Spelling suggestions: "subject:"characterizations"" "subject:"haracterizations""
21 |
Využití biologické ochrany při pěstování ovsa / Employment of biological protection at oats growingŠIMKOVÁ, Jana January 2007 (has links)
For oat protection was used Trichoderma harzianum as a bioagent. The fungus that antagonizes other fungi causing diseases on corn. It was applied in two doses on glumed oat allotment with the acreage 8m2 . The grown oat varieties were Neklan and Atego. The first application of the fungus was made shortly after the oat emergence in the form of granula together with the NPK 11-7-7 (in 2005) and NPK 15-10-10 (in 2006) fertilizer , the second application was made in the form of solution of Supresivit S2. The crop was yield by the special harvester and from the threshing the samples for next analyse were taken. The final apprasial was made. in VÚRV Ruzyně.
|
22 |
MICROMECHANICAL ANALYSIS AND CHARACTERIZATION OF MATERIALS WITH SPATIALLY DISTINCT MICROSTRUCTURAL FEATURESRaheleh Mohammad Rahimi (7484885) 14 January 2021 (has links)
Correlations between a materials microstructure and mechanical behavior are important for materials development. As materials characterization methods must consider instrument accessibility, sample dimensions and economical aspects, developing functional techniques in order to obtain better understanding of materials behavior in micro and nano scale is crucial. Procedures for assessing and interpreting the mechanical responses at small scales, combined with investigating the microstructure, are considered as significant steps to design and develop the effective frameworks for evaluating bulk properties. This research demonstrates how fundamental understanding of microstructures can assist interpreting of mechanical performance of bulk materials. Testing of materials at small scales is very important because the mechanical failure of any bulk material starts with the formation, extension, or local accumulation of initially small defects, leading finally to a catastrophic fracture by an expanding crack. Thus, any bulk material profits from an in-depth understanding of its deformation and mechanical phenomena at the nano- and micrometer length scale.<div><br></div><div>This thesis shows how the micro constituents’ interactions and grain boundaries reactions to dislocations in alloys and thin films contribute to understanding material flow behavior and differences in the mechanical properties of these materials in a wide range of material systems with variations in appropriate sizes which need to be probed. Among other things, this work shows that sources of variation can be specified and quantified as predictive tools for designing materials. Several examples are presented. First, the strength and strain hardening of martensite and ferrite in a dual phase steel with a grain size less than 5 μm were determined using an inverse technique. The yield strength of the ferrite and martensite phases are obtained as 370 MPa and 950 MPa respectively. The calculated hardening exponent of the alloy was exactly the same as experimental tensile test results (0.11). The constraint phenomena was effective in restricting deformation of this elastic-plastic alloy. Secondly, the differences in hardness and pop-in behavior were used to understand of the influences of different types of grain boundaries, high density dislocations, and twins in Al thin films before and after plasticity. The third example assesses the strength of several species of diatom frustules for the first time using a combination of indentation techniques. Lightweight materials with densities well below 1000 kg/m3 demonstrated strengths on the order of 100’s of MPa. Finally, conditions for laser grown oxides and laser shock peening on a commercial steel which lead to an optical marking without a change in strength around the marking have been identified.<br></div>
|
23 |
UNRAVELING MICROSTRUCTURE-PROPERTY CORRELATIONS IN NATURAL BIOLOGICAL MATERIALS BY MULTISCALE AND MULTIMODAL CHARACTERIZATIONSwapnil Kishor Morankar (16641843) 07 August 2023 (has links)
<p>Through thousands of years of evolution, natural biological systems have optimized their structures to thrive in diverse ecological conditions. Extracting and leveraging the inherent design principles of these biological systems can provide inspiration for the development of advanced lightweight structural materials. To effectively facilitate this transition, it is crucial to understand the specific mechanisms by which the microstructure of biological materials influences their mechanical properties. This dissertation focuses on understanding microstructure-property correlations in three biological systems: Venus flower basket, Cholla cactus, and Organ pipe coral.</p>
<p>The Venus flower basket exhibits a cylindrical cage-like structure made from a complex network of silica fibers which exhibit a core-shell like layered architectures. A novel multimodal approach involving nanoindentation, ex situ and in situ fiber testing, and post-failure fractography was utilized to precisely understand the impact of the layered structure on the tensile and fracture behavior of fibers. The observation of fibers in real-time revealed, for the first time, that the initiation of failure occurs at the fiber's surface and progressively advances towards the core, traversing multiple layers. The concentric layers encompassing the central core act sacrificially, employing various toughening mechanisms to protect the core. Furthermore, nanoindentation experiments performed in situ in water shed light on the significance of the layered fiber structure in a marine environment. Another interesting system is the Cholla cactus. In arid environments, Cholla cactus produces porous wood with a mesh-like structure. To comprehensively understand the structure, properties, and designs of Cholla cactus wood, various techniques such as x-ray tomography, scanning electron microscopy, nanoindentation, and finite element simulations were employed. The structure and function of different wood components was investigated from both biological and mechanical behavior perspectives. The impact of the unique structure of wood components on the design of engineering materials is discussed. Finally, the dissertation focuses on the Organ pipe coral, which exhibits a hierarchical structure comprising vertical tubes and horizontal platforms at the macrostructure level. At the microstructure level, cells are formed through a unique arrangement of micrometer-sized plates made of calcium carbonate. Nanoindentation was used to assess the impact of this hierarchical structure on micromechanical properties. The results unveiled distinct toughening mechanisms operating at different length scales within the coral.</p>
<p>17</p>
<p>By gaining a precise understanding of the correlations between microstructure and properties in various biological materials, this research provides valuable insights for the design of advanced architected structural materials. The unique interplay between microstructure, function, and properties is discussed.</p>
|
24 |
The Sheffer B-type 1 Orthogonal Polynomial SequencesGaliffa, Daniel 01 January 2009 (has links)
In 1939, I.M. Sheffer proved that every polynomial sequence belongs to one and only one type. Sheffer extensively developed properties of the B-Type 0 polynomial sequences and determined which sets are also orthogonal. He subsequently generalized his classification method to the case of arbitrary B-Type k by constructing the generalized generating function A(t)exp[xH1(t) + · · · + xk+1Hk(t)] = ∑∞n=0 Pn(x)tn, with Hi(t) = hi,iti + hi,i+1t i+1 + · · · , h1,1 ≠ 0. Although extensive research has been done on characterizing polynomial sequences, no analysis has yet been completed on sets of type one or higher (k ≥ 1). We present a preliminary analysis of a special case of the B-Type 1 (k = 1) class, which is an extension of the B-Type 0 class, in order to determine which sets, if any, are also orthogonal sets. Lastly, we consider an extension of this research and comment on future considerations. In this work the utilization of computer algebra packages is indispensable, as computational difficulties arise in the B-Type 1 class that are unlike those in the B-Type 0 class.
|
25 |
Multiscale chemistry and design principles of stable cathode materials for Na-ion and Li-ion batteriesRahman, Muhammad Mominur 03 June 2021 (has links)
Alkali-ion batteries have revolutionized modern life through enabling the widespread application of portable electronic devices. The call for adapting renewable energy in many applications will also see an increase in the demand of alkali-ion batteries, specially to account for the intermittent nature of the renewable energy sources. However, the advancement of such technologies will require innovation on the forefront of materials development as well as fundamental understanding on the physical and chemical processes from atomic to device length scales. Herein, we focus on advancing energy storage devices such as alkali-ion batteries through cathode materials development and discovery as well as fundamental understanding through multiscale advanced synchrotron spectroscopic and microscopic characterizations. Multiscale electrochemical properties of cathode materials are unraveled through complementary characterizations and design principles are developed for stable cathode materials for alkali-ion batteries.
In Chapter 1, we provide a comprehensive background on alkali-ion batteries and cathode materials. The future prospect of Li-ion and beyond Li-ion batteries are summarized. Surface to bulk chemistry of alkali-ion cathode materials is introduced. The prospect of combined cationic and anionic redox processes to enhance the energy density of cathode materials is discussed. Structural and chemical complexities in cathode materials during electrochemical cycling as well as due to anionic redox are summarized.
In Chapter 2, we explain an inaugural effort on tuning the 3D nano/mesoscale elemental distribution of cathode materials to positively impact the electrochemical performance of cathode materials. We show that engineering the elemental distribution can take advantage of depth dependent redox reactions and curtail harmful side reactions at cathode-electrolyte interface which can stabilize the electrochemical performance.
In Chapter 3, we show that the surface to bulk chemistry of cathode particles is distinct under applied electrochemical potential. We show that the severe surface degradation at the beginning stages of cycling can impact the long-term cycling performance of cathode materials in alkali-ion batteries.
In Chapter 4, we utilize the structural and chemical complexities of sodium layered oxide materials to synthesize stable cathode materials for half cell and full cell sodium-ion batteries. Meanwhile, challenges with enabling long term cycling (more than 1000 cycles) are deciphered to be transition metal dissolution and local and global structural transformations.
In Chapter 5, we utilize anionic redox in conjunction with conventional cationic redox of cathode materials for alkali-ion batteries to enhance the energy density. We show that the stability of anionic redox is closely related to the local transition metal environment. We also show that a reversible evolution of local transition metal environment during cycling can lead to stable anionic redox.
In Chapter 6, we provide design principles for cathode materials for advanced alkali-ion batteries for application under extreme environments (e.g., outer space and nuclear power industries). For the first time, we systematically study the microstructural evolution of cathode materials under extreme irradiation and temperature to unravel the key factors affecting the stability of battery cathodes. Our experimental and computational studies show that a cathode material with smaller cationic antisite defect formation energy than another is more resilient under extreme environments. / Doctor of Philosophy / Alkali-ion batteries are finding many applications in our life, ranging from portable electronic devices, electric vehicles, grid energy storage, space exploration and so on. Cathode materials play a crucial role in the overall performance of alkali-ion batteries. Reliable application of alkali-ion batteries requires stable and high-energy cathode materials. Hence, design principles must be developed for high-performance cathode materials. Such design principles can be benefited from advanced characterizations that can reveal the surface-to-bulk properties of cathode materials. Herein, we focus on formulating design principles for cathode materials for alkali-ion batteries. Aided by advanced synchrotron characterizations, we reveal the surface-to-bulk properties of cathodes and their role on the long-term stability of alkali-ion batteries. We present tuning structural and chemical complexities as a method of designing advanced cathode materials. We show that energy density of cathode materials can be enhanced by taking advantage of a combined cationic and anionic redox. Lastly, we show design principles for stable cathode materials under extreme conditions in outer space and nuclear power industries (under extreme irradiation and temperature). Our study shows that structurally resilient cathode materials under extreme irradiation and temperature can be designed if the size of positively charged cations in cathode materials are almost similar. Our study provides valuable insights on the development of advanced cathode materials for alkali-ion batteries which can aid the future development of energy storage devices.
|
26 |
Design and synthesis of Ni-rich and low/no-Co layered oxide cathodes for Li-ion batteriesYang, Zhijie 23 February 2023 (has links)
Li-ion batteries (LIBs) have achieved remarkable success in electric vehicles (EVs), consumer electronics, grid energy storage, and other applications thanks to a wide range of electrode materials that meet the performance requirements of different application scenarios. Cathodes are an essential component of LIBs, which governs the performance of commercial LIBs. Layered transition metal oxide, i.e., LiNixCoyMn1-x-yO2 (NMC), is one family of cathodes that are widely applied in the prevailing commercial LIBs. With increasing demand for high energy density, the development of layered oxide cathodes is towards high Ni content because Ni redox couples majorly contribute to the battery capacity. Meanwhile, the battery community has been making tremendous efforts to eliminate Co in layered cathodes due to its high cost, high toxicity, and child labor issues during Co mining. However, these Ni-rich Co-free cathodes usually suffer from low electrochemical and structural stability. Several strategies are adopted to enhance the stability of Ni-rich Co-free cathodes, such as doping, coating, and synthesizing single crystal particles. However, the design principles and synthesis mechanisms of these approaches have not been fully understood. Herein, we design and synthesize stable Ni-rich and low/no-Co layered oxide cathodes by manipulating the chemical and structural properties of cathode particles. Our studies reveal the cathode formation mechanisms and shed light on the cathode design through complementary synchrotron microscopic and spectroscopic characterization methods.
In Chapter 1, the motivation for LIB research is introduced from the perspective of its indispensable role in achieving carbon neutrality. We then comprehensively introduce the status of LIBs at present, including assessing their sustainability, worldwide supply chain and manufacturing, and cathode materials. Subsequently, we focus on the Co-free layered oxide cathodes and discuss their structure, limitations, and strategies to address the challenges. Finally, we discuss single crystal Ni-rich layered oxide cathodes and the challenges and strategies associated with their synthesis.
In Chapter 2, we investigate the dopant redistribution, phase propagation, and local chemical changes of layered oxides at multiple length scales using a multielement-doped LiNi0.96Mg0.02Ti0.02O2 (Mg/Ti-LNO) as a model platform. We observed that dopants Mg and Ti diffuse from the surface to the bulk of cathode particles below 300 °C long before the formation of any layered phase, using a range of synchrotron spectroscopic and imaging diagnostic tools. After calcination, Ti is still enriched at the cathode particle surface, while Mg has a relatively uniform distribution throughout cathode particles. Our findings provide experimental guidance for manipulating the dopant distribution upon cathode synthesis.
In Chapter 3, we synthesized Mn(OH)2-coated single crystal LiNiO2 (LNO) and used it as the platform to monitor the Mn redistribution and the structural and chemical evolution of the LNO cathode. We use in situ transmission X-ray microscopy (TXM) to track the Mn tomography inside the LNO particle and Ni oxidation state evolution at various temperatures below 700 °C. We further reveal chemical and structural changes induced by different extents of Mn diffusion at ensemble-averaged scale, which validates the results at the single particle scale. The ion diffusion behavior in the cathode is highly temperature dependent. Our study provides guidance for ion distribution manipulation during cathode modification.
In Chapter 4, we successfully fabricated a surface passivation layer for NMC particles via a feasible quenching approach. A combination of bulk and surface structural characterization methods show the correlation of surface layer with bulk chemistry including valence state and charge distribution. Our design enables high interfacial stability and homogeneous charge distribution, impelling superior electrochemical performance of NMC cathode materials. This study provides insights into the cathode surface layer design for modifying other high-capacity cathodes in LIBs.
In Chapter 5, we use statistical tools to identify the significance of multiple synthetic parameters in the molten salt synthesis of single crystal Ni-rich NMC cathodes. We also create a prediction model to forecast the performance of synthesized single crystal Ni-rich NMC cathodes from the input of synthetic parameters with relatively high prediction accuracy. Guided by the models, we synthesize single crystal LiNi0.9Co0.05Mn0.05O2 (SC-N90) with different particle sizes. We find large single crystals show worse capacity and cycle life than small single crystals especially at high current rates due to slower Li kinetics. However, large single crystal has higher thermal stability potentially because of smaller specific surface area. The findings of particle size effect on the performance provide insights into size engineering while developing next-generation single crystal Ni-rich NMC cathodes. The statistical and prediction models developed in this study can guide the molten salt synthesis of Ni rich cathodes and simplify the optimization process of synthetic parameters.
Chapter 6 summarizes our efforts on the novel design and fundamental understanding of the state-of-the-art cathodes. We also provide our future perspectives for the development of LIBs. / Doctor of Philosophy / Lithium-ion batteries (LIBs) have been studied for decades and are widely applied in electronics and vehicles because of their high energy density and long lifetime. With the increasing demand for higher energy density, particularly in electric vehicles, the development of Ni-based layered oxide cathode materials has been focused on increasing the Ni content. Meanwhile, decreasing or eliminating Co has become a consensus due to its high cost, toxicity, and human rights issues during mining. Enhancing the stability of these Ni-rich and low/no-Co layered oxide cathodes is challenging yet crucial to their practical applications. Herein, we design and synthesize multiple Ni-rich and low/no-Co layered cathodes through ion distribution engineering and structure modification at various length scales. We also investigate the dopant redistribution, phase propagation, and local chemical changes during layered oxides cathode formation through a combination of complementary characterization methods at different length scales. In addition, we provide guidance for synthesis optimization by statistical correlations and performance prediction models with the input of synthetic conditions. Overall, this dissertation provides insights into the design and synthesis principles of Ni-rich low/no-Co layered oxide cathode, which can facilitate the transition to a sustainable future with next-generation LIBs.
|
27 |
Heterogeneous Metal Catalysts: From Single Atoms to Nanoclusters and NanoparticlesLiu, Lichen 02 October 2019 (has links)
Tesis por compendio / Las especies de metal con diferentes tamaños (átomos individuales, nanocristales y nanopartículas) muestran un comportamiento catalítico diferente para diversas reacciones catalíticas heterogéneas. Se ha demostrado en la bibliografía que muchos factores que incluyen el tamaño de partícula, la forma, la composición química, la interacción metal-soporte, la interacción metal-reactivo / disolvente, pueden tener influencias significativas sobre las propiedades catalíticas de los catalizadores metálicos. Los desarrollos recientes de metodologías de síntesis bien controladas y herramientas de caracterización avanzada permiten correlacionar las relaciones a nivel molecular.
En esta tesis, he llevado a cabo estudios sobre catalizadores metálicos desde átomos individuales hasta nanoclusters y nanopartículas. Al desarrollar nuevas metodologías de síntesis, el tamaño de las especies metálicas puede modularse y usarse como catalizadores modelo para estudiar el efecto del tamaño sobre el comportamiento catalítico de los catalizadores metálicos para la oxidación del CO, la hidrogenación selectiva, la oxidación selectiva y la fotocatálisis. Se ha encontrado que, los átomos metálicos dispersados por separado y los grupos subnanométricos de metal pueden aglomerarse en nanoclusters o nanopartículas más grandes en condiciones de reacción. Para mejorar la estabilidad de los catalizadores subnanométricos de metal, he desarrollado una nueva estrategia para la generación de átomos individuales y clusters en zeolitas. Esas especies subnanométricas de metales son estables en tratamientos de oxidación-reducción a 550 oC. Siguiendo esta nueva metodología de síntesis, este nuevo tipo de materiales puede servir como catalizador modelo para estudiar la evolución de especies subnanométricas de metales en condiciones de reacción. La transformación estructural de las especies subnanométricas de Pt ha sido estudiada mediante microscopía electrónica de transmisión in situ. Se ha demostrado que el tamaño de las especies de Pt está fuertemente relacionado con las condiciones de reacción, que proporcionan importantes conocimientos para comprender el comportamiento de los catalizadores de metales subnanométricos en condiciones de reacción.
En la otra línea de investigación para catalizadores de metales no nobles, he desarrollado varias estrategias generales para obtener catalizadores de metales no nobles, ya sea soportados sobre óxidos metálicos o protegidos por capas delgadas de carbono. Estos materiales muestran un rendimiento excelente para varias reacciones importantes, como la hidrogenación quimioselectiva de nitroarenos, incluso cuando se comparan con los catalizadores de metales nobles convencionales. En algunos casos, los catalizadores de metales no nobles pueden incluso alcanzar selectividades para productos inviables que no ha sido posible conseguir en catalizadores de metales nobles convencionales, que es causado por la diferente ruta de reacción en catalizadores de metales no nobles. Sin embargo, la espectroscopía fotoelectrónica de rayos X a presión ambiente ha revelado que la irradiación de la luz puede modular la selectividad a los alcoholes y los hidrocarburos C2 +, lo que abre una nueva posibilidad para ajustar el comportamiento catalítico de los catalizadores metálicos.
Con base en los trabajos anteriores de diferentes aspectos relacionados con catalizadores metálicos heterogéneos, las perspectivas sobre las direcciones futuras hacia una mejor comprensión del comportamiento catalítico de diferentes entidades metálicas (átomos individuales, nanoagrupamientos y nanopartículas) de una manera unificadora también se han dado en esta tesis. / Les espècies metàl·liques de diferents dimensions (àtoms individuals, nanoclusters i nanopartícules) mostren diferents comportaments catalítics per a diverses reaccions catalítiques heterogènies. S'ha demostrat a la literatura que, molts factors que inclouen la mida de la partícula, la forma, la composició química, la interacció amb el suport metàl·lic, la reacció metàl·lica i la interacció amb dissolvents poden tenir influències significatives sobre les propietats catalítiques dels catalitzadors metàl·lics. Els desenvolupaments recents de metodologies de síntesi ben controlades i eines de caracterització avançada permeten relacionar les relacions a nivell molecular.
En aquesta tesi, he realitzat estudis sobre catalitzadors metàl·lics d'àtoms únics a nanoclústers i nanopartícules. Mitjançant el desenvolupament de noves metodologies de síntesi, la mida de les espècies metàl·liques es pot modular i utilitzar com a catalitzadors model per estudiar l'efecte de mida sobre el comportament catalític dels catalitzadors metàl·lics per a l'oxidació de CO, hidrogenació selectiva, oxidació selectiva i fotocatàlisi. S'ha trobat que, els àtoms metàl·lics dispersos individualment i els clústers metàl·lics subnanomètrics poden aglomerar-se en nanoclústeres o nanopartícules més grans en condicions de reacció. Per millorar l'estabilitat dels catalitzadors subnanomètrics de metall, he desenvolupat una nova estratègia per a la generació d'àtoms i racimos en zeolites. Aquestes espècies metàl·liques subnanométricas són estables en tractaments de reducció d'oxidació a 550 oC. Després d'aquesta nova metodologia de síntesi, aquest nou tipus de materials poden servir com a model de catalitzador per estudiar l'evolució de les espècies metàl·liques subnanométricas en condicions de reacció. La transformació estructural de l'espècie Pn subnanométrica ha estat estudiada per microscòpia electrònica de transmissió in situ. S'ha demostrat que la mida de les espècies de Pt està fortament relacionada amb les condicions de reacció, que proporcionen idees importants per comprendre el comportament dels catalitzadors de subnanometria en condicions de reacció.
En l'altra línia de recerca dels catalitzadors de metalls no nobles, he desenvolupat diverses estratègies generals per obtenir catalizadors de metalls no nobles recolzats en òxids metàl·lics o protegits per capes de carboni primes. Aquests materials presenten un excel·lent rendiment per a diverses reaccions importants, com la hidrogenació quimioelectiva de nitroarenes, fins i tot quan es comparen amb els catalitzadors convencionals de metall noble. En alguns casos, els catalitzadors de metalls no nobles poden fins i tot aconseguir selectivitats a productes no factibles que no s'han pogut assolir en catalitzadors de metall noble convencionals, que es deuen a la via de reacció diferent en catalitzadors de metalls no nobles. No obstant això, s'ha observat una espectroscòpia de fotoelèctria de raigs X amb pressió d'atmosfera que la irradiació lleugera pot modular la selectivitat als alcohols i hidrocarburs C2 +, la qual cosa obre una nova possibilitat per sintonitzar el comportament catalític dels catalitzadors metàl·lics.
A partir d'aquests treballs de diferents aspectes relacionats amb els catalitzadors metàl·lics heterogenis, també s'ha donat en aquesta tesi perspectives sobre les futures orientacions cap a una millor comprensió del comportament catalític de diferents entitats metàl·liques (àtoms individuals, nanoclústers i nanopartícules). / Metal species with different size (single atoms, nanoclusters and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that, many factors including the particle size, shape, chemical composition, metal-support interaction, metal-reactant/solvent interaction, can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow to correlate the relationships at molecular level.
In this thesis, I have carried out studies on metal catalysts from single atoms to nanoclusters and nanoparticles. By developing new synthesis methodologies, the size of metal species can be modulated and used as model catalysts to study the size effect on the catalytic behavior of metal catalysts for CO oxidation, selective hydrogenation, selective oxidation and photocatalysis. It has been found that, singly dispersed metal atoms and subnanometric metal clusters may agglomerate into larger nanoclusters or nanoparticles under reaction conditions. To improve the stability of subnanometric metal catalysts, I have developed a new strategy for the generation of single atoms and clusters in zeolites. Those subnanometric metal species are stable in oxidation-reduction treatments at 550 oC. Following this new synthesis methodology, this new type of materials can serve as model catalyst to study the evolution of subnanometric metal species under reaction conditions. The structural transformation of subnanometric Pt species has been studied by in situ transmission electron microscopy. It has been shown that the size of Pt species is strongly related with the reaction conditions, which provide important insights for understanding the behavior of subnanometric metal catalysts under reaction conditions.
In the other research line for non-noble metal catalysts, I have developed several general strategies to obtain non-noble metal catalysts either supported on metal oxides or protected by thin carbon layers. These materials show excellent performance for several important reactions, such as chemoselective hydrogenation of nitroarenes, even when compared with conventional noble metal catalysts. In some cases, non-noble metal catalysts can even achieve selectivities to unfeasible products which has not been possible to achieve on conventional noble metal catalysts, which is caused by the different reaction pathway on non-noble metal catalysts. Nevertheless, it has been revealed by ambient-pressure X-ray photoelectron spectroscopy that light irradiation can modulate the selectivity to alcohols and C2+ hydrocarbons, which opens a new possibility for tuning the catalytic behavior of metal catalysts.
Based on the above works from different aspects related with heterogeneous metal catalysts, perspectives on the future directions towards better understanding on the catalytic behavior of different metal entities (single atoms, nanoclusters and nanoparticles) in a unifying manner have also been given in this thesis. / Liu, L. (2018). Heterogeneous Metal Catalysts: From Single Atoms to Nanoclusters and Nanoparticles [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/113169 / Compendio
|
28 |
Heterogeneous Redox Chemistries in Layered Oxide Materials for Lithium-Ion BatteriesXu, Zhengrui 05 January 2022 (has links)
The invention of the lithium-ion battery has revolutionized the passenger transportation field in recent years, and it has emerged as one of the state-of-the-art solutions to address greenhouse gases emission and air pollution issues. Layered oxide lithium-ion battery cathode materials have become commercially successful in the past few decades due to their high energy density, high power density, long cycle life, and low cost. Yet, with the increasing demand for battery performance, it is crucial to understand the material fading mechanisms further to improve layered oxide materials' performance. A heterogeneous redox reaction is a dominant fading mechanism, which limits the utilization percentage of a battery materials' redox capability and leads to adverse effects such as detrimental interfacial reactions, lattice oxygen release, and chemomechanical breakdown. Crystallographic defects, such as dislocations and grain boundaries, are rich in battery materials. These crystallographic defects change the local lithium-ion diffusivity and have a dramatic effect on the redox reactions. To date, there is still a knowledge gap on how various crystallographic defects affect electrochemistry at the microscopic scale. Herein, we adopted synchrotron-based diffraction, imaging, and spectroscopic techniques to systematically study the correlation between crystallographic defects and redox chemistries in the nanodomain. Our studies shed light on design principles of next-generation battery materials.
In Chapter 1, we first provide a comprehensive background introduction on the battery chemistry at various length scales. We then introduce the heterogeneous redox reactions in layered oxide cathode materials, including a discussion on the impacts of heterogeneous redox reactions. Finally, we present the different categories of crystallographic defects in layered oxide materials and how these crystallographic defects affect electrochemical performance.
In Chapter 2, we use LiCoO2, a representative layered oxide cathode material, as the material platform to quantify the categories and densities of various crystallographic defects. We then focus on geometrically necessary dislocations as they represent a major class of crystallographic defects in LiCoO2. Combining synchrotron-based X-ray fluorescence mapping, micro-diffraction, and spectroscopic techniques, we reveal that geometrically necessary dislocations can facilitate the charging reactions in LiCoO2 grains. Our study illustrates that the heterogeneous redox chemistries can be potentially mitigated by precisely controlling the defects.
In Chapter 3, we systematically investigated how grain boundaries affect redox reactions. We reveal that grain boundaries can guide redox reactions in LiNixMnyCo1-x-yO2 (NMC) materials. Specifically, NMC materials with radially aligned grains have a more uniform charge distribution, less stress mismatch, and better cycling performance. NMC materials with randomly orientated grains have a more heterogeneous redox reaction. These heterogeneous redox reactions are related to the lattice strain mismatch and worse cycling performance. Our study emphasizes the importance of tuning grain orientations to achieve improved performance.
Chapter 4 systematically investigated how the grain boundaries and crystallographic orientations affect the thermal stability of layered oxide cathode materials. Combining diffraction, spectroscopic, and imaging techniques, we reveal that a cathode materials' microstructure plays a significant role in determining the lattice oxygen release behavior and, therefore, determines cathode materials' thermal stability. Our study provides a fundamental understanding of how the grain boundaries and crystallographic orientations can be tuned to develop better cathode materials for the next-generation Li-ion batteries.
Chapter 5 summarizes the contributions of our work and provides our perspective on future research directions. / Doctor of Philosophy / Lithium-ion battery technology has revolutionized the portable electronic device and electric vehicle markets in recent years. Yet, the performance of current lithium-ion batteries still cannot satisfy customer demands. To further improve battery performance, we need a deeper understanding of why battery materials degrade over long-term cycling. One of the fading mechanisms in lithium-ion batteries is heterogeneous redox reactions, i.e., charge or discharge reactions do not proceed at the same pace at different locations in the electrode materials. Herein, we utilize layered oxide cathode materials as an example to systematically investigate how crystallographic defects in the cathode materials lead to heterogeneous redox reactions. Our study indicates that crystallographic defects, such as geometrically necessary dislocations, contribute positively to the charging reaction of the cathode materials. We also unveil that the grain crystallographic orientations of the primary particles affect the redox reactions directly. By aligning the single grains in the radial direction, the volumetric-change-induced stress can be effectively mitigated to ensure prolonged cycling performance. Our study also points out that the single grain orientations are related to the thermal stability of the battery materials. To summarize, our studies provide new insights into the heterogeneous redox reactions in battery materials and offer critical material design criteria to improve battery performance further.
|
29 |
Matériaux optiques actifs en couches minces : élaboration et caractérisation de systèmes tout-solides électrochromes à émissivité infrarouge variable / Active optical materials in thin films : preparation and characterization of all solid electrochromic systems with variable infrared emissivityVenot, Timothée 05 June 2014 (has links)
Les dispositifs électrochromes sont des dispositifs qui permettent de moduler la réflexion ou la transmission de la lumière. Ils recouvrent une grande variété d’applications dans le domaine du visible (vitrages intelligents) et dans le domaine de l’infrarouge (protection thermique des satellites et discrétion optique infrarouge). Les travaux présentés dans ce manuscrit répondent essentiellement à une problématique visant à élaborer un dispositif électrochrome tout solide à émissivité infrarouge variable par un procédé unique de pulvérisation cathodique magnétron. Une nouvelle architecture d’empilement avec une électrode de travail monocouche bi fonctionnelle a été choisie pour réunir les propriétés apportées classiquement par deux couches ou plus sur le haut des empilements électrochromes. Cette nouvelle architecture a nécessité la mise en place d’un procédé de dépôt original de pulvérisation cathodique réactive hydratée. Ce procédé a permis d’obtenir une électrode monocouche à base de trioxyde de tungstène réunissant les propriétés optiques et électroniques souhaitées. Il a également permis de déposer les autres couches de l’empilement, la contre-électrode à base de trioxyde de tungstène et les électrolytes solides conducteurs protoniques à base d’oxyde de tantale ou de zirconium. L’étude de l’ajout d’une couche d’encapsulation à base de dioxyde de cérium a également été menée. Cette architecture a permis d’obtenir un empilement électrochrome tout solide fonctionnel. Ce dispositif complet ainsi élaboré présente de bonnes propriétés optiques dans l’infrarouge en terme de modulation d’émissivité dans les bandes spectrales d’intérêt, à savoir 13 % en bande II et 31 % en bande III. / Electrochromic materials are devices for modulating the reflection or transmission of light. They cover a wide variety of applications in the visible range (smart windows) and the infrared range (thermal protection for satellites and optical infrared discretion). The works presented in this manuscript were essentially responding to the problem of developping an all solid electrochromic device with a variable infrared emissivity by a single process of magnetron sputtering. A new stacking architecture with a working bi functional monolayer electrode was chosen to bring the properties conventionally made by two or more layers on top of electrochromic device. This new architecture has required the establishment of an original deposit process of hydrated reactive sputtering. This process yielded a monolayer electrode based on tungsten trioxide combining the desired optical and electronic properties. It allowed to deposit other layers of the stack, the counter electrode based on tungsten trioxide and the proton conductive solid electrolyte based on tantalum or zirconium oxide. The study of the addition of an encapsulation layer based on cerium dioxide was also conducted. This architecture has resulted in a functional all-solid electrochromic stack. The complete device thus prepared exhibits good optical properties in the infrared emissivity in terms of modulation and in particular in the spectral bands of interest, namely 13 % in MW and 31 % in LW.
|
30 |
Estudo das propriedades estruturais e elÃtricas das granadas ferrimagnÃticas GdIGXYIG1-X e suas aplicaÃÃes em componentes de microondas. / Study of the strutural and electric properties of garnets ferrimagnetc GdIGXYIG1-X and its aplications in componentes of microwaves.Pierre BasÃlio Almeida Fechine 25 April 2008 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Devido ao rÃpido progresso no desenvolvimento de sistemas de comunicaÃÃo em microondas, as cerÃmicas dielÃtricas e magnÃticas (ferritas) se tornaram atrativas para o uso em dispositivos. Embora as ferritas do tipo espinel terem sido os primeiros materiais utilizados para microondas, as granadas possuem menores perdas dielÃtricas e, portanto, sÃo preferidas em muitas aplicaÃÃes. As elevadas exigÃncias que as aplicaÃÃes elÃtricas modernas requerem dos materiais magnÃticos fazem com que novas tÃcnicas e produtos estejam permanentemente sendo pesquisados, com o conseqÃente aparecimento de novas soluÃÃes para uma ampla sÃrie de aplicaÃÃes. Nesse sentido, a pesquisa sobre compÃsitos à empregada para a busca de novos materiais. Este trabalho apresenta a obtenÃÃo do compÃsito ferrimagnÃtico, constituÃdo pelas fases Y3Fe5O12 (YIG) e Gd3Fe5O12 (GdIG), atravÃs da rota sintÃtica no estado sÃlido com a utilizaÃÃo de moagem mecÃnica de alta energia. A DifraÃÃo de Raios-X, a Espectroscopia Raman, Infravermelho e MÃssbauer foram essenciais para caracterizaÃÃo estrutural dos compÃsitos. As peculiaridades da morfologia das amostras foram elucidadas pela Microscopia EletrÃnica de Varredura e Microdureza de Vickers. Adicionalmente, foram realizados experimentos para se avaliar o comportamento elÃtrico e magnÃtico dos compÃsitos na faixa de radio freqÃÃncia e de microondas para depois sugerir uma aplicaÃÃo tecnolÃgica cabÃvel. Os compÃsitos comportaram-se adequadamente como antenas ressoadoras de ferritas (FRAs) e de microlinha (filmes espessos depositados sobre a superfÃcie metalizada de um substrato de alumina, pela tÃcnica âscreen printingâ), na faixa de operaÃÃo das microondas. Os experimentos com os FRAs se mostraram satisfatÃrios devido ao controle das caracterÃsticas de radiaÃÃo das antenas e a sua sintonizaÃÃo pela aplicaÃÃo de um campo magnÃtico externo. As mesmas tiveram a caracterÃstica de antenas de banda larga. Os ressoadores provenientes dos compÃsitos projetados neste trabalho podem ser importantes para desenvolver uma antena de banda larga de terceira geraÃÃo (3G) para telefones celulares e outros produtos para redes sem fio. / Devido ao rÃpido progresso no desenvolvimento de sistemas de comunicaÃÃo em microondas, as cerÃmicas dielÃtricas e magnÃticas (ferritas) se tornaram atrativas para o uso em dispositivos. Embora as ferritas do tipo espinel terem sido os primeiros materiais utilizados para microondas, as granadas possuem menores perdas dielÃtricas e, portanto, sÃo preferidas em muitas aplicaÃÃes. As elevadas exigÃncias que as aplicaÃÃes elÃtricas modernas requerem dos materiais magnÃticos fazem com que novas tÃcnicas e produtos estejam permanentemente sendo pesquisados, com o conseqÃente aparecimento de novas soluÃÃes para uma ampla sÃrie de aplicaÃÃes. Nesse sentido, a pesquisa sobre compÃsitos à empregada para a busca de novos materiais. Este trabalho apresenta a obtenÃÃo do compÃsito ferrimagnÃtico, constituÃdo pelas fases Y3Fe5O12 (YIG) e Gd3Fe5O12 (GdIG), atravÃs da rota sintÃtica no estado sÃlido com a utilizaÃÃo de moagem mecÃnica de alta energia. A DifraÃÃo de Raios-X, a Espectroscopia Raman, Infravermelho e MÃssbauer foram essenciais para caracterizaÃÃo estrutural dos compÃsitos. As peculiaridades da morfologia das amostras foram elucidadas pela Microscopia EletrÃnica de Varredura e Microdureza de Vickers. Adicionalmente, foram realizados experimentos para se avaliar o comportamento elÃtrico e magnÃtico dos compÃsitos na faixa de radio freqÃÃncia e de microondas para depois sugerir uma aplicaÃÃo tecnolÃgica cabÃvel. Os compÃsitos comportaram-se adequadamente como antenas ressoadoras de ferritas (FRAs) e de microlinha (filmes espessos depositados sobre a superfÃcie metalizada de um substrato de alumina, pela tÃcnica âscreen printingâ), na faixa de operaÃÃo das microondas. Os experimentos com os FRAs se mostraram satisfatÃrios devido ao controle das caracterÃsticas de radiaÃÃo das antenas e a sua sintonizaÃÃo pela aplicaÃÃo de um campo magnÃtico externo. As mesmas tiveram a caracterÃstica de antenas de banda larga. Os ressoadores provenientes dos compÃsitos projetados neste trabalho podem ser importantes para desenvolver uma antena de banda larga de terceira geraÃÃo (3G) para telefones celulares e outros produtos para redes sem fio. / Due to a fast progress in the development of communication systems, the dielectric and magnetic ceramics (ferrites) have become attractive to be used in devices. Although the ferrites of the spinel type were the first material used in the microwave range, garnets have smaller dielectric losses and, therefore, are chosen for many applications. High demands for modern electric applications in magnetic materials results in new techniques and products being permanently studied and researched, with a consequent appearance of new solutions for a wide applications series. In this sense, the research in composites is employed to reach new materials. This work presents the study of the ferrimagnetic composite, constituted by Y3Fe5O12 (YIG) and Gd3Fe5O12 (GdIG) phases, through solid state synthetic route and submitted to high-energy mechanical milling. The X-Ray Diffraction and the Raman, Infrared and MÃssbauer Spectroscopy were essential for the structural characterization of the composites. The peculiarities in the morphology of the samples were elucidated by Scanning Electron Microscopy and Vickers Microhardness. Additionally, experiments were made in order to evaluate the electric and magnetic behavior of the composites at radio frequency and microwave range and then later suggest an adequate technological application. The composites were efficient as ferrite resonator antennas (FRAs) and microstrip antennas (thick films deposited on metalized surface alumina substrate by screen-printing technique), in the microwave frequency range. The experiments with FRAs showed satisfactory due to the control of the antennas radiation characteristics and their tuning by the use of an external magnetic field. They present a wideband antenna profile. The composite resonators studied in this work can be important to the development of a third generation (3G) wideband antennas to cell phones and other wireless products. / Due to a fast progress in the development of communication systems, the dielectric and magnetic ceramics (ferrites) have become attractive to be used in devices. Although the ferrites of the spinel type were the first material used in the microwave range, garnets have smaller dielectric losses and, therefore, are chosen for many applications. High demands for modern electric applications in magnetic materials results in new techniques and products being permanently studied and researched, with a consequent appearance of new solutions for a wide applications series. In this sense, the research in composites is employed to reach new materials. This work presents the study of the ferrimagnetic composite, constituted by Y3Fe5O12 (YIG) and Gd3Fe5O12 (GdIG) phases, through solid state synthetic route and submitted to high-energy mechanical milling. The X-Ray Diffraction and the Raman, Infrared and MÃssbauer Spectroscopy were essential for the structural characterization of the composites. The peculiarities in the morphology of the samples were elucidated by Scanning Electron Microscopy and Vickers Microhardness. Additionally, experiments were made in order to evaluate the electric and magnetic behavior of the composites at radio frequency and microwave range and then later suggest an adequate technological application. The composites were efficient as ferrite resonator antennas (FRAs) and microstrip antennas (thick films deposited on metalized surface alumina substrate by screenprinting technique), in the microwave frequency range. The experiments with FRAs showed satisfactory due to the control of the antennas radiation characteristics and their tuning by the use of an external magnetic field. They present a wideband antenna profile. The composite resonators studied in this work can be important to the development of a third generation (3G) wideband antennas to cell phones and other wireless products.
|
Page generated in 0.1416 seconds