• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 21
  • 5
  • Tagged with
  • 125
  • 125
  • 74
  • 74
  • 22
  • 19
  • 18
  • 18
  • 15
  • 15
  • 14
  • 14
  • 14
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Réalisation de détecteurs de neutrons en carbure de silicium / Realization of silicon carbide neutron detectors

Issa, Fatima 19 February 2015 (has links)
Les détecteurs de radiations nucléaires sont des outils importants dans de nombreux domaines tels que dans les réacteurs nucléaires, la sécurité nationale, mais ils sont également primordiaux dans des applications médicales. Les progrès récents dans la technologie des semi-conducteurs permettent la réalisation de détecteurs très efficaces et quasi-insonores qui permettent la détection de différents types de radiations nucléaires. Le carbure de silicium (SiC) est une bande semi-conductrice large, grâce à sa conductivité thermique élevée et à une résistance élevée aux rayonnements, il est adapté pour les environnements difficiles où peuvent exister des flux élevés de température et de rayonnement. Le but du projet européen (I_SMART) est ainsi de prouver la fiabilité de nouvelles méthodes de réalisation de détecteurs de radiations nucléaires et d'étudier leur performance dans différents types d'irradiation (neutrons rapides et thermiques) et à différentes températures. Différentes méthodes ont été utilisées pour réaliser les détecteurs de rayonnement SiC. Par exemple l'implantation d'ions de bore a été utilisé pour créer la couche de conversion de neutrons soit dans le contact métallique ou directement en SiC. Les détecteurs fabriqués ont été testés dans le réacteur nucléaire BR1, mettant en lumière la présence de neutrons thermiques. En outre, ces détecteurs détectent des neutrons rapides sous n’importe quelle température. En outre, les détecteurs utilisés montrent leur stabilité sous différents flux de neutrons qui indiquent la fiabilité de ces nouveaux modes de réalisation de détecteurs de rayonnement qui pourraient remplacer ceux utilisés actuellement. / Nuclear radiation detectors are important tools in many fields such as in nuclear reactors, homeland security and medical applications. Recent advances in semiconductor technology allow construction of highly efficient low noise detectors for different nuclear radiations. Silicon carbide (SiC) is a wide band gap semiconductor with a high thermal conductivity and high radiation resistance. It is suitable for a harsh environment where high temperatures and radiation fluxes may exist. In the framework of the European project (I_SMART) the purpose of this work is to demonstrate the reliability of new methods of realizing nuclear radiation detectors and to study their performance under different types of irradiation (fast and thermal neutrons) and at elevated temperatures. Different methods have been used to realize SiC based-radiation detectors. For instance boron ion implantation has been used to create the neutron converter layer either in the metallic contact or directly in the SiC. The fabricated detectors have been tested in the BR1 nuclear reactor revealing the thermal neutron detection and the feasibility of gamma discrimination from thermal neutrons using one single detector. Such detectors are sensitive to fast neutrons with a stable response under elevated temperatures (up to 150 °C). Furthermore, the studied detectors show stability under different neutron fluxes, indicating a reliability of such new methods of realizing radiation detectors which could replace those of the current state of the art.
62

Étude des propriétés physiques de nanofils individuels de carbure de silicium par émission de champ / Studies of the physical properties of individual silicon carbide nanowires by field emission

Choueib, May 24 July 2009 (has links)
Ce travail s’inscrit dans le cadre de la caractérisation physique de nanofils (NF) semiconducteurs (SC) qui est un domaine en plein essor ces dernières années. Plus précisément, nous explorons l’émission de champ (EC) de NFs individuels de Carbure de Silicium (SiC) pour leur potentialité comme source d'électrons, mais surtout pour étudier leurs propriétés de transport électrique, optiques et mécaniques.Le rôle important joué par la surface dans ces NFs a été prouvé par des traitements in situ qui ont eu des conséquences radicales sur l’EC dévoilant ainsi des propriétés d’émission propres aux SCs. En particulier, un régime de saturation, en accord avec la théorie d’EC des SCs, associé à une forte dépendance de l'émission à la température et à l’illumination laser a été révélé pour la première fois pour un NF. Ces mesures ouvrent des perspectives importantes tant pour la recherche fondamentale que pour les applications telles que la réalisation de photocathodes et de sources d’électrons pilotées optiquement ou par la température. Les caractéristiques courant-tension-température associées à l’analyse en énergie des électrons émis nous ont permis de déterminer le mécanisme de transport dans ces NFs, qui est limité par le nombre de porteurs dans le volume et contrôlé par les pièges présents dans la bande interdite par l’effet Poole-Frenkel. Finalement, la caractérisation mécanique a révélé des valeurs du facteur de qualité élevé (160000) et du module de Young allant jusqu’à 700GPa. Ces valeurs sont très prometteuses pour l’utilisation de ces NFs dans les systèmes nano-électro-mécaniques et dans les composites. / We use field emission (FE) from individual silicon carbide nanowires (NWs) to explore their potential as electron sources, and especially as a versatile tool for studying transport, optical and mechanical properties of NWs. These studies fall within the larger framework of the physics of semiconducting (SC) nanowires, which is presently a large and rapidly expanding domain. The important role played by the surface in the transport and optical properties of NWs was clearly demonstrated by the radical consequences induced by in situ treatments on the FE properties. This permitted the observation of the specific behavior expected for SCs, particularly, a current saturation regime in agreement with the theory of FE for SCs. We found that the saturation was concomitant with a strong dependence of the emission on temperature and laser illumination, revealed for the first time for a NF. These measurements open important perspectives for both fundamental research and applications such as the realization of optically or thermally controlled FE electron sources. The current-voltage-temperature characteristics were carried out in parallel with measurement of the energy distributions of the emitted electrons, thus permitting the determination of the transport mechanism in the NWs. We found that the transport was limited by the carrier density in the volume and by the traps in the gap that generate current through the Poole-Frenkel effect. Finally, the mechanical characterization revealed high quality factors, as high as 160,000, and a Young’s modulus up to 700 GPa. These values are very promising for the use of these NWs in nano-electro-mechanical systems (NEMS) and composites.
63

Spectroscopie d'excitation de la photoluminescence à basse température et resonance magnétique détectée optiquement de défauts paramagnétiques de spin S=l carbure de silicium ayant une photoluminescence dans le proche infrarouge / Low Temperature Photoluminescence Excitation Spectroscopy and Optically Detected Magnetic Resonance of Near-Infrared Photoluminescent Paramagnetic Defects with Spin S = 1 in Silicon Carbide

Abbasi Zargaleh, Soroush 18 October 2017 (has links)
Les défauts ponctuels dans les matériaux à grande bande interdite font l’objet de nombreuses recherches, compte tenu des perspectives d’applications en technologie quantique. La réalisation de qubits et de capteurs quantiques a échelle nanomètres à l’aide du centre NV– a suscité la recherche de défauts ayant des propriétés magnéto-optiques similaires, mais dans un matériau technologiquement plus mûr tel que le carbure de silicium (SiC). Le SiC se présente sous différentes structures cristallographiques, notamment cubique (3C) et hexagonales (4H et 6H). Cette propriété permet d’obtenir une plus grande variété de défauts ponctuels profonds. Dans cette thèse, j'ai établi présence du défaut azote-lacune (NCVSi) de spin S=1 dans un échantillon de 4H-SiC irradié par des protons, en réalisant la spectroscopie d'excitation de la photoluminescence à la température cryogénique et en comparant les résultats à des calculs ab initio. J'ai également développé un dispositif qui m'a permis de détecter optiquement la résonance magnétique de spin S=1 (ODMR) de la bilacune (VCVSi) dans un échantillon de 3C-SiC et d'étudier son interaction hyperfine avec des spins nucléaires d’atome de carbone et de silicium voisins. / Point-like defects in wide-bandgap materials are attracting intensive research attention owing to prospective applications in quantum technologies. Inspired by the achievements obtained with the NV– center in diamond for which qubit and nanoscale quantum sensors have been demonstrated, the search for high spin color centers with similar magneto-optical properties in a more technological mature material such as silicon carbide (SiC) had a renewed interest. Indeed, SiC exhibits polymorphism, existing for instance with cubic (3C polytype) or hexagonal (4H and 6H polytypes) crystalline structures. Such property provides a degree of freedom for engineering a rich assortment of intrinsic and extrinsic atomic-like deep defects. In this thesis using photoluminescence excitation spectroscopy at cryogenic temperature and a comparison to ab initio calculations I have evidence the presence of nitrogen-vacancy spin S=1 (NCVSi) defect in proton irradiated 4H-SiC. I have also developed a setup that allowed me to detect optically the S=1 spin magnetic resonance (ODMR) of the divacancy (VCVSi) in 3C-SiC, and study its hyperfine interaction with nearby carbon and silicon nuclear spins.
64

Fabrication de semiconducteurs poreux pour améliorer l'isolation thermique des MEMS

Newby, Pascal January 2014 (has links)
Résumé : L’isolation thermique est essentielle dans de nombreux types de MEMS (micro-systèmes électro-mécaniques). Elle permet de réduire la consommation d’énergie, améliorer leurs performances, ou encore isoler la zone chaude du reste du dispositif, ce qui est essentiel dans les systèmes sur puce. Il existe quelques matériaux et techniques d’isolation pour les MEMS, mais ils sont limités. En effet, soit ils ne proposent pas un niveau d’isolation suffisant, sont trop fragiles, ou imposent des contraintes trop importantes sur la conception du dispositif et sont difficiles à intégrer. Une approche intéressante pour l’isolation, démontrée dans la littérature, est de fabriquer des pores de taille nanométrique dans le silicium par gravure électrochimique. En nanostructurant le silicium ainsi, on peut diviser sa conductivité thermique par un facteur de 100 à 1000, le transformant en isolant thermique. Cette solution est idéale pour l’intégration dans les procédés de fabrication existants des MEMS, car on garde le silicium qui est déjà utilisé pour leur fabrication, mais en le nanostructurant localement, on le rend isolant là où on en a besoin. Par contre sa porosité cause des problèmes : mauvaise résistance chimique, structure instable au-delà de 400°C, et tenue mécanique réduite. La facilité d’intégration des semiconducteurs poreux est un atout majeur, nous visons donc de réduire les désavantages de ces matériaux afin de favoriser leur intégration dans des dispositifs en silicium. Nous avons identifié deux approches pour atteindre cet objectif : i) améliorer le Si poreux ou ii) développer un nouveau matériau. La première approche consiste à amorphiser le Si poreux en l’irradiant avec des ions à haute énergie (uranium, 110 MeV). Nous avons montré que l’amorphisation, même partielle, du Si poreux entraîne une diminution de sa conductivité thermique, sans endommager sa structure poreuse. Cette technique réduit sa conductivité thermique jusqu’à un facteur de trois, et peut être combinée avec une pré-oxydation afin d’atteindre une réduction d’un facteur cinq. Donc cette méthode permet de réduire la porosité du Si poreux, et d’atténuer ainsi les problèmes de fragilité mécanique causés par la porosité élevée, tout en gardant un niveau d’isolation égal. La seconde approche est de développer un nouveau matériau. Nous avons choisi le SiC poreux : le SiC massif a des propriétés physiques supérieures à celles du Si, et donc à priori le SiC poreux devrait conserver cette supériorité. La fabrication du SiC poreux a déjà été démontrée dans la littérature, mais avec peu d’études détaillées du procédé. Sa conductivité thermique et tenue mécanique n’ont pas été caractérisées, et sa tenue en température que de façon incomplète. Nous avons mené une étude systématique de la porosification du SiC en fonction de la concentration en HF et le courant. Nous avons implémenté un banc de mesure de la conductivité thermique par la méthode « 3 oméga » et l’avons utilisé pour mesurer la conductivité thermique du SiC poreux. Nous avons montré qu’elle est environ deux ordres de grandeur plus faible que celle du SiC massif. Nous avons aussi montré que le SiC poreux est résistant à tous les produits chimiques typiquement utilisés en microfabrication sur silicium. D’après nos résultats il est stable jusqu’à au moins 1000°C et nous avons obtenu des résultats qualitatifs encourageants quant à sa tenue mécanique. Nos résultats signifient donc que le SiC poreux est compatible avec la microfabrication, et peut être intégré dans les MEMS comme isolant thermique. // Abstract : Thermal insulation is essential in several types of MEMS (micro electro-mechanical systems). It can help reduce power consumption, improve performance, and can also isolate the hot area from the rest of the device, which is essential in a system-on-chip. A few materials and techniques currently exist for thermal insulation in MEMS, but these are limited. Indeed, either they don’t have provide a sufficient level of insulation, are too fragile, or restrict design of the device and are difficult to integrate. A potentially interesting technique for thermal insulation, which has been demonstrated in the literature, is to make nanometer-scale pores in silicon by electrochemical etching. By nanostructuring silicon in this way, its thermal conductivity is reduced by a factor of 100 to 1000, transforming it into a thermal insulator. This solution is ideal for integration in existing MEMS fabrication processes, as it is based on the silicon substrates which are already used for their fabrication. By locally nanostructuring these substrates, silicon is made insulating wherever necessary. However the porosity also causes problems : poor chemical resistance, an unstable structure above 400◦C, and reduced mechanical properties. The ease of integration of porous semiconductors is a major advantage, so we aim to reduce the disadvantages of these materials in order to encourage their integration in silicon-based devices. We have pursued two approaches in order to reach this goal : i) improve porous Si, or ii) develop a new material. The first approach uses irradiation with high energy ions (100 MeV uranium) to amorphise porous Si. We have shown that amorphisation, even partial, of porous Si leads to a reduction of its thermal conductivity, without damaging its porous structure. This technique can reduce the thermal conductivity of porous Si by up to a factor of three, and can be combined with a pre-oxidation to achieve a five-fold reduction of thermal conductivity. Therefore, by using this method we can use porous Si layers with lower porosity, thus reducing the problems caused by the fragility of high-porosity layers, whilst keeping an equal level of thermal insulation. The second approach is to develop a new material. We have chosen porous SiC: bulk SiC has exceptional physical properties and is superior to bulk Si, so porous SiC should be superior to porous Si. Fabrication of porous SiC has been demonstrated in the literature, but detailed studies of the process are lacking. Its thermal conductivity and mechanical properties have never been measured and its high-temperature behaviour has only been partially characterised. We have carried out a systematic study of the effects of HF concentration and current on the porosification process. We have implemented a thermal conductivity measurement setup using the “3 omega” method and used it to measure the thermal conductivity of porous SiC. We have shown that it is about two orders of magnitude lower than that of bulk SiC. We have also shown that porous SiC is chemically inert in the most commonly used solutions for microfabrication. Our results show that porous SiC is stable up to at least 1000◦C and we have obtained encouraging qualitative results regarding its mechanical properties. This means that porous SiC is compatible with microfabrication processes, and can be integrated in MEMS as a thermal insulation material.
65

Mesures des propriétés opto-électriques du carbure de silicium par déphasage micro-onde et sensibilité spectrale / Measurements of the opto-electronical properties of silicon carbide by means of microwave phase-shift and spectral sensitivity

Berenguier, Baptiste 11 December 2015 (has links)
Le carbure de silicium est un matériau semi-conducteur à grande bande d’énergie interdite possédant des propriétés exceptionnelles en termes de tenue en température, de résistance aux radiations, de stabilité chimique. En particulier il pourrait permettre la réalisation de détecteurs ultra-violet fonctionnant en environnement extrême (fortes températures et niveaux de radiations élevés) tels les environnements spatiaux. Le polytype 3C, avec un gap intermédiaire pourrait également être utilisé dans le domaine photovoltaïque. Le présent travail propose d’étudier le carbure de silicium à la fois sous l’aspect composant et sous l’aspect matériau. Une étude de la réponse spectrale de photodiodes UV (de type pn et Schottky) en fonction de la température et de l’irradiation est présentée. Un nouveau type de cellules solaires à hétérojonctions 3C-SiC/Si est étudié. Enfin, un système de mesure de la durée de vie des porteurs minoritaires dans le SiC-4H est réalisé et les résultats commentés. / Silicon carbide is a large bandgap semiconductor presenting outstanding properties in terms of temperature, radiations and chemical hardness. In particular it could allow the fabrication of ultra-violet detectors, able to work in harsh environments such as for space aplications. The 3C polytype , with it’s intermediate bandgap, could also be used in the photovoltaic field. The present work aims to study both the material and the application aspects of silicon carbide. A study of the spectral response of both pn and Schottky photodiodes with respect to the temperature and irradiation is presented. A new type of 3C-SiC/Si heterojunction solar cell is studied. Finally, a minority carrier lifetime measurement system is realised ant the results presented.
66

Contribution to condition monitoring of Silicon Carbide MOSFET based Power Module / Contribution au suivi de l'état de santé de module de puissance à base de MOSFET SiC

Hologne, Malorie 13 December 2018 (has links)
L’avion plus électrique demande des modules de puissances de plus en plus performants dans les domaines de la fiabilité et de la maîtrise de la durée de vie restante. Le remplacement des systèmes hydrauliques et pneumatiques par des actionneurs électriques et leurs convertisseurs associés est, aujourd’hui, un moyen efficace de réduire les coûts de maintenance et la consommation de carburant. L’ajout de composantes électriques est également un bon moyen d’augmenter la fiabilité des systèmes. La fiabilité est toujours étudiée à partir de contraintes cycliques accélérées. La tendance actuelle est d’embarquer des fonctions de suivi de l’état de santé dans les modules de puissance pour permettre la prédiction de la durée de vie restante. Cette approche implique des modifications du circuit afin de mettre en place des capteurs et est souvent dédiée à un mode de défaillance en particulier. Cette thèse propose une approche par apprentissage du suivi de l’état de santé de modules de puissance à base de MOSFET en carbure de silicium. Une large étude bibliographique a permis de créer et de réaliser un banc de test instrumenté permettant de mettre en œuvre des défaillances attendues dans les modules de puissance mais aussi d’enregistrer un grand nombre de paramètres électriques au cours de la vie du module. Ces paramètres montrent une évolution au cours du vieillissement du module en fonction des modes de défaillances. Un modèle de réseaux neuronaux s’appuie sur la dérive de ces paramètres pour établir le pronostic de durée de vie restante d’un module de puissance à chaque instant de son utilisation normale / More electrical aircraft requires power modules of higher performances, especially in terms of reliability with a control of lifetime. The replacement of hydraulic and pneumatic systems by electric actuators and their associated converters is the present trend to reduce maintenance cost and fuel consumption. Adding more electric components is also thought as a good way to increase reliability in systems. Reliability is still analysed from accelerated stress cycles. A large volume of data must be obtained in various conditions to assert a pertinent extrapolation of remaining lifetime during operation. A trend is to embed some condition monitoring functions in power modules to help predict the remaining lifetime. This approach is the field of hardware developments with respect to sensors and decorrelation methods but mainly dedicated to one particular failure. This thesis presents a learning approach of silicon carbide MOSFET based power modules condition monitoring. A large literature study has led to the elaboration of a test plan and an instrumented test bench. This test bench allows an accelerated lifespan of power module and an on-line recording of several electrical parameters. These parameters shows a drift according to the power module ageing. A neural network model based on these parameters drifts has been constructed to estimate the remaining useful lifetime of a power module in normal operation
67

Conception et optimisation de thyristors optiques en carbure de silicium pour des applications d'électronique impulsionnelle / Design and optimization of light triggered thyristor in silicon carbide for pulse power applications

Dheilly, Nicolas 14 January 2011 (has links)
L'Institut franco-allemand de recherche de Saint-Louis (ISL) développe des alimentations de forte puissance pour des applications d'électronique impulsionnelle. En vue de réduire les pertes, l'encombrement et le poids de ces systèmes, des thyristors en carbure de silicium pourraient à l'avenir remplacer les interrupteurs en silicium actuels. C'est dans le cadre de la collaboration entre le laboratoire Ampère et l'ISL que s'inscrit cette thèse sur ce thème de recherche. Les propriétés physiques du carbure de silicium et les composants réalisés par différents laboratoires universitaires et industriels ont démontré les aptitudes de ce matériau pour les fortes puissances. Le travail réalisé au cours de cette thèse a permis de concevoir de réaliser et de caractériser des thyristors optiques en carbure de silicium. Dans un premier temps, le travail de conception, basé sur des simulations éléments finis, a permis d'optimiser deux protections périphériques, la JTE multiple gravée et la JTE assistée par anneaux gravée, toutes deux robustes vis à vis des incertitudes technologiques sur la gravure, et ayant la particularité de ne pas recourir à l'implantation ionique. Deux séries de thyristors optiques ont ainsi été fabriquées. Le premier lot avait pour but de valider la faisabilité du déclenchement optique de thyristor avec des diodes électroluminescentes UV. Le deuxième lot a permis de mettre en œuvre la JTE assistée par anneaux. Une tenue en tension maximale de 6,3 kV a été mesurée sur ces thyristors. Ces composants sont aussi destinés à évaluer les possibilités en termes d'impulsion de courant des thyristors SiC. A ce titre, deux premières caractérisations ont été effectuées et les dispositifs ont été capables de passer un courant crête de 156 A (soit une densité de courant de 15,6 kA.cm-2) sur une impulsion de 10 μs de large et 40 A (4 kA.cm-2) sur une impulsion de 650 microsecondes de large. Ces résultats montrent une progression significative par rapport aux précédents travaux réalisés sur le thyristor SiC au laboratoire. Ils valident également la bonne stabilité de la technologie de fabrication de l'ISL (gravure, contact ohmique). Cependant, le rendement de fabrication devra être amélioré par le travail mené actuellement par l'ISL, sur la passivation des composants. / In order to reduce the losses, the weight and the volume of the power supply of its pulse power systems, the French German research institute of Saint-Louis (ISL) intends to replace the currently used silicon switches by silicon carbide thyristors. This work, in the frame of the collaboration between Ampere laboratory and ISL, deals with the design the fabrication and the characterization of light triggered thyristors in silicon carbide. In the first place, two device terminations, the graded etched JTE and the guard ring assisted etched JTE, have been optimized using finite element simulation. These two structures are tolerant to technological uncertainties and don’t need ion implantation. Two series of light triggered thyristors were also fabricated. Concerning the first run, the light triggering of SiC thyristor with UV light-emitting diodes was demonstrated. The guard ring assisted etched JTE was tested on the second run. The best blocking voltage measured on devices with this termination was 6.3 kV. These devices also aim at assessing the pulse current capabilities of silicon carbide thyristors. To this end, two characterizations were performed and a peak current of 156 A (15.6 kA/cm2) was reached with a pulse width of 10 IJS and 40 A (4 kA/cm2) with a pulse width of 650 IJS. These results show a significant progress compared to previous achievements of the laboratory on silicon carbide thyristor. They also validate the good stability of the fabrication technology of the ISL cleanroom (Etching process, ohm le contact). However, the fabrication yield needs to be improved by the optimization of the device passivation, which is currently under progress at ISL.
68

Croissance de la phase MAX sur SiC contact ohmique stable et fiable à haute température / MAX phase growth on SiC ohmic contact stable and reliable at high temperature

Abi Tannous, Tony 21 December 2015 (has links)
Nous avons pour objectif de jeter les bases d’une technologie en totale rupture avec celles existantes pour la fabrication d’une nouvelle génération de composants électroniques à base du Carbure de Silicium pour les applications à très hautes températures (jusqu’à 600°C). Cette nouvelle technologie est basée sur l'emploi d'une nouvelle génération de matériaux pour les contacts ohmiques haute température. Nous avons ciblé la phase Ti3SiC2, qui est une phase céramique/métallique, pour former un bon contact ohmique stable et fiable à haute et très haute température. A savoir que l’aspect céramique est nécessaire pour assurer une bonne stabilité thermique à haute température, et l’aspect métallique est nécessaire pour obtenir des bonnes propriétés électriques (bonne conductivité électrique, faible résistance électrique…). Dans le but d’élaborer le Ti3SiC2 sur SiC, un film mince de 200 nm d’un alliage TixAl1-x a été déposé sur SiC-4H suivit d’un recuit sous Ar. Dans cette étude, on a fait varier la concentration du Ti et d’Al dans le dépôt métallique (Ti20Al80, Ti30Al70, Ti50Al50 et Ti), et on a aussi varié la température de recuit de 900°C à 1200°C. Des analyses structurales comme le DRX, MET, MEB et XPS ont été effectuées après recuit. Pour caractériser électriquement la couche Ti3SiC2 synthétisée sur SiC, des motifs TLM ont été réalisés. Des caractérisations électriques à température ambiante et à très haute température (jusqu’à 600°C) ont été mis en œuvre pour chaque type de dépôt et par conséquence la hauteur de barrière de potentielle a été également déterminée. Enfin, pour étudier la stabilité thermique du Ti3SiC2 sur SiC, des tests de vieillissement ont été réalisé à 600°C sous Ar. / The growth of Ti3SiC2thin films was studied onto 4H-SiC (0 0 0 1) 8◦and 4◦-off substrates by thermalannealing of TixAl1−x(0.5 ≤ x ≤ 1) layers. The annealing time was fixed at 10 min under Argon atmosphere.The synthesis conditions were also investigated according to the annealing temperature (900–1200◦C)after deposition. X-Ray Diffraction (XRD) and Transmission Electron Microscope (TEM) show that thelayer of Ti3SiC2is epitaxially grown on the 4H-SiC substrate. In addition the interface looks sharp andsmooth with evidence of interfacial ordering. Moreover, during the annealing procedure, the formationof unwanted aluminum oxide was detected by using X-Ray Photoelectron Spectroscopy (XPS); this layercan be removed by using a specific annealing procedure. Using TLM structures, the Specific Contact Resistance (SCR) at room temperature of all contacts was measured. The temperature dependence up to 600°C of the SCR of the best contacts was studied to understand the current mechanisms at the Ti3SiC2/SiC interface. Experimental results are in agreement with the thermionic field emission (TFE) theory. With this model, the barrier height of the contact varies between 0.71 to 0.85 eV.
69

Initial and plasmon-enhanced optical properties of nanostructured silicon carbide / Initialisation et propriétés optiques des plasmons améliorés des carbures de silicium nanostructurés

Zakharko, Yuriy 30 October 2012 (has links)
Le carbure de silicium (SiC) nanostructuré est considéré aujourd'hui comme une bonne alternative aux matériaux traditionnels pour diverses applications multidisciplinaires. Dans cette thèse, des nanostructures de SiC ont été élaborées par gravure électrochimique et par ablation laser. La première partie de cette thèse décrit et explique la dépendance en taille des propriétés optiques ainsi que l'importance des effets de champ local sur les transitions électroniques photo-induites des nanostructures de SiC. Dans la seconde partie, il est démontré une amplification d’un facteur 15 de l’intensité de photoluminescence des nanoparticules de SiC par leurs interactions en champ proche avec les plasmons multipolaires localisées. En outre, un facteur 287 et un facteur 72, induits par le couplage plasmonique, sont obtenus respectivement pour les signaux de luminescence à deux photons et de génération de seconde harmonique. Les principaux mécanismes physiques responsables des effets observés ont été décrits par des simulations de type différences finies dans le domaine temporel en trois dimensions. Enfin, l'effet de couplage de nanoparticules de SiC luminescentes à des nanostructures plasmoniques en structures planes est utilisé pour améliorer le marquage de cellules biologiques. Une perspective est ouverte sur la réalisation et les premières caractérisations de suspension colloïdales de nanohybrides plasmonique (Au@SiO2)SiC. / Nanostructured silicon carbide (SiC) is considered today as a good alternative to the conventional materials for various multidisciplinary applications. In this thesis, SiC nanostructures were elaborated by means of electrochemical etching and laser ablation techniques. The first part of the thesis clarifies size-dependence of optical properties as well as importance of local-field effects onto the photoinduced electronic transitions of SiC nanostructures. In the second part of the thesis strong 15-fold photoluminescence enhancement of SiC nanoparticles is ensured by their near-field interactions with multipolar localized plasmons. Further, 287-fold and 72-fold plasmon-induced enhancement factors of two-photon excited luminescence and second harmonic generation is achieved, respectively. The main physical mechanisms responsible for the observed effects were described by three-dimensional finite-difference time domain simulations. Finally, the coupling effect of luminescent SiC nanoparticles to plasmonic nanostructures is used in the enhanced labelling of biological cells on the planar structures. As a perspective, colloidal plasmonic (Au@SiO2)SiC nanohybrids were elaborated and characterized.
70

Étude Thermodynamique et par Spectrométrie de Masse du Comportement de Poudres de Carbure de Silicium (SiC) à Haute Température

Honstein, G. 23 October 2009 (has links) (PDF)
Le carbure de silicium est un matériau bien connu à ce jour, mail il y a des aspects lors de sa fabrication qui sont mal compris. Le but de ce travail est de contribuer à la compréhension des échanges de matière via la phase gazeuse lors de la fabrication de composants en SiC. La procédure expérimentale utilisée est le suivi in situ de l'évolution des pressions de vapeur ou celle des flux évaporés par spectrométrie de masse et de comparer la morphologie et la structure des poudres avant et après les traitements par différents moyens de caractérisation dont la spectrométrie Raman et les observations MEB et FEG.. Une étude thermodynamique du système SiC-SiO2 précède et encadre l'expérimentale et le calcul des limites de la transition de l'oxydation passive-active du SiC sont effectués. L'influence des paramètres clefs comme la pollution par l'oxygène et les rampes de température sur les pressions partielles de SiO(g) et CO(g) a été observé et relié aux structures obtenues.

Page generated in 0.0448 seconds