Spelling suggestions: "subject:"case based reasoning"" "subject:"case based seasoning""
191 |
Erweiterungen des fallbasierten Schließens zur prognostischen Fundierung von Planungsaufgaben - Konzeption und prototypische Implementierung am Beispiel von Kapazitätsnachfrageprognosen zur Fundierung der Kapazitätsplanung auf verschiedenen Ebenen hochschulinterner PlanungssystemePöppelmann, Daniel 09 March 2015 (has links)
In der vorliegenden Arbeit wird das Konzept eines zusammengesetzten Decision Support Systems (DSS), bestehend aus einer wissensgetriebenen und einer datengetriebenen Komponente vorgeschlagen, welches Entscheidungsträger der Kapazitätsplanung auf verschiedenen Ebenen eines hochschulinternen Planungssystems mit prognostizierten, den Kernprozess Lehre betreffenden Nachfragegrößen unterstützt.
Den Kern des zusammengesetzten DSS stellt eine wissensgetriebene Komponente dar, die basierend auf dem Paradigma des Case-based Reasoning (CBR) die Prognose individueller Studienverläufe aller Studierender einer Hochschule ermöglicht. Dazu erfolgt die Wiederverwendung von Erfahrungen hinsichtlich der Modul- und Klausurbelegung von Alumni und im Studium fortgeschrittener Studierender, die in Form von Fällen repräsentiert werden. Die domänenspezifischen Anpassungen und Erweiterungen des Paradigmas des CBR umfassen erstens die Repräsentation von Erfahrungen mit heterogenem Zeitbezug durch Fälle. Diesbezüglich wird einerseits eine dynamische, vom zu lösenden Problem abhängige Zuordnung von Fallattributen zu den Komponenten Beschreibung und Lösung eines Falls konzipiert. Andererseits wird eine Möglichkeit zur Abbildung von zeitabhängigen Attributen sowohl in der Beschreibung als auch in der Lösung eines Falls geschaffen. Zweitens erfolgt eine Erweiterung des CBR-cycle, des Problemlösungsprozesses, der im erarbeiteten Konzept zur Erstellung von Prognosen verwendet wird. Die Erweiterungen umfassen insbesondere die automatisierte Erkennung von zu lösenden (Prognose-)Fällen, die Überprüfung und Anpassung erstellter Prognosen mithilfe eines regelbasierten Systems, das sich auf Domänenwissen aus einer Ontologie stützt, sowie die zeitasynchrone Einbeziehung einer Vielzahl von Studierenden als Domänenexperten zur Anpassung individuell prognostizierter Studienverläufe.
Eine datengetriebene Komponente bildet den zweiten Teil des zusammengesetzten DSS. Diese dient der Bereitstellung der Ergebnisse der wissensgetriebenen Komponente in einer von Entscheidungsträgern der hochschulinternen Kapazitätsplanung verwertbaren Form. Die durch die wissensgetriebene Komponente erstellten Prognosen werden hierzu in einen multidimensional modellierten Data Mart geladen und mithilfe von analytischen und Standardberichten auf verschiedenen Aggregationsniveaus zur Auswertung bereitgestellt.
Zur Evaluation des Konzepts erfolgt dessen prototypische Implementierung am Beispiel der Universität Osnabrück. Der Fokus der Bewertung liegt auf dem Kriterium der Prognosegenauigkeit, welches durch verschiedene, auf dem Prognosefehler basierende Gütemaße operationalisiert wird. Letztere werden anhand von Prognosesimulationen mittels des Prototyps ermittelt und auf Basis eines Interpretationsschemas sowie durch Gegenüberstellung mit den Ergebnissen eines Referenzverfahrens interpretiert und bewertet.
|
192 |
Case based learning in the undergraduate nursing programme at a University of Technology : a case studySinqotho, Thembeka Maureen 03 1900 (has links)
Submitted in fulfillment of the requirements for the Degree in Masters of Technology in Nursing, Durban University of Technology, Durban, South Africa, 2015. / Background
The current health care system in South Africa and its diverse settings of health care delivery system require a nurse who can make decisions, think critically, solve problems and work effectively in a team. Traditional nursing education teaching strategies have over the years relied on didactic and often passive approaches to learning. In pursuit of quality, academics and students must be continually engaged in a process of finding opportunities for improving the teaching and learning process.
Purpose of the study
The purpose of this study was to evaluate the structure and the process in case based learning at the University of Technology.
Methodology
This study is qualitative in nature, governed by an interpretive paradigm. This is a case study, which enabled the researcher to merge student interview data with records in order to gain insight into the activities and details of case based learning as practised at the University of Technology under study. Most importantly, the case study method was deemed appropriate for the current study, since case-based learning as a pedagogical approach (and a case) cannot be abstracted from its context for the purposes of study. Case based learning is evaluated in its context namely, the undergraduate nursing programme, using the Donabedian framework of structure, process and product.
Results
The study recorded that students were positive towards case based learning though some identified dynamics of working in groups as demerits of case based learning.
The structures that are in place in the programme and the CBL processes are adequate and support CBL. There are however areas that need attention such as the qualification of the programme coordinator, the size of the class-rooms and the service of the computer laboratory.
Conclusion
The study found that apart from a few minor discrepancies, case based learning is sufficiently implemented, and experienced as invaluable by students, at the University of Technology under study.
|
193 |
Uma abordagem híbrida para sistemas de recomendação de notícias / A hybrid approach to news recommendation systemsPagnossim, José Luiz Maturana 09 April 2018 (has links)
Sistemas de Recomendação (SR) são softwares capazes de sugerir itens aos usuários com base no histórico de interações de usuários ou por meio de métricas de similaridade que podem ser comparadas por item, usuário ou ambos. Existem diferentes tipos de SR e dentre os que despertam maior interesse deste trabalho estão: SR baseados em conteúdo; SR baseados em conhecimento; e SR baseado em filtro colaborativo. Alcançar resultados adequados às expectativas dos usuários não é uma meta simples devido à subjetividade inerente ao comportamento humano, para isso, SR precisam de soluções eficientes e eficazes para: modelagem dos dados que suportarão a recomendação; recuperação da informação que descrevem os dados; combinação dessas informações dentro de métricas de similaridade, popularidade ou adequabilidade; criação de modelos descritivos dos itens sob recomendação; e evolução da inteligência do sistema de forma que ele seja capaz de aprender a partir da interação com o usuário. A tomada de decisão por um sistema de recomendação é uma tarefa complexa que pode ser implementada a partir da visão de áreas como inteligência artificial e mineração de dados. Dentro da área de inteligência artificial há estudos referentes ao método de raciocínio baseado em casos e da recomendação baseada em casos. No que diz respeito à área de mineração de dados, os SR podem ser construídos a partir de modelos descritivos e realizar tratamento de dados textuais, constituindo formas de criar elementos para compor uma recomendação. Uma forma de minimizar os pontos fracos de uma abordagem, é a adoção de aspectos baseados em uma abordagem híbrida, que neste trabalho considera-se: tirar proveito dos diferentes tipos de SR; usar técnicas de resolução de problemas; e combinar recursos provenientes das diferentes fontes para compor uma métrica unificada a ser usada para ranquear a recomendação por relevância. Dentre as áreas de aplicação dos SR, destaca-se a recomendação de notícias, sendo utilizada por um público heterogêneo, amplo e exigente por relevância. Neste contexto, a presente pesquisa apresenta uma abordagem híbrida para recomendação de notícias construída por meio de uma arquitetura implementada para provar os conceitos de um sistema de recomendação. Esta arquitetura foi validada por meio da utilização de um corpus de notícias e pela realização de um experimento online. Por meio do experimento foi possível observar a capacidade da arquitetura em relação aos requisitos de um sistema de recomendação de notícias e também confirmar a hipótese no que se refere à privilegiar recomendações com base em similaridade, popularidade, diversidade, novidade e serendipidade. Foi observado também uma evolução nos indicadores de leitura, curtida, aceite e serendipidade conforme o sistema foi acumulando histórico de preferências e soluções. Por meio da análise da métrica unificada para ranqueamento foi possível confirmar sua eficácia ao verificar que as notícias melhores colocadas no ranqueamento foram as mais aceitas pelos usuários / Recommendation Systems (RS) are software capable of suggesting items to users based on the history of user interactions or by similarity metrics that can be compared by item, user, or both. There are different types of RS and those which most interest in this work are content-based, knowledge-based and collaborative filtering. Achieving adequate results to user\'s expectations is a hard goal due to the inherent subjectivity of human behavior, thus, the RS need efficient and effective solutions to: modeling the data that will support the recommendation; the information retrieval that describes the data; combining this information within similarity, popularity or suitability metrics; creation of descriptive models of the items under recommendation; and evolution of the systems intelligence to learn from the user\'s interaction. Decision-making by a RS is a complex task that can be implemented according to the view of fields such as artificial intelligence and data mining. In the artificial intelligence field there are studies concerning the method of case-based reasoning that works with the principle that if something worked in the past, it may work again in a new similar situation the one in the past. The case-based recommendation works with structured items, represented by a set of attributes and their respective values (within a ``case\'\' model), providing known and adapted solutions. Data mining area can build descriptive models to RS and also handle, manipulate and analyze textual data, constituting one option to create elements to compose a recommendation. One way to minimize the weaknesses of an approach is to adopt aspects based on a hybrid solution, which in this work considers: taking advantage of the different types of RS; using problem-solving techniques; and combining resources from different sources to compose a unified metric to be used to rank the recommendation by relevance. Among the RS application areas, news recommendation stands out, being used by a heterogeneous public, ample and demanding by relevance. In this context, the this work shows a hybrid approach to news recommendations built through a architecture implemented to prove the concepts of a recommendation system. This architecture has been validated by using a news corpus and by performing an online experiment. Through the experiment it was possible to observe the architecture capacity related to the requirements of a news recommendation system and architecture also related to privilege recommendations based on similarity, popularity, diversity, novelty and serendipity. It was also observed an evolution in the indicators of reading, likes, acceptance and serendipity as the system accumulated a history of preferences and solutions. Through the analysis of the unified metric for ranking, it was possible to confirm its efficacy when verifying that the best classified news in the ranking was the most accepted by the users
|
194 |
Tecnologia adaptativa aplicada a sistemas híbridos de apoio à decisão. / Adaptative tecnology applied to hybrid decision support systems.Okada, Rodrigo Suzuki 11 March 2013 (has links)
Este trabalho apresenta a formulação de um sistema híbrido de apoio à decisão que, através de técnicas adaptativas, permite que múltiplos dispositivos sejam utilizados de forma colaborativa para encontrar uma solução para um problema de tomada de decisão. É proposta uma estratégia particular para o trabalho colaborativo que restringe o acesso aos dispositivos mais lentos com base na dificuldade encontrada pelos dispositivos mais rápidos para solucionar um problema específico. As soluções encontradas por cada dispositivo são propagadas aos demais, permitindo que cada um deles agregue estas novas soluções com o auxílio de técnicas adaptativas. É feito um estudo sobre aprendizagem de máquina mediante incertezas para verificar e minimizar os impactos negativos que uma nova solução, possivelmente errônea, possa ter. O sistema híbrido proposto é apresentado numa aplicação particular, utilizando testes padronizados para compará-lo com os dispositivos individuais que o compõem e com sistemas híbridos de mesma finalidade. Através destes testes, é mostrado que dispositivos consolidados, mesmo que de naturezas distintas, podem ser utilizados de maneira colaborativa, permitindo não só calibrar um compromisso entre o tempo de resposta e a taxa de acerto, mas também evoluir de acordo com o histórico de problemas processados. / This work presents a formulation of a hybrid decision-making system that employs adaptive techniques as a way to coordinate multiple devices in order to make a collaborative decision. The strategy proposed here is to restrict the use of slower devices, based on how difficult the specific problem is - easier problems may be solved on faster devices. Each device is able to learn through solutions given by the others, aggregating new knowledge with the aid of adaptive techniques. In order to evaluate and minimize the negative impact those new solutions may have, a study concerning machine learning under uncertainty is carried out. A particular application of this system has been tested and compared, not only to each individual device that is part of the system itself, but to similar hybrid systems as well. It is shown that even devices of distinct natures may be reused in a collaborative manner, making it possible to calibrate the trade-off between hit rate and response time, and to evolve according to the input stimuli received as well.
|
195 |
Uma abordagem híbrida para sistemas de recomendação de notícias / A hybrid approach to news recommendation systemsJosé Luiz Maturana Pagnossim 09 April 2018 (has links)
Sistemas de Recomendação (SR) são softwares capazes de sugerir itens aos usuários com base no histórico de interações de usuários ou por meio de métricas de similaridade que podem ser comparadas por item, usuário ou ambos. Existem diferentes tipos de SR e dentre os que despertam maior interesse deste trabalho estão: SR baseados em conteúdo; SR baseados em conhecimento; e SR baseado em filtro colaborativo. Alcançar resultados adequados às expectativas dos usuários não é uma meta simples devido à subjetividade inerente ao comportamento humano, para isso, SR precisam de soluções eficientes e eficazes para: modelagem dos dados que suportarão a recomendação; recuperação da informação que descrevem os dados; combinação dessas informações dentro de métricas de similaridade, popularidade ou adequabilidade; criação de modelos descritivos dos itens sob recomendação; e evolução da inteligência do sistema de forma que ele seja capaz de aprender a partir da interação com o usuário. A tomada de decisão por um sistema de recomendação é uma tarefa complexa que pode ser implementada a partir da visão de áreas como inteligência artificial e mineração de dados. Dentro da área de inteligência artificial há estudos referentes ao método de raciocínio baseado em casos e da recomendação baseada em casos. No que diz respeito à área de mineração de dados, os SR podem ser construídos a partir de modelos descritivos e realizar tratamento de dados textuais, constituindo formas de criar elementos para compor uma recomendação. Uma forma de minimizar os pontos fracos de uma abordagem, é a adoção de aspectos baseados em uma abordagem híbrida, que neste trabalho considera-se: tirar proveito dos diferentes tipos de SR; usar técnicas de resolução de problemas; e combinar recursos provenientes das diferentes fontes para compor uma métrica unificada a ser usada para ranquear a recomendação por relevância. Dentre as áreas de aplicação dos SR, destaca-se a recomendação de notícias, sendo utilizada por um público heterogêneo, amplo e exigente por relevância. Neste contexto, a presente pesquisa apresenta uma abordagem híbrida para recomendação de notícias construída por meio de uma arquitetura implementada para provar os conceitos de um sistema de recomendação. Esta arquitetura foi validada por meio da utilização de um corpus de notícias e pela realização de um experimento online. Por meio do experimento foi possível observar a capacidade da arquitetura em relação aos requisitos de um sistema de recomendação de notícias e também confirmar a hipótese no que se refere à privilegiar recomendações com base em similaridade, popularidade, diversidade, novidade e serendipidade. Foi observado também uma evolução nos indicadores de leitura, curtida, aceite e serendipidade conforme o sistema foi acumulando histórico de preferências e soluções. Por meio da análise da métrica unificada para ranqueamento foi possível confirmar sua eficácia ao verificar que as notícias melhores colocadas no ranqueamento foram as mais aceitas pelos usuários / Recommendation Systems (RS) are software capable of suggesting items to users based on the history of user interactions or by similarity metrics that can be compared by item, user, or both. There are different types of RS and those which most interest in this work are content-based, knowledge-based and collaborative filtering. Achieving adequate results to user\'s expectations is a hard goal due to the inherent subjectivity of human behavior, thus, the RS need efficient and effective solutions to: modeling the data that will support the recommendation; the information retrieval that describes the data; combining this information within similarity, popularity or suitability metrics; creation of descriptive models of the items under recommendation; and evolution of the systems intelligence to learn from the user\'s interaction. Decision-making by a RS is a complex task that can be implemented according to the view of fields such as artificial intelligence and data mining. In the artificial intelligence field there are studies concerning the method of case-based reasoning that works with the principle that if something worked in the past, it may work again in a new similar situation the one in the past. The case-based recommendation works with structured items, represented by a set of attributes and their respective values (within a ``case\'\' model), providing known and adapted solutions. Data mining area can build descriptive models to RS and also handle, manipulate and analyze textual data, constituting one option to create elements to compose a recommendation. One way to minimize the weaknesses of an approach is to adopt aspects based on a hybrid solution, which in this work considers: taking advantage of the different types of RS; using problem-solving techniques; and combining resources from different sources to compose a unified metric to be used to rank the recommendation by relevance. Among the RS application areas, news recommendation stands out, being used by a heterogeneous public, ample and demanding by relevance. In this context, the this work shows a hybrid approach to news recommendations built through a architecture implemented to prove the concepts of a recommendation system. This architecture has been validated by using a news corpus and by performing an online experiment. Through the experiment it was possible to observe the architecture capacity related to the requirements of a news recommendation system and architecture also related to privilege recommendations based on similarity, popularity, diversity, novelty and serendipity. It was also observed an evolution in the indicators of reading, likes, acceptance and serendipity as the system accumulated a history of preferences and solutions. Through the analysis of the unified metric for ranking, it was possible to confirm its efficacy when verifying that the best classified news in the ranking was the most accepted by the users
|
196 |
Tecnologia adaptativa aplicada a sistemas híbridos de apoio à decisão. / Adaptative tecnology applied to hybrid decision support systems.Rodrigo Suzuki Okada 11 March 2013 (has links)
Este trabalho apresenta a formulação de um sistema híbrido de apoio à decisão que, através de técnicas adaptativas, permite que múltiplos dispositivos sejam utilizados de forma colaborativa para encontrar uma solução para um problema de tomada de decisão. É proposta uma estratégia particular para o trabalho colaborativo que restringe o acesso aos dispositivos mais lentos com base na dificuldade encontrada pelos dispositivos mais rápidos para solucionar um problema específico. As soluções encontradas por cada dispositivo são propagadas aos demais, permitindo que cada um deles agregue estas novas soluções com o auxílio de técnicas adaptativas. É feito um estudo sobre aprendizagem de máquina mediante incertezas para verificar e minimizar os impactos negativos que uma nova solução, possivelmente errônea, possa ter. O sistema híbrido proposto é apresentado numa aplicação particular, utilizando testes padronizados para compará-lo com os dispositivos individuais que o compõem e com sistemas híbridos de mesma finalidade. Através destes testes, é mostrado que dispositivos consolidados, mesmo que de naturezas distintas, podem ser utilizados de maneira colaborativa, permitindo não só calibrar um compromisso entre o tempo de resposta e a taxa de acerto, mas também evoluir de acordo com o histórico de problemas processados. / This work presents a formulation of a hybrid decision-making system that employs adaptive techniques as a way to coordinate multiple devices in order to make a collaborative decision. The strategy proposed here is to restrict the use of slower devices, based on how difficult the specific problem is - easier problems may be solved on faster devices. Each device is able to learn through solutions given by the others, aggregating new knowledge with the aid of adaptive techniques. In order to evaluate and minimize the negative impact those new solutions may have, a study concerning machine learning under uncertainty is carried out. A particular application of this system has been tested and compared, not only to each individual device that is part of the system itself, but to similar hybrid systems as well. It is shown that even devices of distinct natures may be reused in a collaborative manner, making it possible to calibrate the trade-off between hit rate and response time, and to evolve according to the input stimuli received as well.
|
197 |
Methode zum Einsatz von Web 2.0-Werkzeugen in der Fabrikplanung / Method for the use of Web 2.0 Tools in Factory PlanningClauß, Michael 10 June 2013 (has links) (PDF)
Dem Web 2.0 werden - nicht selten mit euphorischem Unterton - hinsichtlich Interaktion, Selbstorganisation und Nutzbarmachung kollektiver Intelligenz enorme Nutzenpotentiale nachgesagt. Ansätze mit Bezug zum Unternehmenskontext werden unter dem Stichwort Enterprise 2.0 behandelt und beschäftigen sich vorrangig mit der Unterstützung des betrieblichen Wissensmanagements. Speziell für die zunehmend durch Komplexität sowie intensive Interaktionsprozesse geprägte Fabrikplanung lassen sich durch einen zielgerichteten Einsatz von Web 2.0-Werkzeugen positive Effekte erwarten.
Zielstellung dieser Arbeit ist die Entwicklung einer Methode zum Einsatz von Web 2.0-Werkzeugen in der Fabrikplanung. Hierfür erfolgt zunächst eine Bestandsaufnahme relevanter Ansätze und Begriffe in diesen Bereichen. Anschließend wird auf Grundlage system-, handlungs- und tätigkeitstheoretischer Überlegungen ein situativer Forschungsansatz begründet. Die Methodenentwicklung erfolgt als problemspezifische Ausgestaltung des Fall-basierten Schließens. Sie ist in ein entsprechend angepasstes Vorgehen der morphologisch-typologischen Theorieentwicklung eingebettet und basiert auf einer umfassenden Analyse hierfür relevanter Theorien, Modelle und Ansätze. Die Methode beruht auf einer kontinuierlichen Erfassung und Wiederverwendung von Erfahrungswissen. Sie wird abschließend evaluiert, wobei u.a. ein Prototyp entwickelt wird, der den praktischen Einsatz der entwickelten Methode unterstützt. / The Web 2.0 is supposed to have huge potential for the support of interaction, selforganization and the utilization of collective intelligence. Approaches related to an enterprise context are discussed with the keyword Enterprise 2.0 and mainly deal with potentials to support the operational knowledge management. A systematic approach for the use of web-based collaborative tools is expected to generate positive effects on modern factory planning, which faces increasing complexity and dynamic interactions.
The objective of this work is to develop a methodical approach for the use of web-based collaborative tools in factory planning. Therefore, in the first part of this thesis an overview of relevant approaches and terms in the areas of Web 2.0 and factory planning is being worked out. In a second step, a situational approach is identified as an appropriate view after due consideration and contextual discussion of system, action and activity theory. The development of the methodical approach is based on a problem-specific adaptation of case-based reasoning. It is embedded into an elaborated procedure of morphologic-typological theory building and bases on a comprehensive analysis of relevant theories, models and approaches. The evolved method relies on continuous collection and reutilisation of experiential knowledge. It is evaluated through different methods, inter alia by the construction of a prototype that supports its practical use.
|
198 |
Análise de crédito utilizando inteligência artificial: validação com dados do cartão BNDES / Credit analysis based on artificial intelligence: validation with data of BNDES cardOswaldo Luiz Humbert Fonseca 26 March 2008 (has links)
O presente trabalho apresenta um estudo feito para a elaboração de um modelo de análise de crédito para micro, pequenas e médias empresas (MPME) utilizando Inteligência Artificial. Apresenta, também, uma contribuição de um novo método de raciocínio baseado em casos, denominado FISKNN, que utiliza medida de similaridade presente nos métodos KNN e KNN-Fuzzy, e um sistema de inferência Fuzzy para decidir se a classe de um determinado caso é a classe do elemento mais próximo ou a classe da maioria dos K elementos selecionados para análise. Compara-se o método FISKNN com os métodos tradicionais KNN e KNN-Fuzzy utilizando os dados do Machine Learning Repository da Universidade da Califórnia, e apresentam-se três estudos de casos com bases de dados selecionadas das informações provenientes de solicitações de financiamento através do Cartão BNDES. / This work presents an investigation of a model of credit analysis for micro, small and medium size enterprises based on artificial intelligence techniques. The novelty is a cases-based reasoning, denoted by FISKNN, which uses a measure of similarity present in the KNN and KNN-Fuzzy methods, and a Fuzzy Inference System to decide between the class of the nearest case and the class of the majority of K elements selected for the analysis. One compares the FISKNN methods with the more traditional ones, KNN and KNNFuzzy, using data from the Machine Learning Repository of the University of California, and one presents three study cases with data bases selected from the set of financing applications to the BNDES Card.
|
199 |
Análise de crédito utilizando inteligência artificial: validação com dados do cartão BNDES / Credit analysis based on artificial intelligence: validation with data of BNDES cardOswaldo Luiz Humbert Fonseca 26 March 2008 (has links)
O presente trabalho apresenta um estudo feito para a elaboração de um modelo de análise de crédito para micro, pequenas e médias empresas (MPME) utilizando Inteligência Artificial. Apresenta, também, uma contribuição de um novo método de raciocínio baseado em casos, denominado FISKNN, que utiliza medida de similaridade presente nos métodos KNN e KNN-Fuzzy, e um sistema de inferência Fuzzy para decidir se a classe de um determinado caso é a classe do elemento mais próximo ou a classe da maioria dos K elementos selecionados para análise. Compara-se o método FISKNN com os métodos tradicionais KNN e KNN-Fuzzy utilizando os dados do Machine Learning Repository da Universidade da Califórnia, e apresentam-se três estudos de casos com bases de dados selecionadas das informações provenientes de solicitações de financiamento através do Cartão BNDES. / This work presents an investigation of a model of credit analysis for micro, small and medium size enterprises based on artificial intelligence techniques. The novelty is a cases-based reasoning, denoted by FISKNN, which uses a measure of similarity present in the KNN and KNN-Fuzzy methods, and a Fuzzy Inference System to decide between the class of the nearest case and the class of the majority of K elements selected for the analysis. One compares the FISKNN methods with the more traditional ones, KNN and KNNFuzzy, using data from the Machine Learning Repository of the University of California, and one presents three study cases with data bases selected from the set of financing applications to the BNDES Card.
|
200 |
Ocean Waves Estimation : An Artificial Intelligence ApproachRamberg, Andreas January 2017 (has links)
This thesis aims to solve the mathematical inverse problem of characterizing sea waves based on the responses obtained from a marine vessel sailing under certain sea conditions. By researching this problem the thesis contributes to the marine industry by improving products that are using ocean behavior for controlling ship's dynamics. Knowledge about the current state of the sea, such as the wave frequency and height, is important for navigation, control, and for the safety of a vessel. This information can be retrieved from specialized weather reports. However, such information is not at all time possible to obtain during a voyage, and if so usually comes with a certain delay. Therefore this thesis seeks solutions that can estimate on-line the waves' state using methods in the field of Artificial Intelligence. The specific investigation methods are Transfer Functions augmented with Genetic Algorithm, Artificial Neural Networks and Case-Based Reasoning. These methods have been configured and validated using the n-fold cross validation method. All the methods have been tested with an actual implementation. The algorithms have been trained with data acquired from a marine simulation program developed in Simulink. The methods have also been trained and tested using monitored data acquired from an actual ship sailing on the Baltic Sea as well as wave data obtained from a buoy located nearby the vessel's route. The proposed methods have been compared with state-of-the art reports in order evaluate the novelty of the research and its potential applications in industry. The results in this thesis show that the proposed methods can in fact be used for solving the inverse problem. It was also found that among the investigated methods it is the Transfer Function augmented with Genetic Algorithm which yields best results. This Master Thesis is conducted under the Master of Engineering Program in Robotics at Mälardalens högskola in Västerås, Sweden. The thesis was proposed by Q-TAGG R&D AB in Västerås, Sweden, a company which specializes in marine vessel dynamics research.
|
Page generated in 0.099 seconds