• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 47
  • 9
  • 7
  • 6
  • 2
  • Tagged with
  • 85
  • 85
  • 29
  • 21
  • 21
  • 20
  • 15
  • 13
  • 12
  • 11
  • 11
  • 10
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Différenciation et plasticité des cellules souches neurales / Neural stem cells plasticity and differentiation

Flici, Hakima 21 September 2012 (has links)
L’étude de la plasticité cellulaire est un puissant outil pour comprendre le choix du destin cellulaire pendant la différenciation et dans les processus cancéreux lors de la transformation d’une cellule normale en une cellule maligne. Chez la drosophile, le facteur de transcription Gcm contrôle la détermination du destin glial. Dans des mutants gcm, les cellules qui se développent normalement en glie entrent dans la voie de différenciation neuronale alors que l’expression ectopique de gcm dans des progéniteurs neuronaux induit de la glie. Ces données font de Gcm un outil important pour comprendre les bases de la plasticité cellulaire. Mon projet de thèse vise à comprendre les mécanismes contrôlant la plasticité des cellules souches neurales. Nous avons ainsi montré que la capacité des CSNs à se convertir en glie après expression forcée de Glide/Gcm décline avec l'âge et que lors de l'entrée en phase quiescente ou apoptotique, ils ne peuvent plus être convertis. Nous avons aussi découvert que le processus de conversion du destin ne se manifeste pas uniquement par l’expression de marqueurs gliaux mais aussi par des changements spécifiques au niveau de la chromatine. D’une manière intéressante, nous avons aussi montré que la stabilité de la protéine Glide/Gcm est contrôlée par deux voies opposées, où Repo et l’histone acetyltransférase CBP jouent un rôle majeur. / The study of cellular plasticity is a powerful tool to understand the mechanisms directing cell fate choice during differentiation and transformation of a normal cell into a cancerous one. In Drosophila, the transcription factor Gcm control glial fate determination. In gcm mutants, cells that normally develop into glia enter the path of neuronal differentiation, whereas ectopic expression of gcm in neural progenitors induces glia. These properties make gcm an important tool for understanding the basics of cellular plasticity. My thesis project aims to understand the mechanisms controlling the plasticity of neural stem cells (NSCs). Based on this aim, we showed that the ability of NSCs to be transformed into glia, after forced expression of Gcm, declines with age and that upon entry into quiescence or apoptosis, they cannot be converted. We also found that the process of fate conversion does not manifest itself only through the expression of glial markers but also by specific changes in the level of chromatin. Remarkably, we also showed that the stability of the protein Gcm is controlled by two opposite and interconnected loops, where Repo and the histone acetyltransferase CBP play a major role.
52

Etude des mécanismes de la différenciation cellulaire impliquant le facteur de transcription Glide/Gcm chez la drosophile / The molecular mechanisms underlying glial cellular differentiation and involving the Glide/Gcm transcription factor in Drosophila

Trebuchet, Guillaume 25 September 2014 (has links)
La différenciation cellulaire implique des facteurs clés. Chez la drosophile, le facteur de transcription Glide/Gcm est impliqué dans la différenciation de deux types de cellules immunitaires : les macrophages circulants, qui ont une origine hématopoïétique, et les cellules gliales, macrophages résidents du système nerveux central, qui sont issues des précurseurs neuraux. J'ai d'abord entrepris la caractérisation du potentiel hématopoïétique de Gcm et l'identification de ses cibles dans les hémocytes. Ensuite, pour comprendre comment plusieurs types cellulaires peuvent être spécifiés par un même facteur de transcription, j'ai étudié comment s'effectue le choix entre le destin glial et le destin hémocytaire de la cellule. J'ai en particulier misen évidence le rôle clé des gènes agissant en aval de Gcm, ceux impliqués dans la consolidation et le maintien de l'identité cellulaire. Finalement, j'ai participé à la caractérisation du territoire d'expression de Gcm au niveau protéique et découvert un nouveau rôle de Gcm dans la différenciation de cellules neurosécrétrices, cellules indispensable pour initier le signal hormonal déclenchant le phénomène de mue chez les insectes. / Cell fate determination involves key transcription factors. ln Drosophila, the transcription factor Glide/Gcm is required for the differentiation of two immune cell types: circulating macrophages,which arise from hematopoietic precursors, and glial cells, resident macrophages of the central nervous system, which differentiate from neural precursors. ln first, 1 characterized Gcm hematopoietic potential and identified its target genes in hemocytes. Then, to get an insight intomolecular mechanisms underlying the acquisition of several identities with a single fate determinant, 1 investigated how the choice between the hemocyte and the glial fates is regulated.Being necessary to consolidate and to maintain a specific fate, 1 highlight the key role of genes acting downstream of a fate determinant. Finally, 1 contribute to characterize Gcm expression profile at the protein level and highlight a new role of Gcm in the differentiation of neurosecretory cells, cells absolutely required to initiate the hormonal signal triggering the molting process in insects.
53

La dérivation de cellules souches embryonnaires chez le rat, Rattus norvegicus

Demers, Simon-Pierre January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
54

Reprogramming of B cells into macrophages: mechanistic insights

Di Tullio, Alessandro, 1982- 13 July 2012 (has links)
Our earlier work has shown that pre-B cells can be converted into macrophages by the transcription factor C/EBPα at very high frequencies and also that a clonal pre-B cell line with an inducible form of C/EBPα can be converted into macrophage-like cells. Using these systems we have performed a systematic analysis of the questions whether during transdifferentiation the cells retrodifferentiate to a precursor cell state and whether cell cycle is required for reprogramming. As for the first question, a transcriptome analysis of transdifferentiating cells showed that most genes are continuously up or downregulated, acquiring a macrophage phenotype within 5 days. In addition, we observed the transient reactivation of a subset of immature myeloid markers, as well as low levels of the progenitor markers Kit and Flt3 and a few lineage inappropriate genes. Importantly, we were unable to observe the re-expression of cell surface marker combinations that characterize hematopoietic stem and progenitor cells (HSPCs), including c-Kit and Flt3. This was the case even when C/EBPα was activated in pre-B cells under culture conditions that favor HSPC growth or when the transcription factor was activated in a time limited fashion. As for the second question, using the C11-inducible pre-B cell line, time-lapse experiments showed that a subpopulation of about 8% of the pre-B cells did not divide before acquiring macrophage properties, with the majority of cells dividing once and a few percent dividing twice. In agreement with these results we found that 8% of the induced cells did not incorporate BrdU during reprogramming. Importantly, the non-dividing cell subset expressed the highest levels of C/EBPα and was the fastest in acquiring a macrophage phenotype. Inhibition of DNA synthesis by aphidicolin led to an impairment of transdifferentiation in >70% of the cells, suggesting a requirement for traversing the cell cycle. However, sorting pre-B cells into G0/G1 and G2/M fractions followed by induction showed no significant differences in the reprogramming kinetics. Finally, we showed that knocking down p53 in the inducible pre-B cells does not alter their conversion into macrophages, suggesting that an acceleration of the cell cycle has no effect. Together, our findings show that the conversion of pre-B cells to macrophages does not involve overt retrodifferentiation and that high concentrations of C/EBPα bypass the cell cycle-dependency of immune cell transdifferentiation / Recientemente, nuestro grupo ha demostrado que las células pre-B se pueden reprogramar a macrófagos mediante la sobreexpresión del factor de transcripción C/EBP, con una eficiencia elevada. Así mismo, mediante la expresión de la forma inducible de C/EBP en una línea de células pre-B (C11), éstas también se puede convertir en células similares a macrófagos. Usando este sistema hemos estudiado si durante el proceso de trans-diferenciacion las células requieren volver a un estadio de célula precursora, y si el ciclo celular es necesario para este proceso. En cuanto a la primera cuestión, el análisis del transcriptoma de células trans-diferenciadas mostró que la expresión de la mayoría de los genes están regulados durante todo el proceso bien aumentando o disminuyendo, y que adquieren el fenotipo de macrófago a los 5 días después de iniciar el proceso. Así mismo, se observó la reactivación transitoria de un grupo de genes que codifican para marcadores de células mieloides inmaduras; también cabe destacar que observamos una disminución en la expresión de los genes expresados en células progenitoras Kit y Flt3, así como de genes de linajes impropios. Es importante destacar que nunca hemos llegado a observar la expresión de combinaciones de marcadores de superficie característicos de las células madre hematopoyéticas y las células progenitoras (HSPCs), incluyendo c-Kit y Flt3, mediante el análisis por citometría de flujo. Estos resultados se reprodujeron incluso cuando C/EBP se sobreexpresó en células pre-B que fueron cultivadas en condiciones que favorecen el crecimiento de las HSPC o cuando el factor de transcripción se activó de forma limitada en el tiempo. En cuanto a la segunda pregunta, usando la línea de células inducibles pre-B C11, el análisis mediante microscopia a diferentes tiempos después de la inducción de la reprogramación mostraron que una subpoblación de aproximadamente el 8% de las células pre-B no se dividen antes de adquirir las propiedades de macrófago, mientras que la mayoría de las células se dividen sólo una vez y un pequeño porcentaje dos veces antes de que se reprogramen totalmente a macrófagos. De acuerdo con estos resultados se encontró que un 8% de las células inducidas no incorporan BrdU durante la reprogramación. Es importante destacar que el subconjunto de células que no se dividen expresan los niveles más altos de C/EBP, con lo que cabe pensar que la adquisición del fenotipo de macrófago es más rápida en estas células. La inhibición de la síntesis de ADN por afidicolina bloqueó la transdiferenciación en mas de un 70% de las células, lo que sugiere que la correcta progresión del ciclo celular es un requisito para la transdiferenciación. Sin embargo, al separar la linea de células pre-B C11 en fracciones G0/G1 y G2/M seguido de la inducción, la cinética de la reprogramación no mostró diferencias significativas. Por último, también demostramos que la reducción en la expresión de p53 en las células pre-B inducibles no altera el proceso de conversión a macrófago, lo que sugiere que la aceleración del ciclo celular no tiene ningún efecto. En conjunto, nuestros resultados muestran que la conversión de células pre-B a macrófagos no requiere retro-diferenciación y que las células con una expresión mayor de C/EBP pueden llegar a prescindir de la dependencia del ciclo celular para la trans-diferenciación de las células inmunitarias.
55

Arginine methylation by PRMT1 and PRMT5 regulates B cell activation, germinal center expansion and differentiation into plasma cells

Litzler, Ludivine 05 1900 (has links)
No description available.
56

Investigating TGFβ signals in cell fate specification in the early mouse embryo

Senft, Anna Dorothea January 2016 (has links)
TGFβ signalling via Smad transcription factors is essential for axis patterning and subsequent cell fate specification during mammalian embryogenesis. However, the cellular and molecular mechanisms have been difficult to characterise in vivo due to early embryonic lethality of mouse mutants and redundant functional activities. Here I show that combined deletion of closely related Smad2 and Smad3 in mouse embryonic stem cells impairs induction of lineage specific gene expression during differentiation, while extra-embryonic gene expression is up-regulated. Preliminary data suggest that the underlying mechanism of this differentiation defect reflects the inability of Smad2/3<sup>-/-</sup> cells to establish lineage priming. Collectively, these findings identify novel downstream target genes controlled by Smad2/3 and an absolute requirement for Smad2/3 during embryonic differentiation. TGFβ signalling via Smad1 and Smad4 is essential for induction of the transcription factor Blimp1 required for primordial germ cell specification. The direct upstream regulators of Blimp1 are unknown, but T-box factors have recently been suggested to play a role. In a second project, I performed tissue- specific ablation of the T-box transcription factor Eomes as well as components of the TGFβ signalling pathway in either the visceral endoderm or the epiblast to examine tissue-specific functions for Blimp1 induction. I show that Eomes and Smad2 functions in the visceral endoderm as well as Eomes function in the epiblast are dispensable for Blimp1 induction, but rather are required to restrict Blimp1 induction to posterior epiblast cells. In contrast, epiblast-specific Smad4 or Smad1 mutants fail to robustly induce Blimp1 in the epiblast. My preliminary analysis suggests that competence to induce primordial germ cell fate is dependent on the interplay of Smad2/Eomes functions in the visceral endoderm and Smad1/4 functions in the epiblast. Collectively, this thesis provides insight into the transition from pluripotency to cell fate specification in the mammalian embryo that is impossible to obtain from human embryos in vivo.
57

Influence de la signalisation thyroïdienne et du métabolisme mitochondrial sur le choix de destin des cellules souches neurales de la zone sous-ventriculaire chez la souris adulte / Impact of thyroid hormone signaling and mitochondrial metabolism on neural stem cell fate choice in the adult mouse subventricular zone

Gothie, Jean-David 11 October 2017 (has links)
Le cerveau adulte des mammifères conserve sa capacité à générer de nouvelles cellules cérébrales à partir de cellules souches neurales (CSNs), principalement localisées dans deux régions cérébrales spécifiques, l'hippocampe et la zone sous-ventriculaire (SVZ). Ce processus, appelé neurogenèse, permet la formation de nouveaux neurones et de nouvelles cellules gliales (astrocytes et oligodendrocytes). Différents signaux contrôlent la prolifération et la différenciation des CSNs. Parmi ces signaux, les hormones thyroïdiennes (HTs) sont impliquées dans la prolifération des CSNs de la SVZ et dans la différenciation neuronale. À l’inverse des cellules différenciées, telles que les neurones ou les glies, les CSNs ont un fonctionnement – ou métabolisme – principalement basé sur la glycolyse et sur une faible respiration mitochondriale. Or l'évolution du métabolisme des CSNs peut influencer leur choix de destin cellulaire. Les HTs jouant un rôle important dans l'activation du métabolisme mitochondrial, j'ai testé l'hypothèse selon laquelle le choix du destin des CSNs de la SVZ adulte se ferait grâce à l'influence de la signalisation thyroïdienne sur l'activité mitochondriale. J'ai tout d'abord montré in vivo et in vitro que les HTs permettent la détermination des CSNs en précurseurs neuronaux dans la SVZ, tandis qu'une période d'hypothyroïdisme favorise la détermination gliale. La transthyrétine, protéine de liaison des HTs, est spécifiquement présente dans les cellules de la SVZ ayant un destin neuronal, alors que la désiodase de type 3, inactivatrice des HTs, est exprimée par les précurseurs oligodendrocytaires (OPCs), indiquant une activationdifférentielle de la signalisation thyroïdienne dans les deux lignages cellulaires. Par ailleurs j'ai pu observer que les cellules s'engageant vers un destin neuronal possèdent une plus grande activité mitochondriale que les OPCs. La présence d'HTs favorise de plus la respiration mitochondriale, ainsi que la production de dérivés réactifs de l'oxygène (ROS) issus de l'activité des mitochondries, dans les cellules de la SVZ. Un blocage des protéines de la chaîne respiratoire empêche les HTs de promouvoir la détermination neuronale, montrant la nécessité de l'activation mitochondriale pour l'engagement des CSNs en précurseurs neuronaux. On sait d'autre part que les modifications morphologiques (ou dynamiques) mitochondriales sont nécessaires à l'augmentation de la respiration. La division (ou fission) des mitochondries est en particulier essentielle à une bonne répartition intracellulaire de la production de l'énergie issue de la respiration, ainsi qu'à la migration cellulaire. Dans les cellules de la SVZ, j'ai montré que l'action des HTs permet l'activation de la protéine DRP1, médiatrice de la fission mitochondriale, et ce principalement dans les cellules du lignage neuronal. Les HTs favorisent donc la détermination des CSNs de la SVZ vers un destin neuronal grâce à l'activation de la respiration et de la fission mitochondriales. / The adult mammalian brain maintains its capacity to generate new cells from neural stem cells (NSCs), mainly localized in two specific brain regions, the hippocampus and the sub-ventricular zone (SVZ). This process, named neurogenesis, results in the production of new neurons and new glial cells (astrocytes and oligodendrocytes). Several signals control NSCs proliferation and differentiation. Among those, thyroid hormones (THs) are involved in NSCs proliferation in the SVZ and in neuronal differentiation. NSC metabolism relies mainly on glycolysis associated with a low mitochondrial activity, whereas mature cells, like neurons and glia, preferentially use oxidative phosphorylation. Changes in NSC metabolism can impact cell fate. As THs play an important part in activating mitochondrial metabolism, I hypothesized that the influence of TH signaling on mitochondrial activity triggers NSC fate choice in the adult SVZ. First, I showed in vivo and in vitro that THs allow NSC determination in neuronal precursors, whereas a short hypothyroidism favors glial determination. Transthyretine, a TH binding protein, is specifically present in the SVZ cells having a neuronal fate, while type 3 deiodinase, a TH inhibitor, is expressed by oligodendrocyte precursor cells (OPCs). These results indicate that THs signaling isdifferentially activated in neuronal and glial cell lineages. I observed that cells adopting a neuronal fate display a greater mitochondrial activity when compared to OPCs, and that TH signaling favors mitochondrial respiration and ROS production in the SVZ cells. Inhibiting the mitochondrial respiratory chain prevents TH-mediated promotion of neuronal determination, proving the need of mitochondrial activation for NSC commitment toward a neuronal phenotype. Besides, it is also known that modifications of mitochondrial morphology (or mitochondrial dynamics) are required for the respiration to increase. Among mitochondrial dynamics, fission is crucial for a good intracellular repartition of energy production, and for cell migration. In the SVZ cells, I showed that, DRP1, the main inducer of mitochondrial fission, is activated by THs mainly in cells adopting a neuronal fate. Thus, THs favor NSC fate choice toward a neuronal phenotype through the activation of mitochondrial metabolism and mitochondrial fission in the adult mouse SVZ.
58

Rôle des facteurs chromatiniens PRC1 dans la robustesse des programmes de différenciation neuronaux chez C. elegans / Role of PRC1 chromatin factors in the robustness of neuronal differentiation programs in C. elegans

Bordet, Guillaume 16 October 2017 (has links)
L’acquisition et le maintien de l’identité d’un neurone sont assurés par des facteurs de transcription terminaux exprimés durant toute la vie du neurone. Cependant le processus d’expression génique peut être très bruité. L’objectif de mon projet de thèse est de déterminer comment un neurone peut acquérir et maintenir son identité de manière fiable malgré ce bruit intrinsèque, en utilisant le modèle C. elegans. En combinant des techniques récentes d’ingénierie du génome par CRISPR et des méthodes d’imagerie quantitative in vivo, j’ai observé que l’expression endogène des facteurs de transcription terminaux est fortement bruitée. J’ai également établi que des mutations dans le complexe chromatinien PRC1 induisent une perte stochastique de l’identité de certains neurones au cours du temps. Le complexe PRC1 agit directement au sein des neurones. Il affecte le niveau d’initiation de l’expression des facteurs de transcription terminaux durant l’embryogenèse ainsi que la fiabilité de la maintenance de leur expression aux stades larvaires et adultes. En conclusion, mon travail suggère que le complexe PRC1 joue un rôle important dans la protection des neurones contre le bruit génique, les aidant ainsi à acquérir et maintenir de manière fiable leur identité. / The acquisition and maintenance of neuronal identity is driven by terminal transcription factors expressed throughout the life of the neuron. However, the gene expression process can be noisy. The aim of my PhD work is to determine how a neuron can acquire and maintain its identity in a reliable manner despite this intrinsic noise, using C. elegans as a model system. Combining recent techniques of genome engineering by CRISPR with in vivo quantitative imaging, I observed that the endogenous expression of terminal transcription factors is highly noisy. I also established that mutations in the chromatin complex PRC1 induce a stochastic loss of the identity of some neurons over time. The PRC1 complex directly acts in the neurons. It affects the levels of initiation of the terminal transcription factors during embryogenesis as well as the reliability of their maintenance at larval and adult stages. To conclude, my work suggests that the PRC1 complex plays an important role to protect neurons against gene expression noise, helping them to acquire and maintain their identity in a reliable manner.
59

Caractérisation des premières étapes de différenciation des cellules hématopoïétiques à l'échelle de la cellule unique / Characterisation of the first step of hematopoietic cell differentiation at the single cell level

Moussy, Alice 31 October 2017 (has links)
Bien que largement étudiés, les mécanismes fondamentaux de prise de décision dans les processus de différenciation cellulaire restent mal compris. Les théories déterministes, souvent basées sur des études populationnelles, atteignent rapidement leur limite lorsqu’il s’agit d’expliquer les différences de choix individuels de cellules, pourtant exposées au même environnement. L’objectif de ma thèse est donc d’étudier les premières étapes de la différenciation des cellules hématopoïétiques à l’échelle de la cellule unique, par des analyses transcriptomiques, protéomiques et morphologiques. Ce travail a été effectué sur deux modèles de différenciation : les lymphocytes T régulateurs et les cellules CD34+ humaines issues de sang de cordon. Nous avons observé le comportement de ces cellules uniques après stimulation. Grâce à la combinaison de la microscopie en time lapse et des analyses moléculaires réalisées à l’échelle de la cellule individuelle, nous avons pu démontrer que le choix du devenir cellulaire n’était pas unique, programmé. La cellule passe d’abord par un état dit « multi-primed », métastable où elle exprime des gènes de plusieurs lignées différentes, puis elle passe par une phase dite « incertaine », instable où elle hésite entre deux phénotypes avant de se stabiliser dans un état fixe. Nos observations sont cohérentes avec une explication stochastique de la prise de décision. La différenciation serait donc un processus spontané, dynamique, fluctuant et non un processus prédéterminé. Les décisions du destin cellulaire sont prises séparément par les cellules individuelles. / Despite intensively studies, the fundamental mechanisms of cell fate decision during cellular differentiation still remain unclear. The deterministic mechanisms, often based on studies of large cell populations, cannot explain the difference between individual cell fates choices placed in the same environment. The aim of my thesis work is to study the first steps of hematopoietic cell differentiation at the single cell level thanks to transcriptomic, proteomic and morphological analyses. Two differentiation models have been used: T regulatory lymphocytes and human cord blood-derived CD34+ cells. The behavior of individual cells following stimulation has been analyzed. Using time-lapse microscopy coupled to single cell molecular analyses, we could demonstrate that the cell fate choice is not a unique, programmed event. First, the cell reaches a metastable “multi-primed” state, which is characterized by a mixed lineage gene expression pattern. After transition through an “uncertain”, unstable state, characterized by fluctuations between two phenotypes, the cell reaches a stable state. Our observations are coherent with a stochastic model of cell fate decision. The differentiation is likely to be a spontaneous, dynamic, fluctuating and not a deterministic process. The cell fate decisions are taken by individual cells.
60

Diferenciační plasticita hematopoetických buněk / Differentiation plasticity of hematopoietic cells

Polgárová, Kamila January 2019 (has links)
Hematopoiesis has been for many years seen as a straightforward process based on sequential restriction of cell fate potential leading to production of mature blood cells. In the last decade, however, several works documented an unexpected plasticity of hematopoietic cells with expanded potential of myeloid development from lymphoid progenitors and vice versa. Under physiologic conditions hematopoiesis is tightly controlled and the definite cell fate is denominated by multiple factors that all lead to changes in regulatory networks that include transcription factors, epigenetic changes and post-transcriptional modulations. Any disruption of this strict regulation, caused by mutations or other events, affects the proliferation and lineage fidelity of hematopoietic precursors. This may lead to clonal growth of variable significance or leukemogenesis and may possibly affect the treatment sensitivity of the hematological malignancies. For better understanding of hematopoietic regulation we described gene expression changes during physiological development of lymphoid and myeloid lineages and in leukemic specimens using our own simplified real-time PCR based platform. We investigated expression of 95 genes connected with lymphoid and myeloid differentiation or with leukemogenesis in sorted hematopoietic...

Page generated in 0.0594 seconds