi12Ga O20 and CdTe. The results, together with further information obtained from other techniques (holography and modulated photocurrent), have allowed us to detect some localized states inside the bandgap of the materials and therefore get a better insight of their structure that is very important for the understanding of their photoconductivity properties / Mestrado / Propriedades Óticas e Espectroscopia da Matéria Condensada / Mestre em Física
15

Neutron Transmutation and Hydrogenation Study of Hg₁₋xCdxTe

Zhao, Wei 12 1900 (has links)
Anomalous Hall behavior of HgCdTe refers to a "double cross-over" feature of the Hall coefficient in p-type material, or a peak in the Hall mobility or Hall coefficient in n-type material. A magnetoconductivity tensor approach was utilized to identify presence of two electrons contributing to the conduction as well as transport properties of each electron in the material. The two electron model for the mobility shows that the anomalous Hall behavior results from the competition of two electrons, one in the energy gap graded region near the CdZnTe/HgCdTe interface with large band gap and the other in the bulk of the LPE film with narrow band gap. Hg0.78Cd0.22Te samples grown by LPE on CdZnTe(111B)-oriented substrates were exposed to various doses of thermal neutrons (~1.7 x 1016 - 1.25 x 1017 /cm2) and subsequently annealed at ~220oC for ~24h in Hg saturated vapor to recover damage and reduce the presence of Hg vacancies. Extensive Magnetotransport measurements were performed on these samples. SIMS profile for impurities produced by neutron irradiation was also obtained. The purpose for this study is to investigate the influence of neutron irradiation on this material as a basis for further study on HgCdTe74Se. The result shows that total mobility is observed to decrease with increased neutron dose and can be fitted by including a mobility inverse proportional to neutron dose. Electron introduction rate of thermal neutron is much smaller than that of fission neutrons. Total recovering of the material is suggested to have longer time annealing. Using Kane's model, we also fitted carrier concentration change at low temperature by introducing a donor level with activation energy changing with temperature. Results on Se diffusion in liquid phase epitaxy (LPE) grown HgCdTe epilayers is reported. The LPE Hg0.78Cd0.22Te samples were implanted with Se of 2.0×1014/cm2 at 100keV and annealed at 350-450oC in mercury saturated vapor. Secondary ions mass spectrometry (SIMS) profiles were obtained for each sample. From a Gaussian fit we find that the Se diffusion coefficient DSe is about one to two orders of magnitude smaller than that of arsenic. The as-implanted Se distribution is taken into account in case of small diffusion length in Gaussian fitting. Assuming a Te vacancy based mechanism, the Arrhenius relationship yields an activation energy 1.84eV. Dislocations introduced in HgCdTe materials result in two energy levels, where one is a donor and one is an acceptor. Hydrogenation treatment can effectively neutralize these dislocation defect levels. Both experimental results and theoretical calculation show that the mobility due to dislocation scattering remains constant in the low temperature range (<77K), and increases with temperature between 77K and 150K. Dislocation scattering has little effect on electrical transport properties of HgCdTe with an EPD lower than 107/cm2. Dislocations may have little effect on carrier concentration for semiconductor material with zinc blende structure due to self compensation.
16

Direct coupled PV/CCD hybrid focal planes

Szepesi, Leslie Louis. January 1979 (has links)
Thesis: M.S., Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, 1979 / Includes bibliographical references. / by Leslie Louis Szepesi, Jr. / M.S. / M.S. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
17

Optical studies of diffusion, ion implantation and stimulated emission in CdTe epilayers and CdMnTe/CdTe quantum wells

Chalk, Steven John January 1998 (has links)
No description available.
18

Mid-wave infrared HgCdTe photodiode technology based on plasma induced p-to-n type conversion

White, John Kenton January 2005 (has links)
[Truncated abstract] Infrared photodiodes fabricated in HgCdTe achieve near-ideal performance, however, in comparison with other semiconductors, processing techniques for HgCdTe are expensive and have relatively low yields. Reactive-ion-etching (RIE) in a H2⁄CH4 gas mixture, a process primarily used for material removal, will cause p-to-n type conversion in HgCdTe. It has been shown, by several groups, that infrared photodiodes fabricated with a process technology based on RIE p-to-n type-conversion achieve high yields with state-of-the-art performance. For this technology to be accepted RIE formed n-on-p photodiodes must demonstrate junction stability under normal operating conditions. Along with a stable junction, a compatible passivation technology that is able to withstand processing and operation temperatures is required. This thesis investigates the RIE p-to-n type-conversion mechanism in HgCdTe with the aim of demonstrating bake stable RIE formed junctions, and gaining an insight to the processes by which RIE type-conversion occurs. In pursuing these aims, two complimentary objectives were required, namely, the development of a passivation technology compatible with RIE formed junctions, and the development of a detailed I-V/Rd-V model for HgCdTe photodiodes. As a result of these objectives, this thesis presents a double-layer ZnS on CdTe passivation technology with which stable RIE-formed n-on-p junctions in HgCdTe are demonstrated. Using this process technology, mid-wave infrared (MWIR) HgCdTe photodiodes have been fabricated and subjected to a bake in vacuum at 80°C for 175 hours, after which there is negligible degradation in the zero-bias Dynamic-Resistance Area product (RoA) from the pre-bake values
19

Investigation of resonant-cavity-enhanced mercury cadmium telluride infrared detectors

Wehner, Justin January 2007 (has links)
[Truncated abstract] Infrared (IR) detectors have many applications, from homeland security and defense, to medical imaging, to environmental monitoring, to astronomy, etc. Increasingly, the wave- length dependence of the IR radiation is becoming important in many applications, not just the total intensity of infrared radiation. There are many types of infrared detectors that can be broadly categorized as either photon detectors (narrow band-gap materials or quantum structures that provide the necessary energy transitions to generate free car- riers) or thermal detectors. Photon detectors generally provide the highest sensitivity, however the small transition energy of the detector also means cooling is required to limit the noise due to intrinsic thermal generation. This thesis is concerned with the tech- nique of resonant-cavity-enhancement of detectors, which is the process of placing the detector within an optically resonant cavity. Resonant-cavity-enhanced detectors have many favourable properties including a reduced detector volume, which allows improved operating temperature, or an improved signal to noise ratio (or some balance between the two), along with a narrow spectral bandwidth. ... Responsivity of another sample annealed for 20 hours at 250C in a Hg atmosphere (ex-situ) also shows resonant performance, but indicates significant shunting due the mirror layers. There is good agreement with model data, and the peak responsivity due to the absorber layer is 9.5×103 V/W for a 100 'm ×100 'm photoconductor at 80K. An effective lifetime of 50.4 ns is extracted for this responsivity measurement. The responsivity was measured as a function of varying field, and sweepout was observed for bias fields greater than 50 V/cm. The effective lifetime extracted from this measurement was 224 ns, but is an over estimate. Photodiodes were also fabricated by annealing p-type Hg(1x)Cd(x)Te for 10 hours at 250C in vacuum and type converting in a CH4/H2 reactive ion etch plasma process to form the n-p junction. There is some degradation to the mirror structure due to the anneal in vacuum, but a clear region of high reflection is observed. Measurements of current-voltage characteristics at various temperatures show diode-like characteristics with a peak R0 of 10 G measured at 80K (corresponding to an R0A of approximately 104 cm2. There was significant signal from the mirror layers, however only negligible signal from the absorber layer, and no conclusive resonant peaks.
20

Room temperature CdZnTe X- and gamma-ray detectors for nuclear physics applications

Menezes, Tiago January 2000 (has links)
Gamma-ray spectroscopy is undoubtedly the most effective tool for understanding the structure of the nucleus. In common with many other problems however, there is more information available that can be readily measured by standard experimental facilities. Therefore, this thesis investigates the potential for the use of a new detector material, CdZnTe, in nuclear physics applications. To evaluate the requirements of detection systems for nuclear physics applications, a y-ray spectroscopy experiment was performed to investigate neutron alignments in 100Mo, 104Ru and 108Pd using deep-inelastic reactions. This showed that a detector capable of detecting low energy (< 100 keV) X- rays without compromising y-ray detection efficiency could have significant benefit. A room temperature CdZnTe semiconductor detector could reasonably form part of a standard escape suppressed spectrometer. However, there is a substantially higher leakage current associated with room temperature semiconductor devices than standard cryogenically cooled semiconductor detectors. CdZnTe suffers from significant charge trapping, and therefore the rise time of the radiation induced pulses forms an important part of the signal analysis from such detectors. These two problems have implications on the design of preamplifier systems for CdZnTe detectors. For this reason, this thesis describes the design of optimised electronic systems for use with room-temperature operated CdZnTe detectors. Here, the focus is on the preamplifier design, and on practical ways of analysing noise performance of the preamplifier. A new preamplifier configuration with digital output has been developed, and a detailed signal-to-noise analysis performed. Such a circuit facilitates simultaneous measurement of both energy and pulse shape information.

Page generated in 0.0768 seconds