• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 65
  • 13
  • 1
  • Tagged with
  • 151
  • 151
  • 97
  • 87
  • 33
  • 33
  • 29
  • 24
  • 22
  • 21
  • 20
  • 19
  • 18
  • 18
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Cellules solaires hybrides à base de polymères et de nanofils de silicium fabriqués par dépôt chimique en phase vapeur assisté par plasma

Jeon, Taewoo 25 November 2013 (has links) (PDF)
Les cellules photovoltaiques proposent une solution au problème énergétique en raison de leur source inépuisable: le soleil. Plusieurs types de cellules, qu'elle soient inorganiques ou organiques, sont étudiées, avec comme objectif d'obtenir de hauts rendements pour de faibles coûts. Dans ce contexte, ce travail de thèse se propose d'étudier des cellules solaires hybrides nanostructurées à base de nanofils de silicium et de matériaux organiques afin de bénéficier des avantages de ces différents matériaux. La morphologie controlée de la croissance des nanofils de silicium par dépôt chimique en phase vapeur assisté par plasma (PECVD) via un procédé Vapeur-Liquide-Solide est présentée. Le mélange de matériaux organiques est ensuite déposé sur les nanofils de silicium par un procédé d'enduction par centrifugation. Dans ce type de cellules hybrides, les nanofils de silicium jouent le rôles de matériaux accepteurs ou aident à l'absorption de la lumière. Pour améliorer les performance de ces cellules, il est nécessaire d'optimiser la qualité du réseau de nanofils par une gravure chimique visant à éliminer les traces de catalyseur résiduelles ainsi que l'oxyde natif du silicium. Cet effet de la gravure a été largement étudié et discuté. De plus les propriétés d'accepteur d'électrons des nanofils de silicium à base de catalyseurs de Bismuth ont été étudiées. Les résultats montrent clairement le potentiel de ce type de cellules, notamment 1) l'augmentation de la conversion de lumière par l'amélioration de l'efficacité du rendement quantique pour les grandes longueurs d'onde, 2) l'utilisation d'une grande variété de nanofils avec des morphologies et propriétés électriques finement controlées.
102

Modélisation hors-équilibre des cellules solaires : effets quantiques au niveau nanométrique / Nonequilibrium modeling of solar cells : quantum effects at the nanoscale level

Nematiaram, Tahereh 07 June 2017 (has links)
Un défi mondial fondamental est de développer des technologies peu coûteuses et stables pour récolter efficacement l'énergie solaire et la transformer en formes pratiques. Ainsi pour la conversion photovoltaïque plusieurs générations de cellules solaires ont émergé. En général, on peut diviser les types existants de cellules solaires en deux classes distinctes: les photovoltaïques inorganiques conventionnels (IPV), comme les jonctions silicium p-n, et les cellules solaires excitoniques (XSCs). Selon le type de matériaux utilisés les cellules solaires excitoniques sont classées en deux catégories: les cellules solaires à colorant (DSC) et les cellules organiques (OPV) développées en couche unique, ou en bi-couche, et les hétérojonction en volume (BHJ). Les cellules solaires à base de points quantiques (QDSC) sont un autre type de cellules solaires qui ont une configuration similaire aux DSCs ou OPVs.Bien que la performance des cellules solaires excitoniques ait été un thème central de la communauté scientifique pendant de nombreuses années, des approches théoriques facilitant sa compréhension sont nécessaires. Les théories semi-classiques son inadaptées pour traiter les phénomènes quantiques dans les cellules solaires nano-structurées. De plus, en raison de l'attraction coulombienne entre les porteurs photo-générés, l'application du formalisme de la fonction de Green hors équilibre (NEGF) pose certaines difficultés. Par conséquent, dans cette thèse, nous développons un nouveau formalisme quantique, basé sur la théorie de la diffusion quantique et sur l'équation de Lippmann-Schwinger, pour fournir un cadre complet pour comprendre les processus fondamentaux intervenant dans le fonctionnement des cellules solaires excitoniques.En particulier, nous nous concentrons sur des aspects qui ont été peu pris en compte dans le passé et nous abordons, au travers d’un modèle à deux niveaux, l'interaction Coulombienne électron-trou à courte et à longue portée, la recombinaison électron-trou, l'existence de canaux d'évacuation supplémentaires, le couplage électron phonon et la formation de bandes polaroniques.Ici, les cellules solaires excitoniques à deux niveaux sont considérées dans les régimes permanents et transitoires d'injection de charge. Les photocellules moléculaires où le processus de conversion de l'énergie se déroule dans un seul complexe donneur-accepteur moléculaire attaché aux électrodes sont considérées comme étant représentatives des XSC dans le régime permanent. A titre d'exemple pour les dispositifs photovoltaïques dans le régime transitoire, nous considérons les cellules photovoltaïques organiques hétéro-jonctions massives (BHJ OPV) qui sont l'approche la plus courante des OPV et se composent d'espèces mixtes donneuses et accepteuses. Dans ces systèmes, l'exciton créé par l'absorption des photons dans le côté donneur doit atteindre d'abord l'interface donneur-accepteur. A partir de ce moment, seulement un régime transitoire commence où les charges peuvent être séparées et injectées dans leurs côtés respectifs.Nous démontrons que la séparation du porteur de charge est un processus complexe qui est affecté par différents paramètres, tels que la force de l'interaction électron-trou et le taux de recombinaison non radiative. En outre, en fonction de la structure de la cellule, l'interaction électron-trou peut normalement diminuer ou augmenter anormalement l'efficacité. Le modèle proposé aide à comprendre les mécanismes des cellules solaires excitoniques, et il peut être utilisé pour optimiser leur rendement. / A fundamental global challenge is to develop an inexpensive, stable and scalable technology for efficiently harvesting solar photon energy and converting it into convenient forms. Photovoltaic energy conversion is attracting great attention such that several generations of solar cells have emerged. The existing types of solar cells roughly fall into two distinct classes: conventional inorganic photovoltaics (IPVs), such as silicon p-n junctions, and excitonic solar cells (XSCs). The mechanistic distinction of IPVs and XSCs results in fundamental differences in their photovoltaic behavior.According to the type of materials used in their structure, excitonic solar cells are classified into two categories: dye-sensitized solar cells (DSC) and organic photovoltaics (OPV) developed in single-layer and bi-layer including planar and bulk hetero--junction configurations. Quantum dot solar cells (QDSC) are another type of solar cells that have a similar configurations to DSCs or OPVs.While understanding the performance of excitonic solar cells has been a central effort of the scientific community for many years, theoretical approaches facilitating the understanding of electron-hole interaction and recombination effects on the cell performance are needed. Semiclassical theories are inefficient tools to treat quantum phenomena in nano-structured solar cells, and on the other hand, due to the Coulomb attraction between the photo generated carriers, the application of standard Non-Equilibrium Green Function (NEGF) formalism presents some difficulties although some specific methods allow to circumvent this problem.In this thesis we develop a new quantum formalism, which is based on quantum scattering theory and on the Lippmann-Schwinger equation, to provide a comprehensive framework for understanding the fundamental processes taking place in the operation of excitonic solar cells. Considering simple two-level models we address important effects such as the short--range and long--range electron--hole Coulomb interaction, the electron--hole recombination, the existence of extra evacuation channels, and the electron--phonon coupling and polaronic bands formation.Here, the two-level excitonic solar cells are considered in the permanent and transitory regimes of charge injection. The molecular photocells where the energy conversion process takes place in a single molecular donor-acceptor complex attached to electrodes are considered as a representative of XSCs in the permanent regime. As an example for the photovoltaic devices in the transitory regime, we consider the bulk hetero--junction organic photovoltaic cells (BHJ OPVs) which are the most common approach to OPVs and consists of mixed donor and acceptor species that form interpenetrating connective networks. In these systems the exciton created by the photon absorption in the donor side must reach first the donor--acceptor interface. From this moment only a transitory regime begins where the charges can be separated and injected in their respective sides.We demonstrate that the charge carrier separation is a complex process that is affected by different parameters, such as the strength of the electron--hole interaction and the non--radiative recombination rate. Furthermore, depending on the cell structure, the electron-hole interaction can normally decrease or abnormally increase the cell efficiency. The proposed model helps to understand the mechanisms of excitonic solar cells, and it can be used to optimize their yield.
103

Étude de deux nouvelle approches pour la réalisation de cellule solaire à base d’InGaN / Investigation of new approaches for the realization of InGaN based solar cells

Arif, Muhammad 19 July 2016 (has links)
Ce travail s’inscrit dans le cadre du développement de nouvelles applications des matériaux III-Nitrure en général, et de l’alliage InGaN en particulier, pour la réalisation de cellules solaires à base de multi-jonction. Les nombreux avantages du matériau InGaN, à savoir son coefficient d’absorption élevé (105 cm−1), sa résistance thermique élevée, et sa tolérance aux radiations ainsi que sa bande interdite couvrant presque tout le spectre solaire (0.64 - 3.4eV), en font un sérieux candidat pour les dispositifs photovoltaïques. Ainsi une cellule solaire à quadruple jonctions permettrait l’obtention d’une efficacité au-delà de 50%. Cependant, les enjeux technologiques tels que la séparation de phase, le manque de substrat approprié donnant lieu à de forte densité de dislocations, et la difficulté de réalisation du dopage de type-p, sont considérés comme des obstacles pour atteindre les performances attendues. L’objectif de ce travail est d’étudier deux nouvelles approches qui peuvent résoudre les problèmes cités précédemment pour la réalisation de cellules solaires de haute efficacité à base d’InGaN. La première approche est dite approche "semibulk". Elle consiste à élaborer une structure multicouches InGaN/GaN épaisse avec une optimisation de l’épaisseur de chaque couche (InGaN et GaN), de façon que les couches de GaN soient suffisamment épaisses pour être efficaces, et assez mince pour permettre le transport des porteurs de charges par effet tunnel. Les couches InGaN quant à elles, doivent être assez épaisses et nombreuses afin d’absorber efficacement le rayonnement lumineux et suffisamment minces pour éviter la relaxation et l’apparition de dislocations. La deuxième approche consiste en la croissance de nanostructures InGaN qui autorise une incorporation d’indium élevée avec un matériau complètement relaxé et sans dislocation. La complète relaxation du matériau permet en outre de s’affranchir de l’effet piézoélectrique qui conduit à une chute du rendement. Nous avons pu démontrer que les cellules photovoltaïques à base d’In0.08Ga0.92N réalisées suivant l’approche "semibulk" présentent un pic de rendement quantique de 85%, ainsi qu’une efficacité de conversion en conditions AM 1.5G, presque trois fois plus élevée que l’état de l’art. Les premiers résultats obtenus sur les cellules photovoltaïques à base de nanostructures d’In0.08Ga0.62N sont très encourageants / The InGaN material system, with high absorption coefficient (105 cm−1) and a bandgap from 0.64 eV to 3.4 eV spanning the entire visual spectrum, make the development of all-InGaN multijunction solar cells with overall conversion efficiency larger than 50% theoretically possible. However, to reach this goal high-quality and thick InGaN layers with high indium concentration are required, which is not a trivial task. Studies of InGaN-based junctions with an indium mole fraction exceeding 0.3 are rare due to issues such as strong phase separation and relaxation of the layer due to lattice mismatch with the substrate which lead to InGaN layers with large dislocation density and indium-clustering. These material problems, significantly limit the performance of InGaN-based photovoltaic cells, and whatever the indium content, performance still remains far from the theoretical ones. The objective of this study is to investigate new approaches that may overcome the issues of phase separation and high dislocation density in InGaN materials with high indium concentration, for the realization of high efficiency InGaN based solar cells. Two novel approaches are proposed that may overcome the basic challenges involved in the InGaN hetero-junction solar cells. The first approach consists in the growth of a thick multi-layered InGaN/GaN absorber, called Semibulk. These GaN interlayers need to be thick enough to be effective and thin enough to allow carrier transport through tunneling. The InGaN layers need to be thick and numerous enough to absorb efficiently the incoming light beam, and thin enough to remain fully strained and without phase separation. The second approach consists in the growth of InGaN nano-structures to achieve high quality thick InGaN epitaxial layers with high indium concentration. It allows the elimination of the preexisting dislocations in the underlying template. It also allows strain relaxation of InGaN layers without any dislocations, leading to higher indium incorporation and reduced piezoelectric effect. The electro-optical characterization of semibulk In0.08Ga0.92N PV devices show a maximum external quantum efficiency (EQE) of 85%, which is the maximum EQE peak reported so far for an InGaN PIN heterojunction solar cell. The voltage dependence of the current density, under AM 1.5G solar spectrum for the semibulk In0.08Ga0.92N solar cells results in values of Jsc, Voc, fill factor (FF) and power conversion efficiency (PCE) as 0.57 mA/cm2, 1.04 V, 65% and 0.39% respectively. A comparison of the results to the literature show that the Jsc is four to five times of what has been reported for a bulk In0.08Ga0.92N PV structure. This value of Jsc lead to a PCE for the semibulk In0.08Ga0.92N-based PV cell which is at least three times higher than the PCE for the bulk In0.08Ga0.92N structure under AM 0 solar spectrum. For our second approach, high crystalline structural quality for InGaN nano-structures with 35% of indium concentration has been obtained. The electro-optical characterization for In0.09Ga0.91N nano-structure PV cells shows a significant enhancement in the performance of the devices. The PV devices result in a Jsc and Voc of 12 mA/cm2 and 1.89 V under concentrated light respectively
104

Etudes des propriétés physiques et chimiques de la surface des substrats de Silicium après découpe dans les applications aux cellules solaires photovoltaïques / Studies of the physical and chemical properties of the surface of the silicon substrate after cutting in applications to solar cells

Souidi, Ramzi 26 June 2018 (has links)
Pour l’industrie photovoltaïque (PV) l’optimisation de la découpe de lingot de silicium en tranches représente un enjeu à la fois économique et scientifique. Enjeu économique en ce qu’il est important de réduire la perte de matière induite par la découpe. Enjeu scientifique en ce qu’il est nécessaire de comprendre l’impact du sciage sur la qualité du silicium au voisinage de la surface. Ce travail de thèse de doctorat a pour objectif de caractériser la nature et l’extension de l’endommagement généré par une technique innovante de découpe réalisée à l’aide de fils diamantés. Un objectif majeur est d’évaluer l’épaisseur de la couche de silicium perturbée (appelée SSD). Afin de caractériser la SSD, des analyses physico-chimiques en fonction de la profondeur ont été réalisées d’une part, sur des échantillons bruts de découpe en surface, en coupes biaises ou transverses et d’autre part, par enlèvement progressif de matière par des attaques chimiques en solutions diluées. Des protocoles de préparation d’échantillons ainsi que de nombreuses techniques de caractérisation ont été utilisées. En particulier des techniques de microscopie (optique, confocale, électronique MEB et TEM), de spectroscopie de photoélectrons (XPS), de diffraction de rayons X (DRX), de spectroscopie Raman ainsi que des essais de résistances mécaniques aboutissent à une caractérisation multi-échelle des tranches et de coupons. Un polissage en coupes biaises avec un angle faible permet d’étendre la zone d’observation des défauts en profondeur et d’en faire une analyse statistique. De plus, des méthodes de mesure de durée de vie des porteurs minoritaires sont exploitées pour évaluer les processus de recombinaison sur la couche perturbée. Le temps de vie a été obtenu via la mesure de la décroissance de photoconductivité (PCD) sur des surfaces passivées par différents matériaux (SiNx :H, Al2O3) et procédés de dépôts (PECVD, ALD). D’abord, la caractérisation des échantillons bruts de découpe indique que les défauts majeurs de la SSD sont des fissures générées par la découpe et qui se propagent en subsurface. Ces fissures se distribuent sur des profondeurs variables et hétérogènes selon les conditions de découpe. Ensuite, les résultats de la méthode par enlèvement contrôlé montrent, d’une part, un effet de la SSD dans les processus de recombinaison. La précision d’évaluation de cet effet est conditionnée par des passivations de surface optimisées et des mesures fiables du temps de vie. D’autre part, ils montrent une interaction de l’attaque chimique avec les fissures. Ce dernier point est déterminant dans l’évaluation de l’épaisseur de la SSD globale pouvant impacter les performances des cellules solaires. / For photovoltaic industry (PV), the optimization of cutting silicon ingot into wafers represents both an economic and a scientific issue. Economic challenge in that it is important to reduce the loss of material induced by cutting. Scientific issue in that it is necessary to understand the impact of sawing on the quality of silicon near the surface. This PhD research work aims to characterize the nature and extent of the damage generated by an innovative cutting technique using diamond wires. A major objective is to evaluate the thickness of the subsurface damage layer (called SSD). In order to characterize the SSD, physical and chemical investigations as a function of depth were performed on either as-cut surface, bevel or transverse sectioned samples or by removal of material by sequential etching in diluted solutions. Sample preparation protocols as well as many characterization techniques were used. In particular microscopy techniques (optical, confocal, electronic SEM and TEM), photoelectron spectroscopy (XPS), X-ray diffraction (XRD), Raman spectroscopy and mechanical strength tests allow multiscale characterization of wafers and coupons. A low bevel angle polishing lets to extend the observation zone of deep defects and to make a statistical analysis. Furthermore, methods from measuring the minority carrier lifetime are used to evaluate the recombination processes on the disturbed layer. The lifetime was obtained by photoconductivity decay (PCD) measurements on SiNx: H and Al2O3 passivated surfaces obtained from PECVD and ALD deposition processes respectively. First, characterizing samples from as-cut wafers indicates that the major defects of the SSD are cracks generated by cutting and propagated into the subsurface. These cracks are distributed over varying and heterogeneous depths depending on the sawing conditions. Second, the results of the sequential removal method show, on the one hand, an effect of the SSD in recombination processes. The evaluation accuracy of this effect is conditioned by optimized surface passivation and reliable measurements of lifetime. On the other hand, an interaction of chemical attack with cracks is shown. This is crucial in the evaluation of the absolute thickness of SSD layer that may impact the solar cells performance.
105

Etude d'oxydes métalliques nanostructurés (ZnO,SnO2) pour applications photovoltaïques, notamment oxydes transparents conducteurs et cellules solaires à colorant / Investigation of nanostructured metallic oxides (ZnO, SnO2) for photovoltaic applications, namely transparent conductive oxides and dye solar cells

Rey, Germain 23 May 2012 (has links)
Les nanostructures d'oxydes métalliques jouent un rôle essentiel dans les cellules photovoltaïques à colorants, puisque ces matériaux permettent la réalisation du contact électrique transparent en face avant et de la photoanode. L'oxyde stannique (SnO2) et l'oxyde de zinc (ZnO) ont été employés respectivement, car leurs propriétés optiques, électroniques et structurales sont particulièrement bien adaptées aux cellules solaires à colorant. Le contact électrique transparent, obtenu par pyrolyse d'aérosol, se présente sous forme d'une couche mince de SnO2 dopé par du fluor composée de grains nanométriques. Les propriétés électriques et optiques de ce composant ont été optimisées en vue de son intégration dans des cellules à colorants. Une étude approfondie du transport électronique au sein de la couche a permis de quantifier l'influence des différents mécanismes de diffusion suivant les cas considérés. La photoanode a été réalisée, directement à la surface de la couche mince de SnO2, par dépôt chimique de nanofils de ZnO à partir de précurseurs en phase vapeur. Le diamètre et la densité surfacique des nanofils sont contrôlés respectivement par les conditions de croissance et le degré d'oxydation du substrat. Les photoanodes à base de nanofils ont été intégrées dans des cellules à colorant. La limitation des performances de ces cellules est due à la faible surface développée par le ZnO qui conduit à la fixation d'une trop faible quantité de colorant à la surface de ce dernier. Afin de remédier à ce problème, des nanoparticules de ZnO ont été élaborées par bain chimique à la surface des nanofils. Les cellules solaires à base de structures composites présentent des performances supérieures à celles réalisées à partir de nanofils ou de nanoparticules. Les photoanodes composites permettent d'obtenir à la fois un transport efficace des électrons et de développer une surface importante et de ce fait, elles présentent des performances prometteuses. / Metallic oxide nanostructures play a critical role in dye-sensitized solar cells as front transparent electrodes and photoanodes. The use of stannic oxide (SnO2) and zinc oxide (ZnO) have been motivated by their particularly suitable structural, electrical and optical properties for dye-sensitized solar cells. Fluorine doped-SnO2 transparent electrodes have been deposited by spray pyrolysis in the form of thin films and consist of nanoscale grains. Their optical and electrical properties have been optimized in order to integrate them into dye-sensitized solar cells. The electron transport has been investigated in details and the influence of each scattering mechanism has quantitatively been assessed. ZnO photoanodes have directly been grown on the SnO2 surface by chemical vapor deposition in the form of nanowires. The nanowire diameter and surface density have been controlled by the growth conditions and the substrate surface oxidation, respectively. The nanowire-based photoanodes have subsequently been integrated into dye-sensitized solar cells. The relatively low efficiency of these cells has been found to be due to the small ZnO surface area, which limits the amount of dye anchored to its surface. In order to circumvent this limitation, ZnO nanoparticles have been deposited on the nanowire surface by chemical bath deposition. The nanocomposite photoanodes lead to the fabrication of dye-sensitized solar cells with promising efficiency by combining both efficient electron transport and high developed surface area.
106

Synthèse de nanocristaux de type Chalcopyrite en vue d'applications en cellules solaires / Organic/inorganic hybrid thin films for multijunction solar cells

Lefrançois, Aurélie 28 October 2013 (has links)
Cette thèse porte sur l’étude de nanocristaux semi-conducteurs ternaires, et leur application dansdes cellules solaires hybrides organiques/inorganiques. Les nanocristaux semi-conducteurs absorbentla lumière à des longueurs d’ondes déterminées par leur taille et leur composition, et conduisent lescharges électriques. Ils sont stables en solution, ce qui permet un dépôt de couches minces à bascout. Aujourd’hui les meilleurs rendements en cellules solaires hybrides sont obtenus à partir de nanocristauxbinaires contenant soit du plomb, soit du cadmium. Les nanocristaux ternaires conserventles propriétés particulières des nanocristaux binaires tout en permettant de s’affranchir des élémentstoxiques. Cependant, leur synthèse reste à optimiser pour contrôler de leur structure cristalline et leurcomposition.Nous avons réalisé, par voie chimique, la synthèse de nanocristaux de CuInS2 de taille et de compositioncontrôlées. En suivant in situ la synthèse de ces nanocristaux par diffraction des rayons X sous rayonnementsynchrotron nous avons trouvé que les précurseurs s’organisent avant nucléation sous forme deplans espacés par deux longueurs du ligand utilisé (ici dodécanethiol, DDT). Cela impacte nucléationet croissance des nanocristaux. Les ligands stabilisent les nanocristaux en solution colloïdale, maisleur caractère isolant peut inhiber le transfert et le transport de charges. Le remplacement du ligandd’origine (DDT) par un ligand plus court, l’éthylhexanethiol (EHT), modifie les niveaux d’énergie etpermet d’augmenter la conductivité des films de nanocristaux. Nous avons intégré des nanocristauxde CuInS2 entourés d’EHT dans des cellules hybrides constituées d’un polymère conjugué (P3HT) etd’un fullerène (PCBM). L’efficacité des cellules solaires contenant des nanocristaux entourés d’EHTest significativement améliorée par rapport à celle des cellules de P3HT :PCBM réalisées dans lesmêmes conditions. Le transfert et la mobilité des charges sont étudiés par RPE sous éclairement etphoto-CELIV respectivement. De ces études il ressort que l’amélioration des cellules provient d’unemeilleure génération et dissociation des charges. / This work is devoted to the study of ternary semiconductor nanocrystals, and their application inhybrid organic/inorganic solar cells. Semiconductor nanocrystals absorb light at controlled wavelength(depending on their size and composition) and are able to transport charges. They form a colloidalsolution in organic solvent compatible with low-cost deposition in thin films. Nowadays, the bestefficiency for such hybrid solar cells is obtained with binary nanocrystals containing lead or cadmium.Ternary nanocrystals preserve the opticla and electronic properties of binary nanocrystals withoutrelying on toxic elements, but it is still a challenge to control their composition and structure.In this thesis, CuInS2 nanocrystals of controlled size and composition were syntesized. A study ofnucleation and growth was carried out by following the synthesis in situ with X-ray radiation at thesynchrotron. This has shown that precursors’ organize themselves into plans of atoms separated by twotimes the length of the ligand (here dodecanethiol, DDT). Ligands stabilize the nanocrystals in colloidalsolution, but their insulating character inhibits efficient charge transfer and transport. Ligand exchangewith ethylhexanethiol (EHT) improves the conductivity of thin films and changethe energetic level ofthe nanocrystals.We studied an approach of hybrid solar cell design, consisting in a bulk heterojunctionof two semiconductor organic components (P3HT and PCBM) and CuInS2 nanocrystals. The efficencyof the cells where nanocrystals are added are better than the one with only P3HT:PCBM. The chargetransfer and mobility was studied by the mean of light induced ESR and CELIV respectively. It hasshown that the improvement of the solar cell efficiency is mainly related to an improvement of thecharge generation and dissociation in the ternary blend.
107

Re-doped SnO2 oxides for efficient UV-Vis to infrared photon conversion : application to solar cells / Elaboration et caractérisation des oxydes transparents conducteurs dopés aux terres rares pour la conversion des photons pour le photovoltaïque

Bouras, Karima 31 March 2016 (has links)
Ce travail a porté sur la synthèse et caractérisations structurales, optiques et électriques des films d’oxyde d'étain (SnOx) dopés avec des éléments de terres rares (RE: Néodyme, Praséodyme ou Ytterbium). L’objectif est de démontrer la conversion de photons UV voire Visible en photons rouges via ces films RE :SnOx, tout en conservant leurs propriétés d’oxydes transparents conducteurs. Les films ont été produits par des méthodes chimiques (sol-gel, précipitation) ou physiques (pulvérisation cathodique). Grâce à des analyses fines, nous avons pu corréler les propriétés structurales et de composition des couches RE :SnOx avec leurs propriétés d’émission de photons. Nous avons pu établir les conditions optimales de conversion photonique dans des systèmes à une seule ou double terre rare. Les mécanismes régissant le transfert dans ces films ont été avancés. Enfin, nous avons appliqué ces couches minces RE :SnOx optimisés sur des cellules solaires en silicium et en CIGS et nous avons montré une amélioration des paramètres photovoltaïques du dispositif ainsi qu’un net gain dans la réponse spectrale de la cellule dans l’UV. / Spectral conversion using lanthanide doped materials with excellent performances is a great challenging topic and of particular interest for photovoltaic. This work aims at functionalizing transparent conductive oxide materials with rare earth elements for photons conversion purpose without affecting transparency and transport properties of the TCO. The spectral conversion targeted in this thesis is of type “down”, in other words, we aim at converting high energy UV photons into low energy visible or NIR photons useful to solar cells. For this purpose we investigated the doping process of SnO2 as a host material with different rare earths such as Nd, Tb, Pr, and Yb. To understand the insertion process and the optical activation of the rare earth, RE-doped SnO2 nanoparticles (powders) have been synthesised by two chemical methods: co-precipitation and sol-gel. The results have shown an efficient insertion of the RE into the SnO2 structure with excellent emission properties. In view of application of RE-doped SnOx thin films to solar cells, studies concerning NIR emitting RE have been conducted (Nd, Yb, and co-doping with Yb and Nd) using sputtering. Several deposition parameters and post deposition treatments have been done in order to find the best chemical environment favourable to the RE emission. We have precisely identified the region of the UV light converted into NIR photons and proposed several energy transfer mechanisms occurring between the host SnOx and the REs. In case of co-doping, a second spectral conversion process has been identified; visible photons can be efficiently converted into NIR photons through energy transfer from Nd3+ to Yb3+ ions. Finally, application of these conversion layers to solar cells such as CIGS and Si based have shown an improvement of the cells characteristics, among others the Field factor, the cell efficiency and the increase of the spectral response of the cell in the UV region, thanks to the conversion of the UV photons into NIR photons. The good electrical properties of the RE-doped SnOx layers have been highlighted as well. We believe that these conversion layers will provide a step ahead towards better solar cells performances.
108

Couches minces de chalcogénures de zinc déposées par spray-CVD assisté par rayonnement infrarouge pour des applications photovoltaïques / Zinc chalcogenides thin films deposited by infrared assisted spray-CVD for photovoltaic applications

Froger, Vincent 20 November 2012 (has links)
Parmi les différentes cellules photovoltaïques existantes, les technologies à base de CIGS représentent aujourd'hui une alternative sérieuse à celles basées sur le silicium. De même, les technologies organiques émergent en vue d'applications sur le marché de la faible puissance. Afin d'être parfaitement concurrentielle, ces cellules doivent s'affranchir au maximum de la présence d'indium (surcoût) au sein de leurs structures (TCO, couche absorbante), ou de matériaux toxiques comme le CdS utilisé en tant que couche tampon. Les chalcogénures de zinc tels que le Zn1-xMgxO ou le ZnOzS1-z peuvent être employées à la place du CdS grâce à leurs propriétés semi-conductrices. En dopant le Zn1-xMgxO par un ou plusieurs atomes métalliques trivalents, on peut également créer des électrodes transparentes (TCO) pouvant substituer les électrodes traditionnelles à base d'indium (ITO). Les couches minces synthétisées au cours de ce travail ont été réalisées par spray-CVD, une technique de dépôt hybride et innovante utilisant un mode de chauffage radiatif. Les améliorations apportées au réacteur expérimental et les avantages qu'elles dégagent en font une alternative crédible aux techniques traditionnelles. Les couches de Zn1-xMgxO ainsi synthétisées exhibent de très bonnes propriétés, dont une énergie de gap facilement ajustable, une forte mobilité électronique et une très bonne transparence. De même, des couches de ZnS ont été réalisées par l'usage d'un précurseur original, permettant de s'affranchir du ZnCl2 (corrosif) couramment utilisé en spray pyrolyse. Les différents TCO étudiés ont montré de faibles résistivités (10-3 Ω.cm) et ont pu être testés dans des cellules solaires organiques en structures inverses. / In the field of photovoltaic devices, organic and CIGS-based solar cells are both promising way to compete with silicon-based technologies for low and high power generation. In order to provide safe and cost-effective thin films for these devices, zinc chalcogenides layers represent interesting opportunities to replace indium (expensive) and cadmium-based (toxic) layers. Semiconductors like Zn1-xMgxO and ZnS had been synthesized using an infrared assisted spray-CVD apparatus. The interaction between an aerosol and the infrared radiation is the main innovation in this process and sparked off many advantages. With this simple, vacuum-free and chemical soft technique, Zn1-xMgxO thin films exhibit excellent optical transparency, high electrical conductivity and an easily band gap adjustment. The obtained properties, compared with those reported by other traditional techniques, classed infrared assisted spray-CVD as an interesting and promising alternative technique in order to deposit thin films for such applications. ZnS thin films had been prepared with an original chemical precursor which enable to work without ZnCl2, the traditional corrosive chemical precursor in spray pyrolysis. In addition to that, some transparent conductive oxides (TCO) had been investigated by doping ZnO and Zn1-xMgxO layers with aluminum and/or gallium. With a very high optical transparency and a resistivity as low as 10-3 Ω.cm, ZnO:Al exhibit workable properties as transparent electrodes. Indeed, inverted organic solar cells had been realized with those TCO and proved their well-functioning into such devices.
109

Characterization of Cu2ZnSnSe4 kesterite thin film solar cells : understanding of the fundamental material properties and quality control for process optimization and monitoring / Caractérisation des cellules solaires à base de couches minces kesterite Cu2ZnSnSe4 : compréhension des propriétés fondamentales des matériaux et contrôle de la qualité pour l'optimisation et le suivi des procédés de fabrication

Risch, Lisa Carina Mareike 12 December 2016 (has links)
Cette thèse porte sur la caractérisation des cellules solaires à base de couches minces de kesterite Cu2ZnSnSe4 (CZTSe). Au cours des dernières années, une attention croissante a été portée aux cellules solaires kesterite. En effet, Cu, Sn et Zn étant abondants dans la croûte terrestre, les technologies photovoltaïques à base de couches minces absorbantes de kesterite apparaissent comme un candidat prometteur pour la production à grande échelle et à faible coût de cellules solaires. Cependant, les cellules solaires kesterite souffrent d'un sévère déficit de la tension en circuit ouvert (Voc) par rapport aux autres technologies PV, résultant en un écart de performance significatif avec la technologie cousine à base de chalcopyrite (CIGS). Les meilleurs rendements reportés pour la technologie à base de couches minces CIGS sont 22,6%, alors que les cellules solaires kesterite restent en dessous de 13% de rendement. Comprendre les propriétés fondamentales des matériaux et cellules solaires kesterite et résoudre les difficultés liées à leur fabrication sont des points cruciaux pour améliorer les performances de cette technologie.Dans le cadre de cette thèse, différents mécanismes responsables des faibles valeurs de Voc des cellules kesterite ont été identifiés et caractérisés. Deux facteurs principaux y contribuent de manière significative: la recombinaison non radiative et le bandtailing. Ces phénomènes sont liés à la présence de phases secondaires et de défauts impactant l'hétérojonction p-n. Par conséquent, cette thèse se concentre sur la détection des phases secondaires et des défauts et le rôle de la couche tampon de type n. / The present thesis deals with the characterization of Cu2ZnSnSe4 (CZTSe) kesterite thin film solar cells. Over the last years, kesterite based devices have attracted growing attention. As Cu, Sn and Zn are earth-abundant metals, the kesterite compounds are promising candidates as absorber materials for the mass production of low-cost photovoltaic devices. However, kesterite solar cells suffer from a severe open circuit voltage (Voc) deficit in comparison with other PV technologies, resulting in a significant performance gap between thin film kesterite and chalcopyrite (CIGS) based devices. Best reported efficiencies for the related CIGS thin film technology are 22.6% at cell size and 17.9% for a commercial module – very close to the performance of Si solar cells – while kesterite solar cells remain below 13% power conversion efficiency. Understanding the fundamental properties of kesterite materials and devices and solving challenges associated with their fabrication are the key to improve device performances.In the framework of this thesis, different loss mechanisms related to the low Voc values of kesterite solar cells have been identified and characterized. Two major factors are thereby observed to be responsible for the significant Voc deficit: non-radiative recombination and band tailing. These aspects are related to the presence of secondary phases and defects that have a significant impact on the pn-heterojunction. Therefore, this thesis focuses on the detection of secondary phases and defects and the role of the n-type buffer layer.
110

Matériaux « uniques » pour cellules solaires organiques mono-composant / « Unique » materials for single-component organic solar cells

Labrunie, Antoine 18 December 2017 (has links)
Au cours des dernières années, le développement des cellules organiques à réseaux interpénétrés a permis d’améliorer les rendements de conversion photovoltaïque (PV). Ces dispositifs incorporent une couche active constituée d’un mélange d’un matériau donneur d’électron (D) et d’un matériau accepteur d’électron (A). La réalisation de ces cellules requiert une optimisation minutieuse de ce mélange et de la morphologie de cette couche photo-active qui en résulte. Cette dernière peut cependant évoluer spontanément vers une ségrégation de phase, généralement délétère pour les performances PV. Une solution possible, et relativement peu étudiée, consiste à lier chimiquement le donneur D et l’accepteur A par un espaceur non-conjugué. Les travaux décrits dans ce manuscrit portent sur la synthèse et la caractérisation d’assemblages moléculaires de type D-σ-A ainsi que leur utilisation comme matériau dit « unique » pour la fabrication de cellules solaires organiques mono composant. Une première famille de dyades et triades à base d’un bloc donneur de type quaterthiophène a été étudiée. Cette partie décrit la méthodologie générale d’assemblage des blocs D et A via une réaction de cycloaddition de type Huisgen. Au cours des chapitres suivant, plusieurs dyades basées sur un bloc donneur « push-pull » ont été synthétisées puis caractérisées. Les performances PV de ces composés ont été évaluées au sein de cellules solaires mono-composant et les meilleurs rendements de conversion, atteignant 1.4 %, rivalisent avec l’état de l’art. / Over the last few years, the development of bulk heterojunction organic solar cells (BHJ OSCs) led to significant increase in photovoltaic (PV) efficiency. Such devices are based on interpenetrated networks of an electron-donor material (D) and an electron-acceptor material (A) constituting the active layer. Nevertheless a careful optimization of the morphology is required to reach high power conversion efficiency. Furthermore, this optimized morphology can evolve towards spontaneous phase segregation which can be detrimental for the PV performances. To circumvent these limitations, a relatively unexplored approach relies on the use of a material where the donor and the acceptor moieties are covalently linked to each other through a nonconjugated π-connector. In this context, the work reported herein describes the synthesis and characterization of various molecular D-σ-A assemblies, as well as their preliminary evaluation as “unique” material for the realisation of single component organic solar cells (SC-OSCs). A first family of dyads and triads, based on quaterthiophene moieties as donor block, was studied. A general methodology to assemble the two D and A blocks via a Huisgen-type click-chemistry is described. Then, in the next chapters, several dyads based on a “push-pull” donor block have been synthesized and characterized. The PV performances of these compounds have been evaluated in SC-OSCs leading to power conversion efficiency up to 1.4 %, a value close to the state of the art.

Page generated in 0.0706 seconds