• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 123
  • 86
  • 46
  • 11
  • 10
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • Tagged with
  • 318
  • 95
  • 74
  • 54
  • 43
  • 42
  • 37
  • 31
  • 30
  • 30
  • 28
  • 27
  • 25
  • 25
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Méthodes de quasi-réversibilité et de lignes de niveau appliquées aux problèmes inverses elliptiques.

Dardé, Jérémi 10 December 2010 (has links) (PDF)
Ce travail s'intéresse à l'utilisation de la méthode de quasi-réversibilité pour la résolution de problèmes inverses, un exemple typique étant le problème inverse de l'obstacle. Nous proposons pour ce dernier une nouvelle approche couplant la méthode de quasi-réversibilité et une méthode de lignes de niveau. Plus précisément, à partir d'un ouvert candidat C, nous résolvons un problème de Cauchy à l'extérieur de C, puis nous mettons à jour cet ouvert par la méthode de lignes de niveau. La solution approchée du problème de Cauchy est obtenue en utilisant la méthode de quasi-réversibilité, introduite par J.L. Lions et R. Lattès dans les années soixante. Nous proposons différentes formulations de cette méthode, ainsi que sa discrétisation par éléments finis non conformes adaptés à l'espace de Sobolev H2, et nous prouvons la convergence des éléments finis. En présence d'une donnée bruitée, nous introduisons une nouvelle méthode basée sur la dualité en optimisation et le principe de Morozov. Nous montrons que cette méthode fournit des données régularisées et un choix de paramètre de régularisation pertinent pour la quasi-réversibilité. En ce qui concerne la mise à jour de l'ouvert C, nous proposons deux méthodes de lignes de niveau très différentes : la première est basée sur une équation eikonale, la seconde sur une équation de Poisson. Nous prouvons que ces deux approches assurent la convergence vers l'obstacle. Finalement, nous présentons des résultats numériques pour cette approche couplant quasi-réversibilité/lignes de niveau dans différentes situations : problème inverse de l'obstacle avec condition de Dirichlet, détection de défauts dans une structure élasto-plastique...
Read more
142

Problème de Cauchy caractéristique et scattering conforme en relativité générale

Joudioux, Jérémie 02 June 2010 (has links) (PDF)
L'étude présentée dans ce travail de thèse aborde deux aspects du problème de Cauchy caractéristique en relativité générale. D'une part, une formule intégrale pour le problème de Cauchy caractéristique pour l'équation de Dirac est établie, généralisant les travaux de Penrose en espace-temps courbe. Ayant adapté le cadre fonctionnel pour obtenir une théorie des distributions adaptée à la structure algébriques des spineurs, le formalisme Geroch-Held-Penrose est utilisé pour décrire de la manière la plus précise possible la formule intégrale. La formule de Penrose en spin arbitraire sur l'espace-temps de Minkowski est retrouvée. D'autre part, une théorie de scattering conforme pour une équation des ondes non linéaire conformément invariante sur un espace asymptotiquement simple est construite. En effectuant un rééchelonnement conforme, l'espace-temps est complété en lui ajoutant une frontière constituée de deux hypersurfaces caractéristiques représentant respectivement les extrémités passées et futures des géodésiques de type lumière. Le comportement asymptotique des champs s'obtient alors en considérant les traces des solutions de l'équation conforme sur ces bords. L'inversibilité des opérateurs de trace s'obtient alors en résolvant un problème de Cauchy caractéristique sur ce bord et l'opérateur de scattering conforme par composition de ces opérateurs de trace.
Read more
143

Categorical structures enriched in a quantaloid: categories and semicategories

Stubbe, Isar 12 November 2003 (has links)
This thesis consists of two parts: a synthesis of the theory of categories enriched in a quantaloid; and a weakening of this theory for it to include semicategories describing ordered sheaves on a quantaloid. A synthesis of, and supplements to, results in the literature concerning the theory of categories enriched in a quantaloid Q (as particular case of categories enriched in a bicategory) is contained in the first chapters. This theory is built with Q-categories, functors and distributors, and contains such notions as, for example, adjoint functors, weighted colimits, presheaves, Kan extensions, Cauchy completions and Morita equivalence, and so on. The literature does not provide an overview of these matters, so it was necessary to provide one here. Then the necessary theory is developed to arrive at an elementary description of ``ordered sheaves on a quantaloid Q', henceforth referred to as Q-orders. As there is no ``topos of sheaves on a quantaloid', Q-orders cannot be defined as ordered objects in such a topos. Instead a description of Q-orders as categorical structures enriched in the quantaloid Q is proposed. The well-known ordered sheaves on a locale L (i.e.~ordered objects in the topos of sheaves on L) should of course be a particular example of the general theory, taking Q to be the (one-object suspension of) L. Then it turns out that the theory of Q-categories has to be weakened to include ``categories without units', i.e. Q-semicategories. But for Q-semicategories to admit a convenient distributor calculus, a ``regularity' condition has to be imposed. And for those regular Q-semicategories to admit a reasonable theory of Cauchy completions and Morita equivalence, the even stronger condition of ``total regularity' has to be imposed. The former notion has been studied before for semicategories enriched in a symmetric monoidal closed category; the latter notion is new, and is introduced via the intuitively clear idea of ``stability of objects'. The point is then that precisely the Cauchy complete totally regular Q-semicategories are the Q-orders; for a locale L they are indeed the ordered objects in the topos of sheaves on L. A (bi)equivalent description of those Q-orders can be given in terms of categories enriched in the split-idempotent completion of the quantaloid Q: a totally regular semicategory enriched in Q corresponds in a precise sense to a category enriched in the split-idempotent completion of Q. Applying this once more to a locale L instead of a quantaloid Q, these results thus deepen the work of the Louvain-la-Neuve school, and reconcile it with that of the Sydney school, on the description of (ordered) sheaves on a locale as enriched categorical structures. The extended introduction gives a compact yet intuitive presentation of the developments contained in the thesis.
Read more
144

On the Irreducibility of the Cauchy-Mirimanoff Polynomials

Irick, Brian C 01 May 2010 (has links)
The Cauchy-Mirimanoff Polynomials are a class of polynomials that naturally arise in various classical studies of Fermat's Last Theorem. Originally conjectured to be irreducible over 100 years ago, the irreducibility of the Cauchy-Mirimanoff polynomials is still an open conjecture. This dissertation takes a new approach to the study of the Cauchy-Mirimanoff Polynomials. The reciprocal transform of a self-reciprocal polynomial is defined, and the reciprocal transforms of the Cauchy-Mirimanoff Polynomials are found and studied. Particular attention is given to the Cauchy-Mirimanoff Polynomials with index three times a power of a prime, and it is shown that the Cauchy-Mirimanoff Polynomials of index three times a prime are irreducible.
145

Global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws II

De-Xing, Kong, Hui, Yao January 2003 (has links)
In this paper, by a new constructive method, the authors reprove the global exact boundary controllability of a class of quasilinear hyperbolic systems of conservation laws with linearly degenerate fields. It is shown that the system with nonlinear boundary conditions is globally exactly boundary controllable in the class of piecewise C¹ functions. In particular, the authors give the optimal control time of the system. Finally, a new application is also given.
146

The Cauchy problem for the Lame system in infinite domains in R up(m)

Makhmudov, O. I., Niyozov, I. E. January 2005 (has links)
We consider the problem of analytic continuation of the solution of the multidimensional Lame system in infinite domains through known values of the solution and the corresponding strain tensor on a part of the boundary, i.e,the Cauchy problem.
147

Regularization of the Cauchy Problem for the System of Elasticity Theory in R up (m)

Makhmudov O. I., Niyozov; I. E. January 2005 (has links)
In this paper we consider the regularization of the Cauchy problem for a system of second order differential equations with constant coefficients.
148

Essays on the Predictability and Volatility of Asset Returns

Jacewitz, Stefan A. 2009 August 1900 (has links)
This dissertation collects two papers regarding the econometric and economic theory and testing of the predictability of asset returns. It is widely accepted that stock returns are not only predictable but highly so. This belief is due to an abundance of existing empirical literature fi nding often overwhelming evidence in favor of predictability. The common regressors used to test predictability (e.g., the dividend-price ratio for stock returns) are very persistent and their innovations are highly correlated with returns. Persistence when combined with a correlation between innovations in the regressor and asset returns can cause substantial over-rejection of a true null hypothesis. This result is both well documented and well known. On the other hand, stochastic volatility is both broadly accepted as a part of return time series and largely ignored by the existing econometric literature on the predictability of returns. The severe e ffect that stochastic volatility can have on standard tests are demonstrated here. These deleterious e ffects render standard tests invalid. However, this problem can be easily corrected using a simple change of chronometer. When a return time series is read in the usual way, at regular intervals of time (e.g., daily observations), then the distribution of returns is highly non-normal and displays marked time heterogeneity. If the return time series is, instead, read according to a clock based on regular intervals of volatility, then returns will be independent and identically normally distributed. This powerful result is utilized in a unique way in each chapter of this dissertation. This time-deformation technique is combined with the Cauchy t-test and the newly introduced martingale estimation technique. This dissertation nds no evidence of predictability in stock returns. Moreover, using martingale estimation, the cause of the Forward Premium Anomaly may be more easily discerned.
Read more
149

A Study of Optimal Portfolio Decision and Performance Measures

Chen, Hsin-Hung 03 June 2004 (has links)
Since most financial institutions use the Sharpe Ratio to evaluate the performance of mutual funds, the objective of most fund managers is to select the portfolio that can generate the highest Sharpe Ratio. Traditionally, they can revise the objective function of the Markowitz mean-variance portfolio model and resolve non-linear programming to obtain the maximum Sharpe Ratio portfolio. In the scenario with short sales allowed, this project will propose a closed-form solution for the optimal Sharpe Ratio portfolio by applying Cauchy-Schwarz maximization. This method without using a non-linear programming computer program is easier than traditional method to implement and can save computing time and costs. Furthermore, in the scenarios with short sales disallowed, we will use Kuhn-Tucker conditions to find the optimal Sharpe Ratio portfolio. On the other hand, an efficient frontier generated by Markowitz mean-variance portfolio model normally has higher risk higher return characteristic, which often causes dilemma for decision maker. This research applies generalized loss function to create a family of decision-aid performance measures called IRp which can well tradeoff return with risk. We compare IRp with Sharpe Ratio and utility functions to confirm that IRp measures are approapriate to evaluate portfolio performance on efficient frontier and to improve asset allocation decisions. In addition, empirical data of domestic and international investment instruments will be used to examine the feasibility and fitness of the new proposed method and IRp measures. This study applies the methods of Cauchy-Schwarz maximization in multivariate statistical analysis and loss function in quality engineering to portfolio decisions. We believe these new applications will complete portfolio model theory and will be meaningful for academic and business fields.
Read more
150

Asymptotic properties of solutions to wave equations with time-dependent dissipation

Wirth, Jens 14 December 2009 (has links) (PDF)
Gegenstand der Dissertation ist die Untersuchung der asymptotischen Eigenschaften von Lösungen des Cauchy-Problems für eine Wellengleichung mit zeitabhängiger Dämpfung $b=b(t)$ und das Wechselspiel zwischen dem Verhalten des Koeffizienten $b(t)ge0$ und sich ergebenden Abschätzungen der Energie auf der Basis von $L^q$, $qge2$. Dabei stellt sich heraus, dass zwischen zwei Szenarien, dem der nicht-effektiven und dem der effektiven Dämpfung zu unterscheiden ist. In beiden Fällen werden die Hauptterme der Lösungsdarstellung konstruiert und davon ausgehend erstmalig $L^p$--$L^q$ Abschätzung für die Lösung und ihre Ableitungen angegeben. Ebenso wird die Schärfe der Abschätzungen diskutiert und in Form einer modifizierten Scattering-Theorie beziehungsweise des Diffusionsphänomens konkretisiert.

Page generated in 0.0278 seconds