Spelling suggestions: "subject:"classificador dda bayes"" "subject:"classificador dda hayes""
1 |
Classificação de séries temporais via Classificador de Bayes empregando Modelos Lineares DinâmicosAguiar, Diana Dorgam de, 92-99171-6468 09 August 2017 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-12-04T14:17:52Z
No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Diana D. Aguiar.pdf: 2526734 bytes, checksum: ef02491a952f20781293fdfd0e5f5052 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2017-12-04T14:18:04Z (GMT) No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Diana D. Aguiar.pdf: 2526734 bytes, checksum: ef02491a952f20781293fdfd0e5f5052 (MD5) / Made available in DSpace on 2017-12-04T14:18:04Z (GMT). No. of bitstreams: 2
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Dissertação_Diana D. Aguiar.pdf: 2526734 bytes, checksum: ef02491a952f20781293fdfd0e5f5052 (MD5)
Previous issue date: 2017-08-09 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we present a new approach for applications in Discriminant Analysis
(DA) to problems whose observations in the training set are from time series, using the
Bayes classifier and modeling the classes distributions in with Linear Dynamic Models.
Theoretical developments were conducted to obtain an analytic form for the classe posterior
probability. The simulation studies have been developed to evaluate the proposed
approach, to evaluate different strategies to estimate the model variance and determine the
classification error rates (ET) to compare them with other usual approaches in AD. Time
series were simulated with different structures of classes separation and with different
sizes for the training set. The proposed approach was also applied to data from real problems
with different degrees of difficulty with respect to the classes number, the time series
size and number of observations in the training set. With real data the proposed classifier
was compared with other classifiers in terms of error rate. Although it is needed most
complete studies, the results suggest that this parametric approach developed constitutes
a promising alternative for problems in AD with time series, particularly in a challenging
context when the size time series is much large than the number of observations in the
classes. / Na presente dissertação apresentamos uma nova abordagem para aplicações em Análise
Discriminante (AD) para problemas cujas observações no conjunto de treinamento
são oriundas de séries temporais, empregando o Classificador de Bayes e modelando as
distribuições nas classes com o emprego de Modelos Lineares Dinâmicos. Foram realizados
os desenvolvimentos teóricos necessários para a obtenção de uma forma analítica
para as probabilidades a posteriori das classes. Para avaliar a abordagem proposta foram
desenvolvidos estudos de simulação, tanto para avaliar as estratégias da escolha do procedimento
da estimação da variância, como também, determinar as taxas de erro (TE) de
classificação para compará-las com outras abordagens usuais para classificadores em AD.
Foram simuladas observações de séries temporais com diferentes estruturas de separação
das classes e com diferentes tamanhos para o conjunto de treinamento. A abordagem
proposta também foi aplicada em dados de problemas reais, com diferentes graus de dificuldades
com relação ao número de classes, tamanho das séries e o número de observações
no conjunto de treinamento, sendo então comparadas suas TE com as de outros
classificadores. Embora sejam necessários estudos mais completos, os resultados obtidos
sugerem que a abordagem paramétrica desenvolvida se constitui em uma alternativa promissora
para esta categoria de problemas em AD, com observações de séries temporais,
em particular, em um contexto bastante desafiador na prática quando temos séries com
tamanhos grandes com relação ao número de observações nas classes.
|
2 |
Reconhecimento automático de defeitos de fabricação em painéis TFT-LCD através de inspeção de imagemSILVA, Antonio Carlos de Castro da 15 January 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2016-09-12T14:09:09Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
MSc_Antonio Carlos de Castro da Silva_digital_12_04_16.pdf: 2938596 bytes, checksum: 9d5e96b489990fe36c4e1ad5a23148dd (MD5) / Made available in DSpace on 2016-09-12T14:09:09Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
MSc_Antonio Carlos de Castro da Silva_digital_12_04_16.pdf: 2938596 bytes, checksum: 9d5e96b489990fe36c4e1ad5a23148dd (MD5)
Previous issue date: 2016-01-15 / A detecção prematura de defeitos nos componentes de linhas de montagem de fabricação é determinante para a obtenção de produtos finais de boa qualidade. Partindo desse pressuposto, o presente trabalho apresenta uma plataforma desenvolvida para detecção automática dos defeitos de fabricação em painéis TFT-LCD (Thin Film Transistor-Liquid Cristal Displays) através da realização de inspeção de imagem. A plataforma desenvolvida é baseada em câmeras, sendo o painel inspecionado posicionado em uma câmara fechada para não sofrer interferência da luminosidade do ambiente. As etapas da inspeção consistem em aquisição das imagens pelas câmeras, definição da região de interesse (detecção do quadro), extração das características, análise das imagens, classificação dos defeitos e tomada de decisão de aprovação ou rejeição do painel. A extração das características das imagens é realizada tomando tanto o padrão RGB como imagens em escala de cinza. Para cada componente RGB a intensidade de pixels é analisada e a variância é calculada, se um painel apresentar variação de 5% em relação aos valores de referência, o painel é rejeitado. A classificação é realizada por meio do algorítimo de Naive Bayes. Os resultados obtidos mostram um índice de 94,23% de acurácia na detecção dos defeitos. Está sendo estudada a incorporação da plataforma aqui descrita à linha de produção em massa da Samsung em Manaus. / The early detection of defects in the parts used in manufacturing assembly lines is crucial for assuring the good quality of the final product. Thus, this paper presents a platform developed for automatically detecting manufacturing defects in TFT-LCD (Thin Film Transistor-Liquid Cristal Displays) panels by image inspection. The developed platform is based on câmeras. The panel under inspection is positioned in a closed chamber to avoid interference from light sources from the environment. The inspection steps encompass image acquisition by the cameras, setting the region of interest (frame detection), feature extraction, image analysis, classification of defects, and decision making. The extraction of the features of the acquired images is performed using both the standard RGB and grayscale images. For each component the intensity of RGB pixels is analyzed and the variance is calculated. A panel is rejected if the value variation of the measure obtained is 5% of the reference values. The classification is performed using the Naive Bayes algorithm. The results obtained show an accuracy rate of 94.23% in defect detection. Samsung (Manaus) is considering the possibility of incorporating the platform described here to its mass production line.
|
3 |
Topological data analysis: applications in machine learning / Análise topológica de dados: aplicações em aprendizado de máquinaCalcina, Sabrina Graciela Suárez 05 December 2018 (has links)
Recently computational topology had an important development in data analysis giving birth to the field of Topological Data Analysis. Persistent homology appears as a fundamental tool based on the topology of data that can be represented as points in metric space. In this work, we apply techniques of Topological Data Analysis, more precisely, we use persistent homology to calculate topological features more persistent in data. In this sense, the persistence diagrams are processed as feature vectors for applying Machine Learning algorithms. In order to classification, we used the following classifiers: Partial Least Squares-Discriminant Analysis, Support Vector Machine, and Naive Bayes. For regression, we used Support Vector Regression and KNeighbors. Finally, we will give a certain statistical approach to analyze the accuracy of each classifier and regressor. / Recentemente a topologia computacional teve um importante desenvolvimento na análise de dados dando origem ao campo da Análise Topológica de Dados. A homologia persistente aparece como uma ferramenta fundamental baseada na topologia de dados que possam ser representados como pontos num espaço métrico. Neste trabalho, aplicamos técnicas da Análise Topológica de Dados, mais precisamente, usamos homologia persistente para calcular características topológicas mais persistentes em dados. Nesse sentido, os diagramas de persistencia são processados como vetores de características para posteriormente aplicar algoritmos de Aprendizado de Máquina. Para classificação, foram utilizados os seguintes classificadores: Análise de Discriminantes de Minimos Quadrados Parciais, Máquina de Vetores de Suporte, e Naive Bayes. Para a regressão, usamos a Regressão de Vetores de Suporte e KNeighbors. Finalmente, daremos uma certa abordagem estatística para analisar a precisão de cada classificador e regressor.
|
4 |
Tecnologia adaptativa aplicada a sistemas híbridos de apoio à decisão. / Adaptative tecnology applied to hybrid decision support systems.Okada, Rodrigo Suzuki 11 March 2013 (has links)
Este trabalho apresenta a formulação de um sistema híbrido de apoio à decisão que, através de técnicas adaptativas, permite que múltiplos dispositivos sejam utilizados de forma colaborativa para encontrar uma solução para um problema de tomada de decisão. É proposta uma estratégia particular para o trabalho colaborativo que restringe o acesso aos dispositivos mais lentos com base na dificuldade encontrada pelos dispositivos mais rápidos para solucionar um problema específico. As soluções encontradas por cada dispositivo são propagadas aos demais, permitindo que cada um deles agregue estas novas soluções com o auxílio de técnicas adaptativas. É feito um estudo sobre aprendizagem de máquina mediante incertezas para verificar e minimizar os impactos negativos que uma nova solução, possivelmente errônea, possa ter. O sistema híbrido proposto é apresentado numa aplicação particular, utilizando testes padronizados para compará-lo com os dispositivos individuais que o compõem e com sistemas híbridos de mesma finalidade. Através destes testes, é mostrado que dispositivos consolidados, mesmo que de naturezas distintas, podem ser utilizados de maneira colaborativa, permitindo não só calibrar um compromisso entre o tempo de resposta e a taxa de acerto, mas também evoluir de acordo com o histórico de problemas processados. / This work presents a formulation of a hybrid decision-making system that employs adaptive techniques as a way to coordinate multiple devices in order to make a collaborative decision. The strategy proposed here is to restrict the use of slower devices, based on how difficult the specific problem is - easier problems may be solved on faster devices. Each device is able to learn through solutions given by the others, aggregating new knowledge with the aid of adaptive techniques. In order to evaluate and minimize the negative impact those new solutions may have, a study concerning machine learning under uncertainty is carried out. A particular application of this system has been tested and compared, not only to each individual device that is part of the system itself, but to similar hybrid systems as well. It is shown that even devices of distinct natures may be reused in a collaborative manner, making it possible to calibrate the trade-off between hit rate and response time, and to evolve according to the input stimuli received as well.
|
5 |
Tecnologia adaptativa aplicada a sistemas híbridos de apoio à decisão. / Adaptative tecnology applied to hybrid decision support systems.Rodrigo Suzuki Okada 11 March 2013 (has links)
Este trabalho apresenta a formulação de um sistema híbrido de apoio à decisão que, através de técnicas adaptativas, permite que múltiplos dispositivos sejam utilizados de forma colaborativa para encontrar uma solução para um problema de tomada de decisão. É proposta uma estratégia particular para o trabalho colaborativo que restringe o acesso aos dispositivos mais lentos com base na dificuldade encontrada pelos dispositivos mais rápidos para solucionar um problema específico. As soluções encontradas por cada dispositivo são propagadas aos demais, permitindo que cada um deles agregue estas novas soluções com o auxílio de técnicas adaptativas. É feito um estudo sobre aprendizagem de máquina mediante incertezas para verificar e minimizar os impactos negativos que uma nova solução, possivelmente errônea, possa ter. O sistema híbrido proposto é apresentado numa aplicação particular, utilizando testes padronizados para compará-lo com os dispositivos individuais que o compõem e com sistemas híbridos de mesma finalidade. Através destes testes, é mostrado que dispositivos consolidados, mesmo que de naturezas distintas, podem ser utilizados de maneira colaborativa, permitindo não só calibrar um compromisso entre o tempo de resposta e a taxa de acerto, mas também evoluir de acordo com o histórico de problemas processados. / This work presents a formulation of a hybrid decision-making system that employs adaptive techniques as a way to coordinate multiple devices in order to make a collaborative decision. The strategy proposed here is to restrict the use of slower devices, based on how difficult the specific problem is - easier problems may be solved on faster devices. Each device is able to learn through solutions given by the others, aggregating new knowledge with the aid of adaptive techniques. In order to evaluate and minimize the negative impact those new solutions may have, a study concerning machine learning under uncertainty is carried out. A particular application of this system has been tested and compared, not only to each individual device that is part of the system itself, but to similar hybrid systems as well. It is shown that even devices of distinct natures may be reused in a collaborative manner, making it possible to calibrate the trade-off between hit rate and response time, and to evolve according to the input stimuli received as well.
|
Page generated in 0.0663 seconds