Spelling suggestions: "subject:"well aigration"" "subject:"well denigration""
381 |
Rho GTPases orchestrate flow-mechanical coupling and adaptive migration in endotheliumAndrade Cabrera, Santiago Patricio 19 January 2024 (has links)
In den letzten Jahren gab es Fortschritte im Verständnis der Gefäßbildung bei Ereignissen wie Keimen, Lumenbildung und Gefäßstabilisierung. Nach der Bildung eines primitiven Plexus ist die Gefäßoptimierung und hierarchische Umwandlung der morphologischen Gefäße in einen reifen Plexus durch vaskuläres "Pruning" wenig verstanden. Unterschiedliche Blutflussprofile in nebeneinander angeordneten Gefäßen können Asymmetrien in der Scherspannung verursachen, was die Zellmigration in Bereichen mit höherem Fluss fördert und die Destabilisierung von Segmenten mit geringem Fluss induziert. Diese Studie basiert auf der Hypothese, dass funktionelle Gefäßnetzwerke und Umbildung durch flussgesteuerte Endothelzellmigration ausgelöst werden. Wie die zelluläre Erfassung physikalischer Kräfte integriert ist, um Informationen zu übertragen und das Verhalten von Zellen zu modifizieren, ist noch unbekannt. Die Studie untersucht die Regulation und Koordination durch RhoGTPase-Signale während der kollektiven endothelialen Migration aufgrund von Flüssigkeitskräften. RhoGTPasen ermöglichen die räumlich-zeitliche Koordination, langfristige Anpassung an den Fluss und morphologische Umgestaltung. Beeinträchtigungen von RhoGTPasen zeigen Defekte bei Zellmigration und kollektiver Koordination in Umgebungen mit freiem Rand und strömungsgetriebener Migration. Die Studie erläutert den Einfluss der RhoGTPase-Regulation der Verbindungsdynamik in Verbindung mit der Aktinorganisation, die für die mechanische Kopplung und endotheliale Reaktionsfähigkeit erforderlich ist. Insgesamt betont die Studie die Relevanz der räumlich-zeitlichen RhoGTPase-Kontrolle und der Aufrechterhaltung der mechanischen Kopplung zwischen Strömung und Migration für die kollektive Koordination als Reaktion auf hämodynamische Kräfte. / In recent years, there have been significant advances in understanding how new vessels form during events like sprouting, lumen formation, and vessel stabilization. Yet, after the formation of a basic network, the crucial step of rearranging vessels into a mature structure, known as vascular pruning, needs further investigation. It's suggested that different blood flow profiles in nearby vessels create imbalances in shear stress, leading to cell migration toward higher flow regions, destabilizing low-flow segments, and causing the collapse of redundant segments. This study, in line with existing literature, proposes that functional vascular networks and remodeling result from the flow-driven migration of endothelial cells. However, how cells precisely sense physical forces to regulate their behavior and coordinate migration in response to flow remains unknown. I explore the regulation and coordination of Rho GTPases during collective endothelial migration under fluid forces. Rho GTPases' coordination allows long-term adaptation to flow and morphological remodeling. Impairments in Rho GTPases reveal defects in cell migration and collective coordination during free-edge and flow-driven migration. Finally, I explain how Rho GTPases' regulation influences junctional dynamics and actin organization, crucial for mechanical coupling and endothelial responsiveness to flow. Overall, this study emphasizes the importance of controlling Rho GTPases over time and maintaining mechanical coupling between flow and migration for collective coordination in response to fluid forces.
|
382 |
Effect of PAK Inhibition on Cell Mechanics Depends on Rac1Mierke, Claudia Tanja, Puder, Stefanie, Aermes, Christian, Fischer, Tony, Kunschmann, Tom 03 April 2023 (has links)
Besides biochemical and molecular regulation, the migration and invasion of cells
is controlled by the environmental mechanics and cellular mechanics. Hence, the
mechanical phenotype of cells, such as fibroblasts, seems to be crucial for the
migratory capacity in confined 3D extracellular matrices. Recently, we have shown
that the migratory and invasive capacity of mouse embryonic fibroblasts depends on
the expression of the Rho-GTPase Rac1, similarly it has been demonstrated that the
Rho-GTPase Cdc42 affects cell motility. The p21-activated kinase (PAK) is an effector
down-stream target of both Rho-GTPases Rac1 and Cdc42, and it can activate via the
LIM kinase-1 its down-stream target cofilin and subsequently support the cell migration
and invasion through the polymerization of actin filaments. Since Rac1 deficient cells
become mechanically softer than controls, we investigated the effect of group I PAKs
and PAK1 inhibition on cell mechanics in the presence and absence of Rac1. Therefore,
we determined whether mouse embryonic fibroblasts, in which Rac1 was knockedout,
and control cells, displayed cell mechanical alterations after treatment with group I
PAKs or PAK1 inhibitors using a magnetic tweezer (adhesive cell state) and an optical
cell stretcher (non-adhesive cell state). In fact, we found that group I PAKs and Pak1
inhibition decreased the stiffness and the Young’s modulus of fibroblasts in the presence
of Rac1 independent of their adhesive state. However, in the absence of Rac1 the
effect was abolished in the adhesive cell state for both inhibitors and in their nonadhesive
state, the effect was abolished for the FRAX597 inhibitor, but not for the IPA3
inhibitor. The migration and invasion were additionally reduced by both PAK inhibitors
in the presence of Rac1. In the absence of Rac1, only FRAX597 inhibitor reduced their
invasiveness, whereas IPA3 had no effect. These findings indicate that group I PAKs
and PAK1 inhibition is solely possible in the presence of Rac1 highlighting Rac1/PAK I
(PAK1, 2, and 3) as major players in cell mechanics.
|
383 |
Novel Roles of RNase L in Prostate CancerDayal, Shubham 18 October 2017 (has links)
No description available.
|
384 |
Protein Kinase C-δ and Protein Kinase C-ε Cooperatively Enhance Epithelial Cell Spreading via Transactivation of Epidermal Growth Factor Receptor and Actin-Dependent Phosphorylation of Focal Adhesion-Associated ProteinsSong, Jaekyung Cecilia January 2005 (has links)
No description available.
|
385 |
Modulation of Human Dendritic Cell Activity by Adsorbed Fibrin(ogen)Thacker, Robert I. January 2008 (has links)
No description available.
|
386 |
CYTOKINE MODULATION OF PROGENITOR CELL MIGRATIONPunia, Navneet 10 1900 (has links)
<p><strong>Rationale: </strong>Lung-homing of bone marrow (BM)-derived progenitor cells is associated with inflammatory and remodeling changes in asthma. Stromal cell derived factor-1α (SDF-1α) is a potent progenitor cell chemoattractant and its local production in the lung promotes lung homing of progenitor cells. The role of pro-inflammatory cytokines in promoting traffic of progenitor cells to the site of inflammation in asthma has not been investigated. The TH2 cytokines, interleukin (IL)-4 and IL-13, are key regulators of asthma pathology.</p> <p><strong>Objective: </strong>To investigate the role of IL-4 and IL-13 in modulating the trans-migrational responses of hemopoietic progenitor cells (HPC).</p> <p><strong>Methods: </strong>HPC were isolated from cord blood (CB) and peripheral blood (PB) and migrational and adhesive responses were assessed using transwell migration assays and adhesion to fibronectin-coated wells, respectively. Responding cells were enumerated by flow cytometry.</p> <p><strong>Results: </strong>IL-4 and IL-13 had no direct effect on progenitor cell migration. Pre-incubation with each of these cytokines primed SDF-1α stimulated migration of CB and PB-derived HPC (CD34+45+ cells) but not eosinophil-lineage committed progenitors (CD34+45+IL- 5Rα+ cells) or mature eosinophils to SDF-1α. For HPC, priming effects of IL-4 (0.1ng/ml) and IL-13 (0.1ng/ml) were detectable within 1hr and optimal at 18hr post- incubation and IL-4 was the more effective priming agent. Disruption of lipid rafts inhibited IL-4 priming of SDF-1α stimulated migration of HPC indicating that increased incorporation of CXCR4 into membrane lipid rafts mediates the cytokine primed migrational response of HPC. This was confirmed by confocal fluorescent microscopy.</p> <p><strong>Conclusions: </strong>IL-4 and IL-13 prime the migrational response of HPC to SDF-1α by enhancing the incorporation of CXCR4 into lipid rafts. The priming effect of these cytokines is specific to primitive HPC. These data suggest that increased local production of IL-4 and IL-13 within the lungs may promote increased SDF-1α mediated homing of BM-derived HPC to the airways in asthma.</p> / Master of Science in Medical Sciences (MSMS)
|
387 |
3D Coiling at the Protrusion Tip: New Perspectives on How Cancer Cells Sense Their Fibrous SurroundingsMukherjee, Apratim 24 May 2021 (has links)
Cancer metastasis, the spread of cancer from the primary site to distant regions in the body, is the major cause of cancer mortality, accounting for almost 90% of cancer related deaths. During metastasis, cancer cells from the primary tumor initially probe the surrounding fibrous tumor microenvironment (TME) prior to detaching and subsequently migrating towards the blood vessels for further dissemination. It has widely been acknowledged that the biophysical cues provided by the fibrous TME greatly facilitate the metastatic cascade. Consequently, there has been a tremendous wealth of work devoted towards elucidating different modes of cancer cell migration. However, our knowledge of how cancer cells at the primary tumor site initially sense their fibrous surroundings prior to making the decision to detach and migrate remains in infancy. In part, this is due to the lack of a fibrous in vitro platform that allows for precise, repeatable manipulation of fiber characteristics. In this study, we use the non-electrospinning, Spinneret based Tunable Engineered Parameters (STEP) technique to manufacture suspended nanofiber networks with exquisite control on fiber dimensions and network architecture and use these networks to investigate how single cancer cells biophysically sense fibers mimicking in vivo dimensions. Using high spatiotemporal resolution imaging (63x magnification/1-second imaging interval), we report for the first time, that cancer cells sense individual fibers by coiling (i.e. wrapping around the fiber axis) at the tip of a cell protrusion. We find that coiling dynamics are mediated by both the fiber curvature and the metastatic capacity of the cancer cells with less aggressive cancer cells showing diminished coiling. Based on these results, we explore the possibility of using coiling in conjunction with other key biophysical metrics such as cell migration dynamics and forces exerted in the development of a genetic marker independent, biophysical predictive tool for disease progression. Finally, we identify the membrane curvature sensing Insulin Receptor tyrosine kinase Substrate protein of 53 kDa (IRSp53) as a key regulator of protrusive activity with IRSp53 knockout (KO) cells exhibiting significantly slower protrusion dynamics and diminished coil width compared to their wild-type (WT) counterparts. We demonstrate that the hindered protrusive activity ultimately translates to impaired contractility, alteration in the nucleus shape and slower migration dynamics, thus highlighting the unique role of IRSp53 as a signal transducer – linking the protrusive activity at the cell membrane to changes in cytoskeletal contractility. Overall, these findings offer novel perspectives to our understanding of how cancer cells biophysically sense their fibrous surroundings. The results from this study could ultimately pave the way for elucidating the precise fiber configurations that either facilitate or hinder cancer cell invasion, allowing for the development of new therapeutics in the long term that could inhibit the metastatic cascade at a relatively nascent stage and yield a more promising prognosis in the perennial fight against cancer. / Doctor of Philosophy / Cancer is a leading cause of death worldwide. Almost ninety percent of cancer related deaths arise from the spreading of cancer cells from the primary tumor site to secondary sites in the body – a processed termed as metastasis. The environment surrounding a tumor (tumor microenvironment) is highly fibrous in nature and can assist in the metastatic process by providing biophysical cues to the cells at the tumor boundary. These cells sense the presence of the surrounding fibers by extending "arms" termed as protrusions, and then eventually detach from the primary tumor and start migrating through the fibrous microenvironment. While numerous studies have investigated the various modes of cell migration in fibrous environments, there is very little information regarding how cancer cells use protrusions to initially sense the fibers prior to detaching. In this study, we used the Spinneret based Tunable Engineered Parameters (STEP) technique to manufacture suspended nanofiber networks with robust control on fiber diameter and network architecture and use these networks to systematically investigate how single cancer cells biophysically sense fibers that mimic in vivo dimensions. We discovered that cancer cells sense individual fibers by "wrapping-around" the axis of the fiber at the tip of the protrusion – a phenomenon we refer to as coiling. We found both the fiber diameter as well as the invasive capacity of cells can influence the coiling mechanics. Based on these results, we explored the use of coiling in conjunction with other key biophysical metrics such as the cell migration speed and how much force a cell can exert to develop a biophysical predictor for cancer cell aggressiveness. Finally, given that cells sense the fiber curvature by coiling, we explored the role of a key curvature sensing protein Insulin Receptor tyrosine kinase Substrate protein of 53 kDa (IRSp53) in mediating coiling activity and found that knocking out (KO) IRSp53 results in reduced coiling and slower protrusions compared to wild-type (WT) cells. Furthermore, IRSp53 KO cells showed impaired contractility which led to an alteration in the nucleus shape and slower migration dynamics thus highlighting the role of IRSp53 in linking changes at the cell membrane to the underlying cell cytoskeleton. The results from this study could ultimately help us understand what type of fiber conditions around a primary tumor would either help or delay the emergence of the tumor boundary cells and thus allow for the development of therapeutics that could significantly slow down the metastatic process at a relatively early stage.
|
388 |
Étude ultrastructurale et développementale du récepteur EphA4 dans l’hippocampe du ratTremblay, Marie-Eve 03 1900 (has links)
Afin de mieux comprendre l’évolution des fonctions du récepteur EphA4 pendant le
développement du système nerveux central (SNC), nous avons étudié sa localisation
cellulaire et subcellulaire dans l’hippocampe du rat, d’abord chez l’adulte, puis pendant le
développement postnatal, ainsi que ses rôles potentiels dans la genèse, la migration ou la
maturation des cellules granulaires dans l’hippocampe adulte. Pour ce faire, nous avons
utilisé la méthode d’immunocytochimie en microscopie photonique, électronique et
confocale.
En microscopie photonique, une forte immunoréactivité (peroxydase/DAB) pour
EphA4 est observée aux jours 1 et 7 suivant la naissance (P1 et P7) dans les couches de
corps cellulaires, avec un marquage notamment associé à la surface des corps cellulaires
des cellules granulaires et pyramidales, ainsi que dans les couches de neuropile du gyrus
dentelé et des secteurs CA3 et CA1. L’intensité du marquage diminue progressivement
dans les couches de corps cellulaires, entre P7 et P14, pour devenir faible à P21 et chez
l’adulte, tandis qu’elle persiste dans les couches de neuropile, sauf celles qui reçoivent des
afférences du cortex entorhinal. En microscopie électronique, après marquage à la
peroxydase/DAB, EphA4 décore toute la surface des cellules pyramidales et granulaires, du
corps cellulaire jusqu’aux extrémités distales, entre P1 et P14, pour devenir confiné aux
extrémités synaptiques, c’est-à-dire les terminaisons axonales et les épines dendritiques, à
P21 et chez l’adulte. À la membrane plasmique des astrocytes, EphA4 est redistribué
comme dans les neurones, marquant le corps cellulaire et ses prolongements proximaux à
distaux, à P1 et P7, pour devenir restreint aux prolongements périsynaptiques distaux, à
partir de P14. D’autre part, des axones en cours de myélinisation présentent souvent une
forte immunoréactivité punctiforme à leur membrane plasmique, à P14 et P21. En outre,
dans les neurones et les astrocytes, le réticulum endoplasmique, l’appareil de Golgi et les
vésicules de transport, organelles impliquées dans la synthèse, la modification posttraductionnelle
et le transport des protéines glycosylées, sont aussi marqués, et plus intensément chez les jeunes animaux. Enfin, EphA4 est aussi localisé dans le corps cellulaire et les dendrites des cellules granulaires générées chez l’adulte, au stade de maturation où elles expriment la doublecortine (DCX). De plus, des souris adultes knockouts pour EphA4 présentent des cellules granulaires DCX-positives ectopiques, c’est-à-dire positionnées en dehors de la zone sous-granulaire, ce qui suggère un rôle d’EphA4 dans la régulation de leur migration.
Ces travaux révèlent ainsi une redistribution d’EphA4 dans les cellules neuronales
et gliales en maturation, suivant les sites cellulaires où un remodelage morphologique
s’effectue : les corps cellulaires lorsqu’ils s’organisent en couches, les prolongements
dendritiques et axonaux pendant leur croissance, guidage et maturation, puis les épines
dendritiques, les terminaisons axonales et les prolongements astrocytaires distaux associés
aux synapses excitatrices, jusque chez l’adulte, où la formation de nouvelles synapses et le
renforcement des connexions synaptiques existantes sont exercés. Ces localisations
pourraient ainsi correspondre à différents rôles d’EphA4, par lesquels il contribuerait à la
régulation des capacités plastiques du SNC, selon le stade développemental, la région, l’état
de santé, ou l’expérience comportementale de l’animal. / To gain more insight into the various functions of EphA4 receptor during the
development of the central nervous system (CNS), we have characterized its cellular and
subcellular localization in the rat hippocampus, first in the adult, and second during the
postnatal development. We have also examined its potential roles in the genesis, migration,
or maturation of the granule cells in the adult hippocampus. For that purpose, we have used
immunocytochemistry in light, electron, and confocal microscopy.
At the light microsocpic level, a strong EphA4 immunoreactivity (peroxidase/DAB)
is observed at postnatal days 1 and 7 (P1 and P7) in the cell body layers, with a labeling
notably associated with the surface of pyramidal and granule cell bodies, as well as in the
neuropil layers of CA3, CA1, and dentate gyrus regions. The intensity of the labeling
diminishes progressively in the cell body layers, between P7 and P14, to become weak at
P21 and in the adult, while it persists in the neuropil layers, except in those receiving inputs
from the entorhinal cortex. At the electron microscopic level, after peroxidase/DAB
labeling, EphA4 covers the entire surface of pyramidal and granule cells, from the cell body
to the distal extremities, between P1 and P14, but becomes restricted to the synaptic
extremities, i.e. the axon terminals and dendritic spines, at P21 and in the adult. At the
plasma membrane of astrocytes, EphA4 is redistributed as in neurons, from the cell body
and proximal to distal processes, at P1 and P7, to the distal perisynaptic processes, at P14
and older ages. In addition, axons in the process of myelination present strong punctiform
immunoreactivity at their plasma membrane, at P14 and P21. Moreover, in neurons and
astrocytes, the endoplamic reticulum, Golgi apparatus, and transport vesicles, organelles
involved in the synthesis, post-translational modifications, and transport of glycosylated
proteins, are also labeled, and also more intensely in younger animals. Lastly, EphA4 is
located in the cell body and dendrites of adult-generated granule cells, at the stage of
maturation where they express doublecortin (DCX). In addition, EphA4 adult knockout
mice display DCX-positive granule cells in an ectopic position, outside of the subgranular
zone, suggesting a role for EphA4 in the regulation of their migration.
This work thus reveals a redistribution of EphA4 in neuronal and glial cells, in the
cellular sites where cellular motility occurs during their maturation: the cell bodies when
they position and organize themselves into layers, the dendritic and axonal processes during
their growth, guidance, and maturation, and the dendritic spines, axon terminals, and distal
astrocytic processes when synapses are formed or strengthened. These locations could thus
reflect different roles for EphA4, similarly associated with the regulation of plasticity in the
CNS, according to the stage of development, the region, the CNS integrity, or the
behavioural experience of an animal.
|
389 |
ARF1 contrôle la migration des cellules hautement invasives du cancer du sein via Rac1Lewis-Saravalli, Sebastian 12 1900 (has links)
Dans un contexte où la forte prévalence du cancer du sein chez les femmes demeure depuis plusieurs années un enjeu de société majeur, les nouvelles stratégies visant à réduire la mortalité associée à cette maladie sont le sujet de nombreuses recherches scientifiques. Les facteurs d’ADP-ribosylation sont des petites protéines G monomériques importantes pour la réorganisation du cytosquelette d’actine, le remodelage des lipides membranaires et la formation de vésicules. Notre laboratoire a précédemment montré qu’ARF1 est surexprimée dans les cellules hautement invasives du cancer du sein et contribue à leur phénotype migratoire accru. Dans le cadre de ce mémoire, nous avons défini le rôle de cette GTPase dans la migration de telles lignées cellulaires. Pour ce faire, nous avons étudié le rôle d’ARF1 dans l’activation de Rac1, un membre de la famille des GTPases Rho connu pour son implication dans la formation de lamellipodes ainsi que dans la migration cellulaire. Globalement, nous avons déterminé que l’activation d’ARF1 permet l’activation subséquente de Rac1 ainsi que de la voie de signalisation nécessaire au processus de migration. Par une approche d’interférence à l’ARN dans les cellules MDA-MB-231, nous avons d’abord montré la contribution essentielle de Rac1 la migration dépendante d’ARF1. Puis, de façon à établir le mécanisme derrière cette régulation, nous avons montré que l’inhibition de l’expression endogène d’ARF1 altère l’activation de Rac1 dépendante de l’EGF. Nous avons ensuite examiné les conséquences d’une telle inhibition sur les partenaires d’interaction de Rac1. Nous avons découvert qu’ARF1 et Rac1 forment un complexe constitutif, puis qu’ARF1est nécessaire à l’association de Rac1 à IRSp53, une protéine importante dans la formation de lamellipodes. La translocation dépendante de l’EGF du complexe Rac1/IRSp53 à la membrane plasmique est également sous le contrôle d’ARF1. En conclusion, cette étude fournit un nouveau mécanisme par lequel ARF1 régule la migration cellulaire et identifie cette GTPase en tant que cible pharmacologique prometteuse pour freiner le développement des métastases chez les patients atteints du cancer du sein. / ADP-ribosylation factors (ARFs) are monomeric G proteins important for actin cytoskeleton reorganization, lipid membrane remodeling, and vesicule formation. Our laboratory has previously shown that ARF1 is overexpressed in highly invasive breast cancer cells and contribute to their enhanced proliferation and migration phenotype. In this study, we propose to define the role of ARF1 on the activation of Rac1, an important member of the Rho family of GTPases implicated in the formation of lamellipodia and in the migration process. Globally, we evaluated whether ARF1 activation could affect Rac1 activation and the signaling pathway necessary for cell migration. Using an RNAi approach in MDA-MB-231 breast cancer cells, we first determined the essential contribution of Rac1 in ARF1-dependant migration. Mechanistically, endogenous inhibition of ARF1 expression altered EGF-dependent Rac1 activation. We next investigated the consequences of such effect on Rac1 interaction partners. We showed that ARF1 and Rac1 are constitutively complexed but that ARF1 is necessary for EGF-dependent Rac1 association with IRSp53, an essential protein for lamellipodia formation. When unable to interact, Rac1/IRSp53 complex translocation to plasma membrane was considerably inhibited. In conclusion, this study provides a new mechanism by which ARF1 regulates cell migration and identifies this GTPase as a promising pharmacological target to reduce metastasis formation in breast cancer patients.
|
390 |
Avaliação da proliferação e migração celular mediadas pela ativação do EGFR em linhagens celulares de câncer de pulmão cultivadas como monocamadas e esferoides. / Evaluation of cell proliferation and migration mediated by EGFR activation in lung cancer cell lines grown as monolayers and spheroids.Lauand, Camila 23 October 2015 (has links)
O presente estudo comparou os efeitos da ativação e inibição do EGFR em duas linhagens de câncer de pulmão, cultivadas em monocamada ou esferoides. Os esferoides foram cultivados sem elementos de matriz extracelular. As células A549 e HK2 apresentaram, respectivamente, 3 e 6 cópias do gene ErbB1 por núcleo, embora a expressão de EGFR seja menor nas células HK2. A ativação de EGFR por EGF ou inibição por AG1478 não promoveu mudanças na proliferação celular. Entretanto, as células cultivadas em monocamada, estimuladas com EGF, exibiram alterações na disposição dos microfilamentos de actina e aumento na velocidade de migração celular. UO126 e LY294002 foram adicionados às culturas para inibir, respectivamente, as vias ERK e Akt. A linhagem A549, cultivada em monocamada, não apresentou envolvimento das vias de sinalização de ERK e Akt na migração celular induzida por EGF, mas foi observado o envolvimento dessas vias nos esferoides. Já a linhagem HK2 apresentou o envolvimento de Akt para promover a migração celular após estímulo com EGF nas duas formas de cultivo. / This study compared the effects of activation and inhibition of EGFR in two cell lines of lung cancer, grown in monolayer or spheroids. Spheroids were cultured without extracellular matrix components. HK2 and A549 cells showed, respectively, 3 and 6 ErbB1 gene copies per nucleus, while EGFR expression is lower in the HK2 cells. The activation by EGF or EGFR inhibition by AG1478 did not cause changes in cell proliferation. However, cells cultured in monolayers stimulated with EGF, showed changes in the arrangement of actin microfilaments and increased the speed of cell migration. UO126 and LY294002 were added to the cultures to inhibit, respectively, the ERK and Akt pathways. A549 cells grown in monolayer did not show involvement of ERK and Akt signaling pathways in the cell migration induced by EGF, but was observed involvement of such pathways in the spheroids. HK2 cells showed involvement of Akt to promote cell migration after EGF stimulation in monolayers and in spheroids.
|
Page generated in 0.1121 seconds