Spelling suggestions: "subject:"caenorhabditis elegans"" "subject:"aenorhabditis elegans""
451 |
Characterization of Three Putative Monoamine Oxidase Genes in Caenorhabditis elegansKaushal, Setu 01 October 2008 (has links)
No description available.
|
452 |
Estudios comportamentales y farmacológicos en Caenorhabditis elegans : circuitos neuronales implicados en la alimentaciónBlanco, María Gabriela 31 March 2021 (has links)
Caenorhabditis elegans es un nematodo de vida libre utilizado para responder interrogantes biológicos generales desde hace aproximadamente 60 años. Su fácil manipulación genética, el conocimiento del conectoma completo y la sencillez para estudiar su comportamiento, lo convierten en un excelente modelo para abordar preguntas neurobiológicas fundamentales y realizar ensayos farmacológicos. En esta tesis doctoral, empleamos al nematodo C. elegans como modelo para el estudio de la modulación neuronal de conductas asociadas a la alimentación y para la búsqueda de compuestos con potencial terapéutico.
Una adecuada alimentación es esencial para la supervivencia de los animales. El sistema nervioso modula la actividad motora en función de la disponibilidad de alimento en el medio ambiente y del estado nutricional interno. Cuando los animales han experimentado un ayuno prolongado y encuentran comida nuevamente, permanecen en un área pequeña para explotar al máximo la nueva fuente de nutrientes. El estímulo de comida tanto en ratones como en invertebrados produce la liberación de serotonina (5-HT). En C. elegans, la 5-HT modula comportamientos relacionados principalmente con la presencia de alimento: aumenta el bombeo faríngeo y la deposición de huevos y suprime la locomoción. Cuando C. elegans ha permanecido en ausencia de comida por un largo período y retorna al alimento, exhibe un drástico descenso de la velocidad e incrementa el bombeo faríngeo para favorecer la ingesta de comida. Se sabe que la abrupta reducción de la locomoción en el encuentro con el alimento depende de la liberación de 5-HT desde dos neuronas serotoninérgicas denominadas NSM y ADF. Por otro lado, la tiramina (TA) y octopamina (OA), análogos de noradrenalina y adrenalina en invertebrados, respectivamente, son capaces de ejercer efectos opuestos a la 5-HT reduciendo el bombeo faríngeo y la puesta de huevos. A su vez, así como la 5-HT modula comportamientos que favorecen la alimentación en presencia de comida, la OA, por el contrario, regula conductas que son importantes durante el ayuno, como por ejemplo el aumento de la locomoción para facilitar la búsqueda de alimento. Sin embargo, las acciones ejercidas por la TA con respecto a la alimentación y locomoción aún no son del todo claras.
A pesar de que existen evidencias de los efectos antagónicos entre las vías serotoninérgicas y tira/octopaminérgicas, los mecanismos y significancia de esta interacción aún no se conocen con exactitud. Es así que, mediante técnicas de biología molecular, microscopia, ensayos comportamentales y farmacológicos, nos propusimos estudiar el rol de estas aminas biogénicas en la conducta de alimentación en C. elegans.
Mediante ensayos de comportamiento, observamos que mutantes nulos tdc-1, deficientes de la síntesis de TA, aun estando bien alimentados, son hipersensibles a la disminución de la locomoción en el encuentro con el alimento (lo cual se asemeja al comportamiento de animales hambreados). Esto sugiere que la 5-HT y TA ejercen efectos antagónicos en este comportamiento. Mediante ensayos de imágenes de calcio in vivo, observamos que la actividad del par de neuronas tiraminérgicas (llamadas RIM) disminuye en ausencia de alimento y aumenta paulatinamente en el regreso al mismo. Además, el agregado exógeno de TA durante el ayuno rescata parcialmente la gran desaceleración de la locomoción en la realimentación. Estos resultados en conjunto, nos permiten hipotetizar que la inhibición de la actividad de la neurona tiraminérgica durante el ayuno favorece la exacerbación de los efectos dependientes de la señal serotoninérgica en la realimentación. Finalmente, intentamos caracterizar los mecanismos moleculares involucrados en esta intermodulación. Al evaluar la actividad de las neuronas serotoninérgicas NSM y ADF en animales deficientes de TA, determinamos que la falta de TA exacerba la señal serotoninérgica en la vuelta al alimento. Esto sugiere que la TA inhibe la actividad de las neuronas serotoninérgicas apoyando nuestra hipótesis de que la disminución de la actividad tiraminérgica en el ayuno es necesaria para la exacerbada liberación de 5-HT en la realimentación. Además, de los cuatro receptores tiraminérgicos conocidos (tres GPCRs TYRA-2, TYRA-3 y SER-2 y un canal de cloruro LGC-55), encontramos que tres de ellos están implicados en la modulación de la locomoción a través de un circuito paralelo río abajo de las neuronas serotoninérgicas: los receptores TYRA-2 y TYRA-3 estimulan la locomoción, mientras que SER-2 la disminuye. En resumen, nuestros resultados sugieren que la inhibición de las neuronas tiraminérgicas durante el ayuno es clave para el comportamiento de los animales en la realimentación. Considerando las similitudes que existen en las conductas de alimentación y a la conservación de los componentes neuronales implicados en su regulación en el reino animal, nuestros resultados podrían colaborar al entendimiento del rol de estas señales no sólo en invertebrados sino también en otros animales.
Hemos mencionado además que C. elegans es un excelente modelo para realizar ensayos farmacológicos. Aprovechando esta ventaja y la cercanía evolutiva entre C. elegans y otras especies de nematodos parásitos, realizamos una búsqueda de compuestos con potencial actividad antihelmíntica. Las infecciones producidas por nematodos parásitos generan una sustancial morbilidad en billones de personas y pérdidas considerables del ganado y agricultura. Dado a las deficientes políticas de salud pública y a las malas condiciones de calidad de vida e higiene, estas infecciones afectan principalmente a los países más empobrecidos. A su vez, la aparición de parásitos resistentes en el ganado se ha convertido en una preocupación global y es una complicación emergente en las helmintiasis humanas. A pesar de esto, la industria farmacéutica ha relegado el desarrollo de nuevos antihelmínticos en las últimas décadas. Por lo expuesto, la investigación de moléculas con nuevos mecanismos de acción antihelmínticos es una necesidad urgente. La dificultad para realizar ensayos con parásitos en el laboratorio, la cercanía filogenética con las demás especies dentro del filo nematoda y su fácil manipulación genética convierten al nematodo de vida libre C. elegans en un modelo eficiente para el estudio de moléculas con potencial antihelmíntico.
En el segundo capítulo de esta tesis realizamos un cribado de moléculas derivadas del imidazol en C. elegans con el objetivo de identificar nuevos compuestos con acción terapéutica, específicamente con potencialidad antihelmíntica. Encontramos un compuesto, el Diisopropil-fenil imidazol (DII), que produce letalidad selectiva en nematodos adultos, siendo inocuo para células humanas en cultivo HEK-293 y larvas de D. melanogaster. Al presentar un efecto nematicida específico, decidimos estudiar en mayor profundidad su modo de acción. Evaluando la resistencia a la droga de cepas mutadas en genes que codifican para blancos moleculares de antihelmínticos conocidos, encontramos que el DII actúa a través de la subunidad no- UNC-29 de un receptor ionotrópico colinérgico muscular (AChR). UNC-29, junto con las subunidades UNC-38, UNC-63, LEV-1 y LEV-8, ha sido tradicionalmente considerada como parte del AChR de tipo L sensible a la droga antihelmíntica Levamisol (L-AChR). Las drogas, como el levamisol, que actúan como agonistas de receptores ionotrópicos colinérgicos generan la despolarización rápida de la célula muscular y parálisis del gusano. Observamos que el DII no genera estos efectos tradicionales de los agonistas nicotínicos y tampoco desplaza la curva dosis-respuesta del levamisol, como lo haría un antagonista del L-AChR. Además, determinamos que los mutantes deficientes de las demás subunidades que conforman el L-AChR clásico, son sensibles al DII. Estos resultados en conjunto sugieren que el DII actúa a través de un AChR muscular, que contiene la subunidad UNC-29, distinto al L-AChR clásico. Existen suficientes evidencias que avalan la presencia de múltiples clases de AChRs musculares con composiciones de subunidades diferentes distribuidas en el cuerpo del animal. Esto apoya nuestra hipótesis de que el blanco molecular del DII en gusanos adultos podría ser un AChR aún no identificado.
En general, las larvas de parásitos son más resistentes a los antihelmínticos clásicos como el levamisol. Sin embargo, determinamos que el DII es letal para las larvas y que existe otro blanco molecular distinto a UNC-29 implicado en este mecanismo. Esto presenta una ventaja terapéutica, ya que antihelmínticos que actúan a través de más de un mecanismo de acción otorgan una terapia más efectiva y retrasan la expansión de resistencias.
Creemos que el DII constituye el puntapié inicial para el desarrollo de un compuesto con potencialidad terapéutica. El hecho de que el DII presente actividad nematicida específica y que actúe a través de un blanco molecular diferente al de los antihelmínticos clásicos, sienta las bases para la dilucidación completa de su mecanismo de acción, así como la evaluación de su efectividad en nematodos parásitos.
En conclusión, en este trabajo de tesis explotamos la potencialidad del nematodo C. elegans con dos objetivos bien diferentes: 1) en el capítulo I nos centramos en intentar de contribuir con el entendimiento de un interrogante biológico fundamental: ¿cómo los circuitos neuronales producen comportamientos específicos que responden a las necesidades metabólicas del organismo?, y 2) en el capítulo II, con un perfil más aplicado, nos propusimos identificar nuevas moléculas con potencialidad antihelmíntica, que en el futuro puedan ser consideradas posibles terapias antiparasitarias. / Caenorhabditis elegans is a free-living nematode that has been used for approximately 60 years to answer to general biological questions. Its easy genetic manipulation, the knowledge of its entire connectome and the simplicity to study its behavior, make it an excellent model for addressing fundamental neurobiological questions and carry out pharmacological assays. In this Ph. D. thesis, we used the nematode C. elegans as a model to study the neural modulation of feeding behaviors and to search for compounds with therapeutic potential.
An adequate feeding is essential for animal survival. The nervous system modulates motor activity depending on the availability of food in the environment and the nutritional internal state. When animals have experienced a long fasting period and find food again, they stay in a small area to fully exploit the new source of nutrients. The food stimulus both in mice and invertebrates produces serotonin (5-HT) release. In C. elegans, 5-HT modulates behaviors primarily related to the presence of food: it enhances pharyngeal pumping and egg-laying and suppresses locomotion. When C. elegans has been in absence of food for a long period of time and returns to food, the worm exhibits a drastic decrease in speed and stimulates pharyngeal pumping to promote food intake. It is known that the abrupt decrease in locomotion upon food encounter depends on 5-HT release from two serotoninergic neurons called NSM and ADF. On the other hand, tyramine (TA) and octopamine (OA), norepinephrine and epinephrine analogs in invertebrates, respectively, have the potential of exerting opposite effects to 5-HT, reducing pharyngeal pumping and egg-laying. Moreover, just as 5-HT modulates behaviors that promote feeding in the presence of food, OA, on the contrary, regulates behaviors that are important during starvation, like increasing locomotion to ease the foraging for food. Nevertheless, TA feeding-and-locomotion-related behaviors are still not entirely clear.
Even though there is evidence of the serotoninergic and tyra/octopaminergic antagonistic effects, the mechanisms and relevance of this interaction are not yet known exactly. Thus, using molecular biology technics, microscopy, behavioral and pharmacological assays, we decided to study the role of these biogenic amines in food-related behaviors in C. elegans.
Performing behavioral assays, we observed that tdc-1 null mutants, deficient in TA synthesis, even though well-fed, are hypersensitive to the decrease in locomotion upon food encounter (which resembles the behavior of starved animals). This suggests that 5-HT and TA exert antagonistic effects on this behavior. By calcium imaging in vivo assays, we observed that the activity of the pair of tyraminergic neurons (called RIM) decreases in absence of food and increases gradually when animals return to food. Furthermore, the addition of exogenous TA during starvation partially rescues the enhanced slowdown of locomotion in refeeding. Taken together, these results allow us to hypothesize that the inhibition of the tyraminergic neuron activity during starvation favors the exacerbation of serotonergic signal-dependent effects on refeeding. Finally, we tried to characterize the molecular mechanisms involved in this intermodulation. When evaluating the activity of the serotoninergic neurons NSM and ADF in TA-deficient animals, we determined that the lack of TA exacerbates the serotoninergic signal on the return to food. This suggests that TA inhibits the activity of serotoninergic neurons supporting our hypothesis that the reduction in tyraminergic activity during starvation is necessary for the exacerbated release of 5-HT upon refeeding. In addition, of the four known tyramine receptors (three GPCRs TYRA-2, TYRA-3 and SER-2 and a chloride channel LGC-55), we found that three of them are involved in the modulation of locomotion through a parallel circuit downstream of serotonergic neurons, namely TYRA-2 and TYRA-3 receptors stimulate locomotion, while SER-2 decreases it.
Summing up, our results suggest that the inhibition of tyraminergic neurons during starvation is key for animals’ behavior upon refeeding. Taking into account the similarities in feeding behaviors and the conservation of neuronal components involved in their regulation in the animal kingdom, our results could contribute to the understanding of the role of these signals not only in invertebrates but also in other animals. We have also claimed that C. elegans is an excellent model to carry out pharmacological assays. Thus, taking advantage of this and the evolutionary closeness between C. elegans and other parasitic nematode species, we conducted a search for compounds with potential anthelmintic activity. Parasitic nematode infections generate substantial morbidity in billions of people and considerable losses to livestock and agriculture. Due to deficient public health policies and low quality of life and hygiene conditions, these infections mainly affect the poorest countries. Moreover, the appearance of resistant parasites in livestock has become a global concern and is an emerging complication in human helminth infections. In spite of this, the pharmaceutical industry has relegated the development of new anthelmintics in the last decades. Therefore, the investigation of molecules with new anthelmintic mechanisms of action is an urgent need. The difficulty in testing parasites in the laboratory, the phylogenetic relationship with other species within the phylum Nematoda and the ease of its genetic manipulation, make the free-living nematode C. elegans an efficient model for the study of molecules with anthelmintic potential.
In the second chapter of this Ph. D. thesis, we screened imidazole-derived molecules in C. elegans with the aim to identify new compounds with therapeutic action, specifically with anthelmintic potential. We found one compound, Diisopropylphenyl-imidazole (DII), that produces selective lethality in adult nematodes, being innocuous for cultured human HEK-293 cells and D. melanogaster larvae. As this compound has a specific nematicidal effect, we decided to study its mode of action in greater depth. By the assessment of drug resistance of strains mutated in genes encoding known anthelmintic molecular targets, we found that DII acts through a non- UNC-29 subunit of a muscle cholinergic ionotropic receptor (AChR). UNC-29, along with the UNC-38, UNC-63, LEV-1 and LEV-8 subunits, has traditionally been considered as part of the L-type AChR, sensitive to the anthelmintic drug Levamisole.
Drugs, such as levamisole, which act as ionotropic cholinergic receptor agonists, generate rapid depolarization of the muscle cell and worm paralysis. We observed that DII does not generate these well-known effects of nicotinic agonists and does not shift the dose-response levamisole curve either, as a L-AChR antagonist would do. Furthermore, we determined that mutants deficient in the other subunits that form the classic L-AChR are sensitive to DII. Altogether, these results suggest that DII acts through a muscle AChR, which contains the UNC-29 subunit, different from the classic L-AChR. There is sufficient evidence to support the presence of multiple classes of muscle AChRs with different subunit compositions distributed throughout the body of the animal. This supports our hypothesis that de DII molecular target could be a still unidentified AChR.
In general, parasite larvae are more resistant to classic anthelmintics like levamisole. Nonetheless, we determined that DII is lethal to larvae and that there is another molecular target other than UNC-29 involved in this mechanism. This has a therapeutic advantage since anthelmintics that act through more than one mode of action provide a more effective therapy and delay the expansion of resistance.
We believe that DII constitutes the starting point for the development of a compound with therapeutic potential. The fact that DII has specific nematicidal activity and that acts through a different classic anthelmintic molecular target lays the groundwork for the complete elucidation of its mechanism of action, as well as the evaluation of its effectiveness in parasitic nematodes.
In conclusion, in this thesis work we exploited the potentiality of the nematode C. elegans with two very different objectives: 1) in chapter I, we focused on trying to contribute to the understanding of a fundamental biological question, namely how neural circuits produce specific behaviors that respond to the organism metabolic needs?, and 2) in chapter II, with a more applied view, we proposed to identify new molecules with anthelmintic potential that could in the future be considered as possible antiparasitic therapies.
|
453 |
Germ fate determinants protect germ precursor cell division by reducing septin and anillin levels at the division planeConnors, Caroline Quinn January 2024 (has links)
Cytokinesis is defined as the physical division of one cell into two and occurs at the end of the cell cycle. Gestation and development are defined by dividing cells; as an organism develops, cells must duplicate their genetic material, divide, and form two daughter cells. This process is fundamental to all life on our planet. Here, I present work that builds upon our understanding of cytokinesis, focusing on the differential requirements for cytokinesis in different cell types in the early C. elegans embryo, specifically, the P2 cell of the 4-cell embryo.
The textbook view of cytokinesis is that all animal cells divide using the same molecular machinery. Yet, growing evidence supports both cell type-specific regulation of cytokinesis and cell type-specific consequences for cytokinesis failure. The 4-cell C. elegans embryo is a powerful model for studying cell type-specific differences in cytokinesis as the cells are already programmed to form distinct cell linages, and previously, we identified cell type-specific regulation of cytokinesis at the 4-cell stage. We weakened the contractile ring using a temperature sensitive (ts) diaphanous formin/CYK-1 mutant. Under this condition, the two anterior cells (ABa and ABp) always failed in cytokinesis, whereas the two posterior cells (EMS and P2) divided successfully at a high frequency, even without detectable F-actin in the cell division plane.
Here we focus on the cell type-specific protection of cytokinesis in the P2 germ precursor cell, required to produce all gametes in the adult worm. Using a candidate-based RNAi mini-screen to identify genes required for protection of P2 cytokinesis in the formin(ts) embryos, we identified members of the CCCH Zn2+-finger protein family that are enriched in P2 and required for proper germ cell fate specification. Depletion of MEX-1, PIE-1, or POS-1 led to loss of cytokinetic protection and P2 cytokinesis failure in formin(ts) mutants, but not in control embryos. While depletion of MEX-1 affected multiple cell types, PIE-1 and POS-1 acted exclusively in the P2 cell.
Further analysis revealed these germ fate regulators protect cytokinesis by preventing excessive accumulation of septin/UNC-59 and its binding partner, anillin/ANI-1, on the cell cortex in the P2 cell division plane, both negative regulators of actomyosin constriction during cytokinesis in many contexts. We further found that co-depletion of septin and PIE-1 was sufficient to both reduce anillin levels at the P2 division plane and restore cytokinetic protection of P2 in formin(ts) mutant embryos. Thus, germ fate specification protects the P2 germ precursor cell from cytokinesis failure upon damage to the actin cytoskeleton at least in part by controlling the levels of septin and anillin at the division plane.
|
454 |
Real-time whole organism neural recording with neural identification in freely behaving Caenorhabditis elegansYan, Wenwei January 2024 (has links)
How does the brain integrate information from individual neurons? One efficient way to investigate systematic neuroscience is to record the whole brain down to singular neuron level. Caenorhabditis elegans, a 1 mm long, transparent nematode species, is ideally suited as a starting point. Every C. elegans hermaphrodite has a fixed set of 302 neurons. All neuron connections have been fully characterized by electron microscopy. Despite its small and simple nervous system, C. elegans exhibits a wide range of behaviors ranging from foraging, sleep to sexual activity.
Recently, Yemini et al. genetically engineered a C. elegans strain where each neuron can be uniquely identified by its color code. This greatly facilitates comparison of neural recordings with literature as well as underlying connectomics. However, it is a daunting task to record the whole nervous system at cellular resolution of a freely moving worm. The imaging system needs to achieve high 3D imaging speed (10+ volumes per second) to avoid motion blur while also maintaining single cell resolution and reasonable field of view.Over the past decade, light sheet microscopy has emerged as a promising technique with great spatial resolution and reduced phototoxicity. Swept, confocally-aligned, planar excitation (SCAPE) microscopy, a single objective light sheet modality developed by Hillman lab, has the advantage of an open top geometry and fast 3D imaging speed.
In this proposal, I detail my work towards imaging and tracking the whole C. elegans nervous system at cellular resolution using SCAPE and the NeuroPAL strain.
The first chapter introduces fundamental concepts that link the microscopy field with the C. elegans community. The second chapter involves building a new SCAPE system that incorporates new optical components and a high-speed intensified camera. The goal is to construct a workhorse system capable of capturing real-time volumetric recordings with improved resolution. The improvements stem from an improved optical design as well as careful selection of magnification and scan parameters
While the new imaging system is capable of capturing high-speed volumetric images of freely moving NeuroPAL worms with single-cell resolution, there is no suitable neuron tracking algorithm to robustly extract neural activities from the data. Indeed, the density of the neurons as well as the vigorous movement of the worm is unprecedented. Chapter 3 and 4 constitute two parts of a broader neuron tracking algorithm. In Chapter 3, I introduce an iterative neural network based algorithm for unsupervised 3D image registration. In Chapter 4, a Gaussian Mixture Model based algorithm is proposed that simulates the raw data as the mixture of 3D Gaussian functions.
Chapter 5 is the finale where I integrate of all proposed imaging and tracking methods in recording neural activity from the whole nervous system in freely-behaving NeuroPAL worms. Three applications are demonstrated, which spans from whole nervous system recording to investigation of class-dependent ventral nerve cord motor neurons during locomotion.
In Chapter 6, I report progress towards building the next-generation SCAPE with higher resolution/collection efficiency. A custom-designed zero working distance objective is demonstrated, which uses off-the-shelf objective with novel refractive-index-matched material to achieve high collection numerical aperture without sacrificing field of view (FOV).
|
455 |
Decoding neuronal fate specification in the pharynx of Caenorhabditis elegansGulez, Burcu January 2025 (has links)
Santiago Ramon y Cajal’s lifelong pursuit of understanding the intricate cell types in the nervous system ignited a pivotal inquiry in neurobiology. Despite advancements, the fundamental question persists: How does the human brain generate its diverse neuronal cell types? While progress has been made, the mechanisms governing neuronal diversity during brain development remain elusive. Numerous transcription factors and their regulatory mechanisms await elucidation, posing a formidable challenge due to the complexity of the task.
The nematode Caenorhabditis elegans serves as an ideal model organism for investigating neuronal fate specification, owing to its small size, rapid generation time, transparency, and well-annotated genome. This dissertation focuses on the pharyngeal nervous system of C. elegans, comprised of only 20 neurons delineated into 14 distinct types. This simplicity enables detailed analyses of neuronal specifications within a largely autonomous circuit.
This study employs two main approaches: a candidate gene analysis and an unbiased forward genetic screen. Through expression analysis in the laboratory, several homeodomain transcription factors were identified in pharyngeal neurons. Subsequent mutant analysis of these candidate genes tested their roles in specifying the pharyngeal nervous system.
Additionally, this research explored the shifts in homeotic identity between pharyngeal neurons governed by these transcription factors. The forward genetic screen led to the discovery that the chd-7 chromatin regulatory factor plays an essential role in regulating I2 neuronal identity. These insights deepen our understanding of neuronal fate specification and suggest broader implications for understanding complex neural systems.
|
456 |
Développement d’un nouveau marqueur de transgénèse pour la transformation de nématodes / Development of a novel genetic marker for nematode transgenesisGiordano-Santini, Rosina 01 June 2011 (has links)
La construction d’animaux transgéniques est une technique clef qui a permis l’étude de nombreux aspects de la biologie du nématode Caenorhabditis elegans. Les animaux transgéniques peuvent être construits soit en injectant l’ADN exogène dans les gonades syncitiales de l’hermaphrodite adulte, soit en bombardant une population de vers avec des microbilles enrobées d’ADN. Dans les deux cas, l’utilisation de marqueurs génétiques est indispensable pour l’identification des individus transgéniques et la maintenance des lignées. Nous avons développé un vecteur d’expression pour les nématodes contenant le gène de résistance à la néomycine (neo), qui fonctionne comme marqueur génétique. Le gène neo confère la résistance au G-418, un antibiotique qui inhibe la synthèse de protéines chez les eucaryotes et qui est létal pour les nématodes sauvages. Nous avons montré que le marqueur neo est un marqueur génétique très puissant qui permet l’identification rapide des animaux transgéniques et qui permet l’enrichissement des populations transgéniques en présence de l’antibiotique, facilitant ainsi la maintenance des lignées. Ce système ne nécessite aucun contexte génétique particulier pour fonctionner et est donc compatible avec des lignées receveuses mutantes, ainsi que des lignées transgéniques ayant été transformées avec d’autres marqueurs génétiques. De plus, le gène neo est sous le contrôle du promoteur du gène de C. elegans rps-27, codant pour une protéine ribosomale dont la séquence est hautement conservée entre les nématodes. Nous avons utilisé ce gène comme marqueur génétique pour la transgénèse de l’espèce Caenorhabditis briggsae, ce qui suggère que le système neo pourrait aussi être utilisé pour d’autres espèces de la famille Caenorhabditis. Finalement, nous avons aussi montré que le système neo peut être utilisé dans le contexte des techniques d’ingénierie génétique basées sur le transposon Mos1. En conclusion, la sélection en présence de G-418 offre des nouvelles possibilités d’expériences pour la transgénèse de C. elegans et d’autres espèces proches. Les avantages du système neo devraient ainsi contribuer à développer des techniques de transgénèse du ver plus flexibles et efficaces. / The generation of transgenic animals has been instrumental to study many biological aspects of Caenorhabditis elegans biology. Transgenic animals can be obtained by either microinjection of the exogenous DNA into the syncitial gonad of the hermaphrodite or by bombardment of a population of worms with DNA coated microparticles. Both techniques rely on the use of genetic markers to facilitate the recovery of transformed animals and the maintenance of transgenic lines. We developed a nematode expression vector carrying the neomycin resistance gene (neo) as a selection marker. This gene confers resistance to G-418, an antibiotic that normally inhibits protein synthesis in eukaryotes and is lethal for wild-type nematodes. We showed that the neo marker is a potent tool that allows a clear-cut selection of transgenic animals and hands-off maintenance of non-integrated populations on G-418 plates. This system does not imply any prerequisite on the original genotype of the recipient strain and can therefore be used on mutants lines as well as transgenic strains obtained with common markers. Moreover, we placed the neo gene under the control of the C. elegans rps-27 promoter, a highly conserved ribosomal protein throughout the nematode phylogeny. We were able to provide resistance to Caenorhabditis briggsae using this vector; this likely indicates that neo can be used in any species from the Caenorhabditis family. Finally, we demonstrated that this powerful selection system can be used in the context of Mos1 transposon excision-repair methods. Therefore, the neo system offers a wide range of new possibilities for transgenesis both in C. elegans and in other related species. We therefore believe that the benefits of the neo system should contribute to the development of more flexible and efficient techniques for nematode transgenesis.
|
457 |
Études comparatives de la nociception chez Caenorhabditis elegans souche sauvage (N2) et mutants (egl-3 et egl-21)Nkambeu, Bruno 08 1900 (has links)
No description available.
|
458 |
Les ilôts de résistance de type SGI1 (Salmonella Genomic Island 1) et apparentés dans des souches humaines cliniques de Porteus mirabilis et Salmonella enterica / Salmonella Genomic Island 1 (SGI1) and relative genomic islands from clinical Proteus mirabilis and Salmonella enterica isolatesGoulard de Curraize, Claire 01 December 2017 (has links)
Salmonella genomic island 1 (SGI1) est un élément intégratif mobilisable décrit pour la 1ère fois dans un clone penta-résistant de Salmonella Typhimurium DT104. Depuis, plusieurs variants et îlots apparentés (Proteus genomic island 1 (PGI1)) ont été rapportés dans différents sérotypes de Salmonella enterica et chez Proteus mirabilis. Ces îlots de résistance sont constitués d’un squelette plutôt stable et d’une région de multirésistance (MDR) variable. L’objectif de cette thèse était d’étudier ces îlots dans des souches cliniques de P. mirabilis (CHU de Dijon et Lariboisière à Paris) et de S. enterica (CHU de Dijon). La prévalence de ces îlots variait de 5 à 16% chez P. mirabilis ayant acquis au moins une résistance. L’étude génotypique a montré une grande diversité des souches mais également la présence de quelques clones porteurs de SGI1 ou PGI1. Le séquençage de ces îlots a mis en évidence la grande plasticité des régions MDR souvent en lien avec des mouvements d’IS26. Ces dernières permettent à la région MDR de s’enrichir en nouveaux gènes de résistance (ex : blaCTX-M-15) présents dans des structures antérieurement décrites sur des plasmides de clones d’entérobactéries répandus. De nombreuses espèces d’entérobactéries porteuses d’un plasmide IncA/C sont capables d’acquérir par conjugaison un îlot provenant d’une autre entérobactérie. Cet îlot s’intègre alors au niveau du site chromosomique spécifique (trmE). Sous pression antibiotique et en présence d’un plasmide IncA/C, les souches peuvent être complètement excisées de leur îlot. Ainsi, ces îlots sont des interfaces de résistance à la fois stables mais aussi dynamiques favorisant la dissémination des gènes de résistance. Une virulence accrue par la présence de ces îlots chez S. enterica n’a pas pu être confirmée ni dans le modèle d’infection expérimentale de C. elegans, ni dans une étude rétrospective chez l’homme (prévalence de 12%). En revanche, P. mirabilis avait tendance à être plus pathogène chez C. elegans lorsqu’il était porteur d’un îlot / Salmonella genomic island (SGI1) is an integrative mobilizable element initially described in an epidemic multidrug-resistant Salmonella Typhimurium DT104. Since this first report, many variants and related genomic islands (Proteus genomic island 1 (PGI1)) have been described among Salmonella enterica serovars and in Proteus mirabilis. These islands have a stable backbone and a highly variable multidrug-resistant (MDR) region. The objective of this work was to study SGI1 from clinical P. mirabilis isolates (University hospitals of Dijon and Lariboisière - Paris) and S. enterica (University hospital of Dijon) The prevalence of these islands ranged from 5% to 16% in P. mirabilis with at least one acquired resistance. The genotypic analysis revealed a wide diversity among isolates but also the presence of some clonal isolates harbouring SGI1 or PGI1. Genomic island sequencing revealed the great plasticity of MDR regions, primarily mediated by IS26. Thanks to IS26 movements, the MDR region gains resistance genes (such as blaCTX-M-15) present in structures initially detected in plasmids from widely distributed Enterobacteriaceae. Many species of Enterobacteriaceae that harbour IncA/C plasmids are able to acquire islands by conjugation. These islands are then incorporated into specific sites on the chromosome (trmE). They could also be completely excised from Enterobacteriaceae under antibiotic pressure in the presence of an IncA/C plasmid. Genomic islands should be regarded on the one hand as a steady interface of resistance and on the other hand as a dynamic interface conveying resistance genes. Finally, SGI1 of S. enterica was not found to increase virulence in a Caenorhabditis elegans model or in a retrospective clinical study (12% of prevalence). However, it seems that P. mirabilis becomes more virulent when it harbours SGI1 in Caenorhabditis elegans
|
459 |
Produtos naturais de fungos endofíticos associados a espécies de Asteraceae e ensaio antibiótico no modelo de infecção em \"Caenorhabditis elegans\" / Natural products from endophytic fungi found in association with Asteraceae species and antibiotic assay in the \"Caenorhabditis elegans\" infection modelGuimarães, Denise Oliveira 05 February 2010 (has links)
O estudo de fontes naturais pouco exploradas e que exibem interações ecológicas específicas no seu habitat tem sido enfatizado como estratégico para a descoberta de novas substâncias bioativas. Microrganismos endofíticos são fontes de produtos naturais relativamente pouco estudadas. Estes microrganismos vivem no interior de um vegetal sem causar danos aparentes ao hospedeiro. A interação ecológica específica entre os microrganismos endofíticos e sua planta hospedeira pode estimular a biossíntese de novos produtos naturais bioativos. Os fungos endofíticos \"Glomerella cingulata\" e \"Guignardia mangiferae\" foram isolados da folhas de \"Viguiera arenaria\". O fungo \"G. mangiferae\" foi cultivado em diferentes condições: meios líquidos Czapek, extrato de malte e caldo batata-dextrose e meio sólido de arroz. Extratos e frações obtidas com o cultivo de \"G. mangiferae\" foram avaliados em ensaios antimicrobianos, citotóxicos e enzimáticos. Foram realizados procedimentos cromatográficos com os extratos brutos, obtendo-se 13 substâncias puras, sendo cinco delas inéditas na literatura. Entre as novas substâncias, quatro são derivados tricicloalternarenos. O extrato bruto etanólico oriundo do cultivo em extrato de malte foi o mais promissor nos ensaios biológicos realizados. A partir desse extrato foi isolado a chaetoglobosina D, um composto já descrito na literatura como citotóxico em células cancerígenas. Os demais extratos, frações e substâncias ensaiadas apresentaram apenas atividade fraca ou moderada. O fungo \"G. cingulata\" foi investigado sobre a produção do metabólito secundário tirosol, previamente isolado de várias linhagens de fungos endofíticos. Devido à ampla ocorrência em fungos endofíticos, o tirosol pode estar correlacionado com uma função sinalizadora para a produção de outros metabólitos secundários. Para a determinação da quantidade de tirosol produzido por \"G. cingulata\", um método analítico quantitativo foi desenvolvido obedecendo-se padrões descritos pelo Guidance of Industry. Foi realizada a análise dos fluídos das culturas de \"G. cingulata\" em diferentes condições de cultivo em meio líquido Czapek. Observou-se que a melhor condição para produção do tirosol ocorre em pH 5,0, 120 rpm, 30 ºC, seis dias de incubação. O cultivo de \"G. cingulata\" com e sem adição de tirosol no meio líquido Czapek não permitiu resultados conclusivos sobre a possível função sinalizadora do tirosol na produção de metabólitos secundários em fungos endofíticos. Durante o período de estágio sanduíche no Departament of Molecular Biology do Massachusetts General Hospital (Harvard Medical School), sob a supervisão do Prof. Dr. Frederick M. Ausubel, foram avaliadas cerca de 170 amostras de origem natural do Brasil, sendo a maioria delas oriundas de fungos endofíticos, frente ao nematóide \"Caenorhabditis elegans\" infectado com linhagem patogênica de \"Enterococcus faecalis\". Cerca de 29% das substâncias puras e 2% dos extratos ensaiados apresentaram boa capacidade de recuperação do nematóide infectado. Os policetídeos chaetoviridinas foram os compostos mais ativos neste modelo de ensaio antibacteriano \"in vivo\". / The search for small bioactive molecules from under-explored natural sources that possess specific ecological interaction in their respective habitat has been emphasized as strategic for the discovery of bioactive compounds. Endophytic microorganisms are still relatively under-explored sources of natural products. These microorganisms live inside the host plant tissues without causing symptoms of disease to the host. The specific ecological interaction between the endophytes and their host plants may trigger the biosynthesis of new small bioactive molecules. The endophytic fungi \"Glomerella cingulata\" and \"Guignardia mangiferae\" were isolated from \"Viguiera arenaria\" leaves. G. mangiferae was cultured using different conditions: Czapek, malt extract and potato-dextrose broth liquid media and rice solid medium. Crude extracts and fractions obtained after \"G. mangiferae\" cultivation were evaluated in antimicrobial, cytotoxic and enzymatic assays. Chromatographic procedures were carried out with crude extracts and led to the isolation of 13 compounds, five of them new in the literature. From the novel compounds four are tricycloalternarene derivatives. The crude ethanolic extract obtained from malt extract cultivation was the most promising extract in the biological assays. Chaetoglobosin D, a cytotoxic compound against cancer cell lines previously described in the literature, was isolated from this bioactive extract. The other extracts, fractions and compounds assayed showed weak or moderate activity in the performed assays. The production of tyrosol by \"G. cingulata\" was investigated, since several endophytic fungal strains from Asteraceae species had already produced this compound. Tyrosol may act as a signaling molecule for the production of other metabolites in endophytic fungi. In order to quantify the production of tyrosol by \"G. cingulata\", an analytical method was validated under Guidance of Industry recommendations. Fluid culture analyses were performed after the cultivation of \"G. cingulata\" under different conditions using Czapek liquid medium. The best condition for tyrosol production occurred at pH 5.0, 120 rpm, 30 ºC, six days of incubation. Cultivation of \"G. cingulata\" with and without tyrosol addition in the Czapek liquid medium did not allow the conclusion that tyrosol act as a signaling molecule for metabolite production by endophytic fungi. During sandwich training at Department of Molecular Biology of Massachusetts General Hospital (Harvard Medical School), under Dr. Frederick M. Ausubel supervision, 170 samples from Brazil, the most part obtained from endophytic fungi, were assayed using the nematode \"Caenorhabditis elegans\" infected with the pathogen \"Enterococcus faecalis\". About 29% of pure compounds and 2% of extracts assayed were able to promote the survival of the infected nematode. The polyketides chaetoviridins were found to be the most active compounds in this \"in vivo\" antibacterial assay.
|
460 |
Impact de l’activité postsynaptique sur le développement et le maintien de la jonction neuromusculaire de C. elegans / Impact of postsynaptic activity on the development and maintenance of the neuromuscular junction of C. elegansWeinreb, Alexis 11 September 2018 (has links)
Au cours du développement du système nerveux, l'activité des cibles post-synaptiques permet le raffinement du nombre et de la force des connexions neuronales. En employant la jonction neuromusculaire de Caenorhabditis elegans comme système modèle, nous avons étudié deux aspects de la mise en place de ces connexions. D'une part, nous montrons que le nombre de récepteurs présents à la jonction neuromusculaire est contrôlé par l'activité musculaire : une augmentation de l'activation synaptique entraîne une régulation différentielle des trois types de récepteurs présents à la jonction neuromusculaire. D'autre part, nous avons étudié les changements de la morphologie de certains motoneurones de la tête du ver, appelés neurones SAB, en fonction de l’activité musculaire. Une diminution de l’activité musculaire durant une période critique du développement entraîne une surcroissance axonale des neurones SAB. À travers différentes approches, nous avons pu identifier la suppression de la surcroissance axonale dans des mutants où la biosynthèse des neuropeptides est perturbée. Enfin, nous avons mis en évidence que la surcroissance axonale apparait également lors de perturbations plus générales de la physiologie cellulaire, telles qu'un choc thermique ou la surexpression d'un transgène, ce qui suggère que le système SAB est plastique et particulièrement sensible au cours du développement / Throughout nervous system development, activity of the post-synaptic targets can regulate the connectivity of neural networks, affecting both the number and strength of synapses. Using the neuromuscular junction of Caenorhabditis elegans as a model system, we studied two processes displaying such plasticity. First, we show that the number of receptors present at the neuromuscular synapse is regulated by muscle activity: an increase in synaptic activity can lead to a differential regulation of the three types of receptors present at the neuromuscular junction. Second, we studied the activity-dependent morphological changes of one type of motor neurons in the worm’s head, called the SAB neurons. A decrease of muscle activity during a critical developmental phase leads to SAB axonal overgrowth. Using several approaches, we were able to observe suppression of SAB axonal overgrowth in mutants with a disruption of neuropeptides biosynthesis. Finally, we give evidence that axonal overgrowth also occurs following more general disruptions of cell physiology, such as a heat-shock or transgene overexpression, which suggest that the SAB system is plastic and sensitive during development
|
Page generated in 0.0539 seconds