• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 213
  • 123
  • 57
  • 24
  • 21
  • 14
  • 11
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 563
  • 114
  • 71
  • 57
  • 53
  • 53
  • 53
  • 51
  • 48
  • 41
  • 37
  • 37
  • 35
  • 33
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Procédé d'exfoliation du graphite en phase liquide dans des laboratoires sur puce / Process of liquid phase exfoliation of graphite in labs-on-a-chip

Qiu, Xiaoyu 26 September 2018 (has links)
L’exfoliation en phase liquide du graphite est un procédé simple susceptible de produire du graphène à faible coût. Ces dernières années, de nombreuses équipes ont exploité la cavitation acoustique et la cavitation hydrodynamique comme moyen d’exfoliation. La cavitation acoustique ne peut traiter qu’une quantité limitée de fluide et génère des défauts sur la structure du graphène,tandis que la cavitation hydrodynamique dans une solution en écoulement n’agit que localement pendant une durée très brève. Les équipes de recherche utilisant ce dernier procédé compensent cette brièveté en imposant à la solution chargée en graphite des différences de pression très fortes, et utilisent alors des infrastructures macroscopiques lourdes pour lesquelles il est difficile de distinguer le rôle du cisaillement de celui de la cavitation. Nous avons cherché à développer un nouveau procédé d’exfoliation basé sur l’utilisation de microsystèmes fluidiques capables de générer un écoulementcavitant avec un débit supérieur à 10 L/h pour une différence de pression modérée n’excédant pas 10 bar. Une nouvelle génération de laboratoires ‘sur puce’ a ainsi été imaginée et réalisée, permettant de traiter des solutions surfactées chargées en microparticules de graphite. Il est apparu que laconcentration solide et la durée de traitement sont des paramètres cruciaux pour l’efficacité du procédé. Par rapport à un écoulement monophasique laminaire microfluidique, l’écoulement cavitant produit plus de produits exfoliés et de graphène, avec un rendement de l’ordre de 6%. Ceci indique que l’implosion des bulles et la turbulence favorisent également les interactions entre particules. Ce procédé d’exfoliation microfluidique, qui ne nécessite une puissance que de quelques Watts, permet d’envisager à terme une production économe et écologique de graphène en suspension. / Liquid phase exfoliation of graphite is a simple and low-cost process, that is likely to produce graphene. The last few years, many researchers have used acoustic or hydrodynamic cavitation as an exfoliating tool. Acoustic cavitation is limited to low volumes and defects are present on the graphenesheets ; hydrodynamic cavitation inside a flowing solution acts briefly. So, people are using big reactors running with high pressure drops, and it is difficult from a fundamental point of view to know the physical role of shear rate versus cavitation, in the exfoliation process. We have tried to develop a new process funded on hydrodynamic cavitation ’on a chip’, with flow rates above 10 L/h and pressure drop below 10 bar. A new generation of ’labs on a chip’ has been designed and performed, processing with aqueous surfactant graphite solutions. The solid concentration and the duration of the process have proved to be key parameters. Cavitating microflows have exhibited a better efficiency (up to ~6%) than laminar liquid microflows, for the production of graphene flakes. Collapsing bubbles and turbulence are also likely to enhance particles interactions. Such a microfluidic process, which requires an hydraulic power of a few Watt, makes possible a further low-cost and green production of graphene sheets.
112

Gradient damage models in large deformation / Modèles d'endommagement à gradient en grandes déformations

Crabbé, Blandine 15 November 2018 (has links)
Les modèles d'endommagement à gradient, aussi dénommés modèles à champs de phases, sont désormais largement utilisés pour modéliser la rupture fragile et ductile, depuis l'initiation de l'endommagement jusqu'à la propagation d'une fissure. Cependant, la majorité des études disponibles dans la littérature ne concerne que le cadre des petites déformations, et très peu d'études poussées ont été menées afin d'étudier leur pertinence dans un contexte de grandes déformations. Ce serait pourtant d'un intérêt primordial, notamment pour l'industrie pneumatique, qui deviendrait alors capable de prédire plus précisément l'initiation de l'endommagement dans ses structures.Dans la première partie de ce travail, nous établissons des solutions analytiques d'évolution de l'endommagement (homogène et localisée) pour des matériaux visqueux, en petites et en grandes déformations. En petites déformations, les modèles rhéologiques de Maxwell et Poynting-Thomson sont étudiés, et en grandes déformations, les modèles de Maxwell et Zener sont choisis. Une étude sur l'évolution de l'endommagement dans un cas purement hyperélastique est aussi menée.A cette première partie analytique succède une partie numérique, qui détaille l'implémentation des modèles d'endommagement à gradient dans des codes éléments finis en grandes déformations. De même qu'en petites déformations, une stratégie de minimisation alternée est adoptée pour résoudre successivement les problèmes d'endommagement et de déplacement. Le matériau suit une loi de Mooney-Rivlin quasi-incompressible, et une méthode mixte en déplacement-pression est utilisée. Des tests en 2D et 3D sont effectués, qui mettent en évidence la capacité des modèles à initier de l'endommagement en grandes déformations.Les modèles d'endommagement utilisés pour la seconde partie ne sont cependant capables d'initier de l'endommagement que dans les zones où la déformation est importante, c'est-à-dire dans les zones de forte contrainte déviatorique. Il a toutefois été montré que certains matériaux polymères, quasi-incompressibles, s'endommagent dans les zones de forte pression hydrostatique. Par conséquent, la recherche et l'étude d'un modèle d'endommagement capable d'initier de l'endommagement dans les zones de forte pression, pour des matériaux quasi-incompressibles lorsqu'ils sont sains, fait l'objet d'une troisième partie.Enfin, la croissance brusque de cavités dans un matériau hyperélastique, appelée phénomène de cavitation, est étudiée, ainsi que son interaction avec l'endommagement. Dans un premier temps, nous considérons la cavitation comme une simple bifurcation hyperélastique d'un matériau néo-hookéen compressible isotrope, et déterminons l'expression analytique de l'élongation critique pour laquelle la cavitation fait son apparition. Dans un second temps, nous montrons qu'il y a une compétition entre la cavitation et l'endommagement, et qu'en fonction de la valeur du ratio des élongations critiques respectives pour chaque phénomène, deux types de rupture apparaissent. / Gradient damage models, also known as phase-field models, are now widely used to model brittle and ductile fracture, from the onset of damage to the propagation of a crack in various materials. Yet, they have been mainly studied in the framework of small deformation, and very few studies aims at proving their relevance in a finite deformation framework. This would be more helpful for the tyre industry that deals with very large deformation problems, and has to gain insight into the prediction of the initiation of damage in its structures.The first part of this work places emphasis on finding analytical solutions to unidimensional problems of damaging viscous materials in small and large deformation.In all the cases, the evolution of damage is studied, both in the homogeneous and localised cases. Having such solutions gives a suitable basis to implement these models and validate the numerical results.A numerical part naturally follows the first one, that details the specificities of the numerical implementation of these non local models in large deformation. In order to solve the displacement and damage problems, the strategy of alternate minimisation (or staggered algorithm) is used. When solved on the reference configuration, the damage problem is the same as in small deformation, and consists in a bound constraint minimisation. The displacement problem is non linear, and a mixed finite element method is used to solve a displacement-pressure problem. A quasi-incompressible Mooney-Rivlin law is used to model the behaviour of the hyperelastic material. Various tests in 2D and 3D are performed to show that gradient damage models are perfectly able to initiate damage in sound, quasi-incompressible structures, in large deformation.In the simulations depicted above, it should be noted that the damage laws combined to the hyperelastic potential results in an initiation of damage that takes place in zones of high deformation, or in other words, in zones of high deviatoric stress. However, in some polymer materials, that are known to be quasi-incompressible, it has been shown that the initiation of damage can take place in zones of high hydrostatic pressure. This is why an important aspect of the work consists in establishing a damage law such that the material be incompressible when there is no damage, and the pressure play a role in the damage criterion. Such a model is exposed in the third part.Finally, the last part focuses on the cavitation phenomenon, that can be understood as the sudden growth of a cavity. We first study it as a purely hyperelastic bifurcation, in order to get the analytical value of the critical elongation for which cavitation occurs, in the case of a compressible isotropic neo-hookean material submitted to a radial displacement. We show that there is a competition between the cavitation phenomenon and the damage, and that depending on the ratio of the critical elongation for damage and the critical elongation for cavitation, different rupture patterns can appear.
113

Dynamique de bulles de cavitation dans des systèmes micro-confinés / Cavitation bubbles dynamics confined in microsystems

Scognamiglio, Chiara 15 December 2017 (has links)
Cette thèse porte sur l’étude de la cavitation, c’est-à-dire l’apparition d’une bulle dans un liquide soumis à une dépression. Le contrôle du processus est d’un grand intérêt dans plusieurs domaines, de l’hydrodynamique à la biologie. En fait ce phénomène, apparemment inoffensif, peut provoquer des graves dommages comme la fracture d’hélices ou la mort d’arbres. La première partie de la thèse se focalise sur la cavitation dans un système biomimétique. Il s’agit de micro-volumes d’eau encapsulés dans un milieu poro-élastique. L’évaporation de l’eau à travers l’hydrogel génère des pressions négatives et finalement l’apparition d’une bulle. Lorsque la première bulle de cavitation apparait dans une cellule, elle peut déclencher en quelques microsecondes l’apparition d’autres bulles dans les cellules voisines, en amorçant un effet d’avalanche ultra-rapide. Nous résolvons la dynamique et l’acoustique des bulles, dans le cas des événements uniques ou multiples. La réalisation d’un dispositif innovant ou les volumes du liquide sont encapsulés entre l’hydrogel et une lame de verre ouvre la voie à l’investigation de l’eau métastable. Une deuxième partie du travail a été consacrée à une étude interdisciplinaire où la microfluifique et la biologie sont combinées et appliqués à la livraison de médicament. Le dispositif est composé d’un vaisseau sanguin artificiel en communication avec un tissu cible placé dans un compartiment créé exprès. Les parois du canal microfluidique sont tapissées de cellules endothéliales pour reproduire la paroi réelle d’un vaisseau sanguin in vivo. Ce dispositif permet l’étude des effets des bulles activées par des ultrasons sur la barrière endothéliale. / The present thesis focuses on cavitation process, meaning nucleation and dynamics of a bubble within a liquid as a result of pressure decrease. In particular, we investigate the growth of the vapor phase in micrometric volumes of water confined by a poro-elastic material. In systems where water is encapsulated in a porous medium, molecules can evaporate from the pores resulting in a remarkable pressure reduction and bubbles nucleation. Once a vapor bubble nucleates, it can trigger within few microseconds the appearance of other bubbles in the neighbor cavities, activating an ultra-fast avalanche-like phenomenon. We resolved the dynamics and acoustics of cavitation bubbles, in case of singles or multiple nucleation events. The realization of an innovative device where water is encapsulated between a porous material and a glass window opens the way for metastable water investigation. A second part of the manuscript is devoted to a new project where microfluidics and biology are combined and applied to drug delivery. The device consists of an artificial blood vessel in communication with the target tissue accommodated in a purposely designed compartment (tissue-on-a-chip). The walls of the microfluidic channel mimicking the vessel are lined with endothelial cells to reproduce the actual walls of in vivo blood vessels. This device allows to investigate the effects of ultrasound-activated bubbles on the blood vessels wall.
114

Etude locale de la cavitation acoustique et du transfert de matière liquide-solide dans une suspension soniquée / Local study of acoustic cavitation and liquid-solid mass transfer in a sonicated suspension

Grosjean, Vincent 17 July 2019 (has links)
Les ultrasons de puissance, pierre angulaire de la sonochimie, constituent un domaine récurrent de la recherche en génie des procédés. Leurs effets mécaniques et chimiques permettent l’intensification de processus physiques (mélange, dissolution, émulsion, dégazage, attrition …) et l’activation de réactions (via la production de radicaux libres). Le phénomène sous-jacent est la cavitation acoustique inertielle (ou transitoire), qui correspond à l’implosion violente de bullescréées lors des phases de dépression de l’onde, conduisant localement à des conditions extrêmes de température et pression, et à la formation de micro-jets puissants vers les surfaces solides. Malgré ce fort potentiel, les applications industrielles des ultrasons de puissance sont rares. Ceci s’explique principalement par le fait que la cavitation transitoire est encore mal comprise et maîtrisée empêchant la conception de réacteurs sonochimiques efficaces à l’échelle pilote. Le verrou principal réside dans la prédiction et l’optimisation de la localisation des zones sonoactives. En effet, les ultrasons de puissance sont atténués de façon significative sur de courtes distances, en particulier dans les milieux polyphasiques, fréquemment rencontrés dans les procédés physico-chimiques. Dans ce contexte, cette thèse s’intéresse à évaluer localement les effets physiques des ultrasons (20 kHz) appliqués à une suspension liquide-solide. Il s'agit d’identifier les zones d’activité des ultrasons dans un réacteur à lit fluidisé et à sonde plongeante et de préciser l’influence de différents paramètres opératoires (puissance émise, vitesse du fluide, concentration et propriétés de la suspension). La première partie évalue l’atténuation de l’onde ultrasonore liée à la cavitation et la présence de solide, ainsi que l’évolution de son spectre de fréquences. En effet, les bulles de cavitation présentent une signature acoustique propre. Dans cet objectif, des mesures de pression acoustique sont réalisées axialement à l’aide d’un hydrophone piézoélectrique et interprétées par analyse spectrale. Le second volet quantifie les effets physiques des ultrasons via une mesure locale du coefficient de transfert liquide-solide par méthode électrochimique. Les cartographies du réacteur réalisées à l’aide de microélectrodes permettent d’identifier les zones d’intensification marquée. Mises en regard avec les mesures précédentes, elles font le lien entre l’accélération du transfert de matière local et les caractéristiques du signal acoustique mesuré à proximité. Enfin, l’étude expérimentale est complétée par des simulations numériques du réacteur réalisées avec COMSOL Multiphysics. Le modèle prend en compte la dissipation de l’énergie par les bulles, qui joue un rôle majeur dans l’atténuation des ultrasons. Via une étude paramétrique, ces simulations montrent aussi le rôle du design du réacteur sonochimique sur la localisation des zones actives. / Power ultrasound, the cornerstone of sonochemistry, is a recurring research area in process engineering. Their mechanical and chemical effects allow the enhancement of physical processes (mixing, dissolution, emulsion, degassing, attrition …) and the activation of chemical reactions (via free radicals production). The underlying phenomenon is the inertial (or transient) acoustic cavitation, which stands for the violent collapse of bubbles generated during the depression phases of the wave, leading locally to extreme conditions of pressure and temperature and to the formation of powerful micro-jets pointing towards solid surfaces. Despite this high potential, industrial applications of power ultrasound are scarce. This is mainly due to the fact that transient cavitation is still poorly understood and controlled, preventing the design of efficient sono-reactors on a pilot scale. The main obstacle lies in the prediction and optimization of the spatial distribution of sono-active zones. Indeed, power ultrasound is markedly attenuated over short distances, particularly in multiphase media, frequently encountered in physicochemical processes. In this context, this thesis aims at evaluating locally the physical effects of power ultrasound (at 20 kHz) applied to a liquid-solid suspension. The sono-active zones of a fluidized bed reactor equipped with an ultrasonic horn are identified and the influence of various experimental parameters (emitted power, fluid velocity, concentration and properties of the suspension) is explored. The first part evaluates the ultrasonic wave attenuation caused by both the cavitation and the solid particles, as well as the characteristics of its frequency spectrum. Indeed, acoustic bubbles have their own acoustic signature. For this purpose, acoustic pressure measurements are carried out along the reactor with a piezoelectric hydrophone and the signals are interpreted by a spectral analysis. The second part quantifies the physical effects of ultrasounds via a local measurement of liquid-solid mass transfer coefficient by an electrochemical method. The axial mapping of the reactor using microelectrodes can identify the zones of strong intensification. Compared with the previous measurements, they also reveal the link between the local mass transfer enhancement and the characteristics of the acoustic signal measured nearby. Finally, the experimental study is completed by numerical simulations of the reactor carried out by COMSOL Multiphysics. The model includes the energy dissipated by the bubbles, which is a key factor of ultrasound attenuation. Via a parametric study, those simulations also show the role of the sono-reactor design on the localization of active zones
115

Study of acoustic cavitation near metal surfaces contaminated by uranium / Etude de la cavitation acoustique à proximité de surfaces métalliques contaminées par l'uranium

Ji, Ran 13 November 2018 (has links)
Le démantèlement des réacteurs UNGG produit un grand volume de matériaux métalliques contaminés. Parmi ceux-ci, les alliages à base de magnésium, connus comme métaux hautement réactifs, présentent un risque élevé de corrosion et peuvent générer de l'hydrogène gazeux qui peut causer de graves dommages pendant le stockage. Afin de réduire le volume des effluents radioactifs générés et de déclasser les déchets nucléaires, la sonochimie peut être mise en œuvre comme technologie efficace pour la décontamination des surfaces métalliques. La sonochimie traite des effets des ondes ultrasonores sur les réactions chimiques en solution. Les effets observés en sonochimie proviennent du phénomène de cavitation acoustique, qui est la nucléation, la croissance et l'effondrement implosif rapide de microbulles remplies de gaz et de vapeur. Des espèces et des radicaux excités peuvent être générés dans le plasma formé, qui émet de la lumière (sonoluminescence). Lorsque l’effondrement des bulles a lieu à proximité d'une surface solide, il produit des ondes de choc violentes et des microjets dirigés vers la surface. Ces effets physiques contribuent fortement au nettoyage par ultrasons, à la dépassivation de surfaces et à la décontamination.Cette étude se concentre sur : 1) les comportements de cavitation près d'une surface solide ; 2) la structuration ultrasonore des surfaces étendues de magnésium ; 3) la décontamination par ultrasons de surfaces métalliques radioactives. L'activité sonochimique est évaluée en mesurant les rendements en H2O2, la distribution de sonochimiluminescence et les spectres de sonoluminescence. Les effets de la structuration et de la décontamination des surfaces sont suivis au moyen de MEB, EDS, FTIR, Raman, DRX, analyse du comportement de mouillage, spectrométrie de masse et ICP-AES.Ce travail a mis en évidence le fort impact de la fréquence ultrasonore sur l'activité sonochimique, sa distribution spatiale et sur les effets générés sur les échantillons de magnésium. Une répartition spatiale homogène de l'activité sonochimique est observée aux fréquences ≥ 100 kHz. L'effondrement asymétrique des bulles est plus susceptible de se produire près de la surface solide aux ultrasons à haute fréquence. La formation d’une structure allongée semblable à une balle de golf est observée à des fréquences comprises entre 100 et 362 kHz. De telles architectures résultent de la dissolution contrôlée par ultrasons de la surface Mg. Il est probable que la nucléation hétérogène assurée par la création de défauts par les ultrasons et la libération de gaz H2 soient à l'origine de la formation des cratères. La décontamination des surfaces radioactives de Mg et d’alliages de Mg ont d'abord démontré un nettoyage rapide par les ultrasons suivi d’un lent processus de recontamination due à l'adsorption de brucite formée sur les surfaces de Mg ou de ses alliages. / The dismantling of UNGG reactors produces large volumes of contaminated metallic materials. Among these, magnesium-based alloys which are known as highly reactive metals, have a high risk of corrosion and can generate hydrogen gas that can cause serious damages during storage. In order to reduce the volume of generated radioactive effluents and downgrade nuclear wastes, sonochemistry can be applied as an efficient technology for metallic surface decontamination. Sonochemistry deals with the effects of ultrasound waves on chemical reactions in solution. The effects observed in sonochemistry originate from the acoustic cavitation phenomenon, which is the nucleation, growth and rapid implosive collapse of gas and vapor filled microbubbles. Excited species and radicals can be generated in the formed plasma and light (sonoluminescence) is emitted. When the bubble collapse takes place in the vicinity of a solid surface, it produces violent shock waves and microjets directed towards the surface. These physical effects strongly contribute in ultrasonic cleaning, surface depassivation and decontamination.This study focuses on: 1) the cavitation behaviors near a solid surface; 2) the ultrasonic structuration of extended magnesium surfaces; 3) the ultrasonic decontamination of radioactive metal surfaces. The sonochemical activity is evaluated by measuring H2O2 yields, sonochemiluminescence distribution and sonoluminescence spectra. Surface structuration and decontamination effects are followed by means of SEM, EDS, FTIR, Raman, XRD, wetting behavior analysis, mass spectrometry and ICP-AES.The investigations reveal a strong ultrasonic frequency dependency of the cavitation activity and distribution and of the effects generated on the Mg samples. A homogeneous spatial repartition of sonochemical activity is observed at frequencies ≥ 100 kHz. Asymmetrical bubble collapse is found more likely to happen near the solid surface at high frequency ultrasound. A golf-ball like extended structure is observed at frequencies between 100 and 362 kHz. It is shown that such architectures result from the ultrasonically controlled dissolution of the Mg surface. Heterogeneous nucleation provided by the creation of defects by ultrasound and the release of H2 gas are supposed to be at the origin of the crater formation. Decontamination of radioactive surfaces of Mg and Mg alloys demonstrate rapid ultrasonic cleaning followed by a slow recontamination process which is due to the adsorption of brucite formed on the surfaces of Mg or its alloys.
116

Cavitation par excitation acoustique bifréquentielle : application à la thrombolyse ultrasonore

Saletes, Izella 07 December 2009 (has links) (PDF)
Dans nombre d'applications thérapeutiques des ultrasons, il peut être intéressant d'augmenter l'activité de cavitation inertielle tout en limitant au maximum les intensités utilisées : ceci permet de maximiser les effets mécaniques des ultrasons au niveau des tissus visés tout en minimisant les échauffements des tissus environnants. L'étude expérimentale présentée ici ² porte sur la modification des seuils de cavitation inertielle et de l'activité de cavitation au-delà du seuil lorsqu'un signal bifréquentiel comportant deux composantes fréquentielles proches est utilisé. Le caractère non linéaire de la modification du seuil est démontré. Ainsi, des réductions significatives de l'intensité nécessaire à l'obtention de cavitation inertielle peuvent être obtenues dans des milieux où les seuils sont élevés. De plus, l'évolution de l'activité de cavitation lorsque l'intensité ultrasonore est augmentée au-delà du seuil montre qu'avec une excitation bifréquentielle, de fortes activités de cavitation peuvent être atteintes pour des intensités plus proches du seuil. Ce point présente un double intérêt sur le plan de l'application pratique, puisque cela signifie une meilleure séparation des régimes cavitant et non cavitant et permet de réduire encore, par rapport à une excitation monofréquentielle, les intensités requises pour atteindre une activité de cavitation donnée. Des essais sur modèle de caillots sanguins ont permis de valider in vitro l'efficacité de cette excitation bifréquentielle pour la thrombolyse purement ultrasonore.
117

Enhanced boiling heat transfer by submerged, vibration induced jets

Tillery, Steven W. 14 July 2005 (has links)
In this analysis, the efficacy of cavitation jets for heat transfer enhancement was demonstrated. The cavitation jet was formed from a cluster of cavitation bubbles that are the result of a submerged piezoelectric diaphragms oscillating about a given velocity threshold Two different heaters operating in two different flow environments were examined. For each heater in each environment, the cavitation jet significantly increased the heat transfer
118

Measurement and Correlation of Acoustic Cavitation with Cellular and Tissue Bioeffects

Hallow, Daniel Martin 28 August 2006 (has links)
Targeted intracellular delivery is a goal of many novel drug delivery systems to treat site-specific diseases thereby increasing the effectiveness of drugs and reducing side effects associated with current drug administration. The development of ultrasound-enhanced delivery is aimed at providing a targeted means to deliver drugs and genes intracellularly by utilizing ultrasound s ability to non-invasively focus energy into the body and generate cavitation, which has been found to cause transient poration of cells. To address some of the current issues in this field, the goals of this study were (i) to develop a measurement of cavitation to correlate with cellular bioeffects and (ii) to evaluate the ability of ultrasound to target delivery into cells in viable tissue. In addition, this study sought to exploit the shear-based mechanism of cavitation by (iii) developing a simplified device to expose cells to shear stress and cause intracellular uptake of molecules. This study has shown that broadband noise levels of frequency spectra processed from cavitation sound emissions can be used to quantify the kinetic activity of cavitation and provide a unifying parameter to correlate with the cellular bioeffects. We further demonstrated that ultrasound can target delivery of molecules into endothelial and smooth muscle cells in viable arterial tissue and determined approximate acoustic energies relevant to drug delivery applications. Lastly, we developed a novel device to expose cells to high-magnitude shear stress for short durations by using microfluidics and demonstrated the ability of this method to cause delivery of small and macromolecules into cells. In conclusion, this work has advanced the field of ultrasound-enhanced delivery in two major areas: (i) developing a real-time non-invasive measurement to correlate with intracellular uptake and viability that can be used as means to predict and control bioeffects in the lab and potentially the clinic and (ii) quantitatively evaluating the intracellular uptake into viable cells in tissue due to ultrasound that suggest applications to treat cardiovascular diseases and dysfunctions. Finally, by using shear forces generated in microchannels, we have fabricated a simple and inexpensive device to cause intracellular uptake of small and large molecules, which may have applications in biotechnology.
119

Contribution à la prévision de l'érosion de cavitation à partir de simulations numériques : proposition d'un modèle à deux échelles pour l'estimation du chargement imposé en paroi par le fluide / Contribution to the prediction of cavitation erosion from numerical simulations : proposition of a two scales model to estimate the charge imposed by the fluid

Krumenacker, Laurent 29 January 2015 (has links)
Lors du fonctionnement d'une installation hydraulique, l'apparition de zone de cavitation dans l'écoulement peut entraîner un endommagement important sur la surface des matériaux. La quantification de l'intensité de cavitation sur les composants hydrauliques serait utile à la fois pour mieux concevoir les nouveaux équipements en projet, mais aussi pour améliorer la conduite et optimiser la maintenance des matériels existants. Au vu du grand nombre de paramètres régissant les écoulements cavitants, l'élaboration de lois de similitudes universelles à partir d'expériences est délicate. Avec l'augmentation des moyens de calculs, la simulation numérique est un outil pour étudier ce phénomène sur des géométries variées. La principale difficulté de cette démarche réside dans la différence d'échelles existant entre les simulations numériques U-RANS servant à simuler l'écoulement cavitant et les mécanismes d'implosion de bulles jugés responsables de l'endommagement sur le solide. La méthode proposée dans ce manuscrit s'appuie sur un post-traitement des simulations U-RANS afin de caractériser une distribution de bulles et de simuler leurs comportements à de plus petites échelles spatiales et temporelles. Dans un premier temps, notre travail consiste à expliciter les équations locales de conservation de masse, de quantité de mouvement et d'énergie pour un écoulement liquide/gaz comprenant deux espèces eau/air. Ce travail mène à l'élaboration de grandeurs de mélange prenant notamment en compte la présence de gaz incondensables au sein du fluide. Des hypothèses permettent de rendre ce système équivalent à ceux, utilisant une approche homogène, implémentés dans les codes de simulations d'écoulements cavitants instationnaires développés précédemment au laboratoire. La caractérisation des populations de bulles effectuée par le post-traitement prend ainsi en considération à la fois la tension superficielle et la présence de gaz incondensables. Dans un deuxième temps, l'élaboration d'un code de calcul permettant la simulation de la dynamique d'un nuage de bulles est débutée. Ce dernier a pour ambition de tenir compte à la fois des interactions entre les bulles et des déformations non sphériques que celles-ci peuvent subir à l'aide d'une méthode potentielle. Des premiers résultats de simulations sont présentés dans ce manuscrit et permettent de tenir compte de faibles déformations des bulles. La dernière étape de ce travail consiste à proposer une méthode de chaînage entre ces deux échelles en initialisant le calcul de dynamique de bulles à l'aide des résultats du calcul U-RANS. L'énergie émise lors de l'implosion des bulles et impactant la surface solide est ainsi calculée, caractérisant de ce fait le chargement imposé par l'écoulement sur le matériau. Cette méthode est par la suite appliquée sur différentes géométries en comparant à chaque fois les résultats obtenus à des expériences. Nous comparons également nos résultats à des méthodes précédemment établies au sein du laboratoire afin d'évaluer la pertinence de cette approche. / During the life's cycle of a hydraulic installation, the occurrence of cavitation can cause significant damages on the material's surface. The quantification of the cavitation intensity in different geometry can be useful to get better designs for new installations, but also to improve the operating and to optimize maintenance of existing equipments. The development of universal laws of similarity from experiments is difficult due to the large number of parameters governing cavitating flows. With the increase of computational performance, numerical simulations offer the opportunity to study this phenomenon in various geometries. The main difficulty of this approach is the scale's difference existing between the numerical simulations U-RANS used to calculate the cavitating flow and mechanisms of bubble's collapse held responsible for damages on the solid. The proposed method in this thesis is based on a textbf{post-treatment} of the textbf{U-RANS} simulations to characterize a distribution of bubbles and to simulate their behavior at lower spatial and temporal scales. Our first objective is to make explicit a system of equations corresponding to phenomena occurring locally in the two-phase flow. This work leads to the development of mixture variables taking into account the presence of non-condensable gases in the fluid. Assumptions are taken to make the system, after using the Reynolds averaging procedure, equivalent to those, using a homogeneous approach, implemented in the unsteady cavitating flows solvers previously developed in the laboratory. The characterization of bubbles made by this post-treatment takes into account both the surface tension and the presence of non-condensable gases. The development of a solver for the simulation of the dynamic of a bubble cloud is started. It aims to take into account both the interactions between bubbles and non-spherical deformations with a potential method. First results of these simulations are presented and small non-spherical deformations occurring during the collapse can be observed. Finally, we propose a chained method between these two systems initializing the bubble dynamic solver with results of U-RANS simulations. The energy emitted during the implosion of bubbles impacting the solid surface is calculated. So the aggressiveness of the flow on the material can be characterized. We apply this method on different flows to compare numerical and experimental results.
120

Analyse de l'influence de rugosités organisées sur les écoulements cavitants instationnaires

Mehal, Jean Elie 12 June 2014 (has links) (PDF)
Il existe trop d'exemples autour de nous qui prouvent qu'en hydrodynamique une surface polie ne présente pas systématiquement les avantages hydrodynamiques escomptés sur une surface rugueuse. Les rugosités influent activement sur le développement des couches limites turbulentes et interagissent différemment en fonction de leurs caractéristiques physiques. Plongé dans un écoulement hydraulique à nombre de Reynolds élevé, les aubes ou pales d'hélices déclenchent localement un phénomène physique, appelé cavitation, qui correspond à l'apparition de bulles de gaz et de vapeur dans un liquide soumis à une dépression. Dans le cadre de cette thèse, les expérimentations sont menées dans un tunnel de cavitation, de plus des mesures par LDV ont été réalisées de sorte à définir le profil du vecteur vitesse de l'écoulement dans le sens longitudinal. Une caméra CCD à très grande vitesse permet la prise d'image sur la formation des poches et nuages de cavitation. Dans le cas de l'hydrofoil 2D, les expérimentations menées sur les différentes plaques partiellement rainurées ont mis en évidence le caractère hydrodynamique différent sur chacune d'entre elles, car la taille de poches cavitantes diffère en fonction des caractéristiques des indentations. Les résultats ont montré que la profondeur des indentations est un paramètre déterminant, alors que les plus petites profondeurs des rainures (plus petites que la hauteur de la sous-couche visqueuse) n'ont pas d'effet sur la longueur des poches cavitantes. Certaines plaques provoquent des variations sur les instabilités de cavitation pour lesquelles la longueur des poches cavitantes est réduite. L'étude de la fréquence d'expulsion des poches cavitantes, par le moyen de la caméra rapide a permis de mettre en évidence deux régimes de cavitation différents. Cette étude a démontré la faisabilité d'un contrôle passif de la cavitation sur un profil de venturi en modifiant l'état de surface par des indentations organisées dans le sens de l'écoulement.

Page generated in 0.5057 seconds