1 |
Electrochemical properties and ion-extraction mechanisms of Li-rich layered oxides and spinel oxidesKnight, James Courtney 16 September 2015 (has links)
Li-ion batteries are widely used in electronics and automotives. Despite their success, improvements in cost, safety, cycle life, and energy density are necessary. One way to enhance the energy density is to find advanced cathodes such as Li-rich layered oxides, which are similar to the commonly layered oxide cathodes (e.g., LiCoO2), except there are additional Li ions in the transition-metal layer, due to their higher charge-storage capacity. Another way of advancing is to design new battery chemistries, such as those involving multivalent-ion systems (e.g., Mg2+ and Zn2+) as they could offer higher charge-storage capacities and/or cost advantages.
Li-rich layered oxides have a complex first charge-discharge cycle, which affects their other electrochemical properties. Ru doping was expected to improve the performance of Li-rich layered oxides due to its electroactivity and overlap of the Ru4+/5+:4d band with the O2-:2p band, but it unexpectedly decreased the capacity due to the reduction in oxygen loss behavior. Preliminary evidence points to the formation of Ru-Ru dimers, which raises the Ru4+/5+:4d band, as the cause of this behavior.
Li-rich layered oxides suffer from declining operating voltage during cycling, and it is a huge challenge to employ them in practical cells. Raising the Ni oxidation state was found to reduce the voltage decay and improve the cyclability; however, it also decreased the discharge capacity. Increasing the Ni oxidation state minimized the formation of Mn3+ ions during discharge and Mn dissolution, which led to the improvements in voltage decay and cyclability.
Extraction of lithium from spinel oxides such as LiMn2O4 with acid was found to follow a Mn3+ disproportionation mechanism and depend on the Mn3+ content. Other common dopants like Cr3+, Fe3+, Co3+, or Ni2+/3+ did not disproportionate, and no ion-exchange of Li+ with H+ occurred in the tetrahedral sites of the spinel oxides.
Extraction with acid of Mg and Zn from spinel oxides, such as MgMn2O4 and ZnMn2O4, were also found to follow the same mechanism as Li-spinels. The Mg-spinels, however, do experience ion exchange when Mg ions are in the octahedral sites. Chemical extraction of Mg or Zn with an oxidizing agent NO2BF4 in acetonitrile medium, however, failed due to the electrostatic repulsion felt by the migrating divalent ions. In contrast, extraction with acid was successful as Mn dissolution from the lattice opened up favorable pathways for extraction. / text
|
2 |
Etude des oxydes lamellaires NaxVO2 : électrochimie, structure et propriétés physiques / Study of NaxVO2 layered oxides : electrochemistry, structure and physical propertiesDidier, Christophe Gilbert René 23 May 2013 (has links)
Cette thèse a pour objet l'étude des oxydes lamellaires NaxVO2. Différentes phases ont été obtenues qui diffèrent dans l'empilement des feuillets [VO2] : O3-NaVO2, P'3-Na0.56VO2 et P2-Na0.73VO2. Ces trois matériaux ont fait l'objet d'une étude électrochimique en batterie sodium couplée à la diffraction des rayons X in situ afin de comprendre les transitions structurales qui se produisent en fonction de la composition. Une superstructure apparait à Na1/2VO2 pour les trois types d'empilements. Cette composition a pu être obtenue par synthèse potentiostatique. La caractérisation structurale montre qu’à cette composition les trois polytypes présentent une mise en ordre Na+/lacune et suggère la présence de clusters d'ions vanadium. De cette organisation particulière résulte un comportement inhabituel des propriétés physiques. Ce travail démontre les corrélations électroniques importantes dans cette famille de matériaux et ouvre la voie à de futures études en physique et chimie du solide. / This thesis is about the study of the lamellar oxides NaxVO2. Several phases have been obtained with different stacking of the [VO2] sheets: O3-NaVO2, P’3-Na0.56VO2 and P2-Na0.73VO2. These three materials have been the subject of an electrochemical study in sodium batteries coupled with in situ X-ray diffraction in order to understand the structural transitions taking place as a function of the composition. A superstructure appears at Na1/2VO2 for the three stackings. This composition has been obtained by potentiostatic synthesis. The structural characterization shows that at this composition the three polytypes present a Na+/vacancy ordering and suggests the presence of clusters of vanadium ions. An unusual behaviour of the physical properties is observed as a result of this peculiar organization. This work demonstrates the important electronic correlations in this family of materials and paves the path to future studies in solid-state chemistry and physics.
|
3 |
A Structural, Bonding, and Properties Study of the Ordered Rock Salt Structures Li<sub>2</sub><i>M</i>O<sub>3</sub> (<i>M</i> = Ru, Ir, Pt)O'Malley, Matthew John 25 September 2009 (has links)
No description available.
|
4 |
Heterogeneous Redox Chemistries in Layered Oxide Materials for Lithium-Ion BatteriesXu, Zhengrui 05 January 2022 (has links)
The invention of the lithium-ion battery has revolutionized the passenger transportation field in recent years, and it has emerged as one of the state-of-the-art solutions to address greenhouse gases emission and air pollution issues. Layered oxide lithium-ion battery cathode materials have become commercially successful in the past few decades due to their high energy density, high power density, long cycle life, and low cost. Yet, with the increasing demand for battery performance, it is crucial to understand the material fading mechanisms further to improve layered oxide materials' performance. A heterogeneous redox reaction is a dominant fading mechanism, which limits the utilization percentage of a battery materials' redox capability and leads to adverse effects such as detrimental interfacial reactions, lattice oxygen release, and chemomechanical breakdown. Crystallographic defects, such as dislocations and grain boundaries, are rich in battery materials. These crystallographic defects change the local lithium-ion diffusivity and have a dramatic effect on the redox reactions. To date, there is still a knowledge gap on how various crystallographic defects affect electrochemistry at the microscopic scale. Herein, we adopted synchrotron-based diffraction, imaging, and spectroscopic techniques to systematically study the correlation between crystallographic defects and redox chemistries in the nanodomain. Our studies shed light on design principles of next-generation battery materials.
In Chapter 1, we first provide a comprehensive background introduction on the battery chemistry at various length scales. We then introduce the heterogeneous redox reactions in layered oxide cathode materials, including a discussion on the impacts of heterogeneous redox reactions. Finally, we present the different categories of crystallographic defects in layered oxide materials and how these crystallographic defects affect electrochemical performance.
In Chapter 2, we use LiCoO2, a representative layered oxide cathode material, as the material platform to quantify the categories and densities of various crystallographic defects. We then focus on geometrically necessary dislocations as they represent a major class of crystallographic defects in LiCoO2. Combining synchrotron-based X-ray fluorescence mapping, micro-diffraction, and spectroscopic techniques, we reveal that geometrically necessary dislocations can facilitate the charging reactions in LiCoO2 grains. Our study illustrates that the heterogeneous redox chemistries can be potentially mitigated by precisely controlling the defects.
In Chapter 3, we systematically investigated how grain boundaries affect redox reactions. We reveal that grain boundaries can guide redox reactions in LiNixMnyCo1-x-yO2 (NMC) materials. Specifically, NMC materials with radially aligned grains have a more uniform charge distribution, less stress mismatch, and better cycling performance. NMC materials with randomly orientated grains have a more heterogeneous redox reaction. These heterogeneous redox reactions are related to the lattice strain mismatch and worse cycling performance. Our study emphasizes the importance of tuning grain orientations to achieve improved performance.
Chapter 4 systematically investigated how the grain boundaries and crystallographic orientations affect the thermal stability of layered oxide cathode materials. Combining diffraction, spectroscopic, and imaging techniques, we reveal that a cathode materials' microstructure plays a significant role in determining the lattice oxygen release behavior and, therefore, determines cathode materials' thermal stability. Our study provides a fundamental understanding of how the grain boundaries and crystallographic orientations can be tuned to develop better cathode materials for the next-generation Li-ion batteries.
Chapter 5 summarizes the contributions of our work and provides our perspective on future research directions. / Doctor of Philosophy / Lithium-ion battery technology has revolutionized the portable electronic device and electric vehicle markets in recent years. Yet, the performance of current lithium-ion batteries still cannot satisfy customer demands. To further improve battery performance, we need a deeper understanding of why battery materials degrade over long-term cycling. One of the fading mechanisms in lithium-ion batteries is heterogeneous redox reactions, i.e., charge or discharge reactions do not proceed at the same pace at different locations in the electrode materials. Herein, we utilize layered oxide cathode materials as an example to systematically investigate how crystallographic defects in the cathode materials lead to heterogeneous redox reactions. Our study indicates that crystallographic defects, such as geometrically necessary dislocations, contribute positively to the charging reaction of the cathode materials. We also unveil that the grain crystallographic orientations of the primary particles affect the redox reactions directly. By aligning the single grains in the radial direction, the volumetric-change-induced stress can be effectively mitigated to ensure prolonged cycling performance. Our study also points out that the single grain orientations are related to the thermal stability of the battery materials. To summarize, our studies provide new insights into the heterogeneous redox reactions in battery materials and offer critical material design criteria to improve battery performance further.
|
5 |
Analyse de la microstructure des matériaux actifs d'électrode positive de batteries Lithium-ion / Analysis of the behavior of nanostructured materials composing the new generation of Li-ion batteriesCabelguen, Pierre-Etienne 06 December 2016 (has links)
Ce travail de thèse se base sur quatre matériaux modèles, de composition LiNi1/3Mn1/3Co1/3O2, qui différent de par leur microstructure. Le lien entre leur morphologie et les performances électrochimiques est étudié par la combinaison de la caractérisation exhaustive de leur microstructure, l’étude de leur comportement en batterie et la modélisation de leur réponse électrochimique. L’étape limitant le processus électrochimique est identifiée par voltampérométrie cyclique et nous montrons que la transition attendue d’une limitation par le transfert de charge à une limitation par la diffusion en phase solide a lieu à différents régimes selon la microstructure. Ce comportement est expliqué par l’utilisation d’outils de simulations numériques. Selon leur forme et leur agglomération, les cristallites agissent collectivement ou indépendamment les unes des autres. Ces résultats rationalisent les performances en puissance obtenues sur nos matériaux. Les résultats de simulation montrent également qu’une faible fraction de la surface développée est électroactive, ce qui remet en question la large utilisation de la surface BET dans la littérature. Nous montrons également que, si les matériaux poreux sont les plus performants en puissance gravimétrique, la tendance est inversée pour la puissance volumique. Les stratégies de nanostructuration largement employées, qui se basent sur la capacité spécifique pour caractériser les matériaux, ne doivent pas oublier faire oublier le compromis nécessaire entre surface développée et volume. / Four NMC materials are synthesized by co-precipitation. They exhibit a hierarchical architecture made of reasonably spherical agglomerates. One is constituted of flake-shaped, spatially oriented, crystallites that leave large apparent void spaces in the agglomerate, while the other results from the tight agglomeration of micron-sized cuboids. Porous material exhibits the best power performances. It is impossible to identify a geometrical parameter that predict performances, even after achieving the full characterization of the microstructures. Cyclic voltammetry reveals two behaviours depending on the shape of crystallites: processes limited by solid-state diffusion (cuboids) and the ones limited by charge transfer even at high rates (flake-shaped). This observation challenges active materials design strategies that assume diffusion as the limiting process of lithium intercalation. Focusing on enhancing kinetics could be the way to increase performances. Charge-transfer is first investigated by measuring electronic conductivities over a wide range of frequencies, allowing to discriminate relaxations arising at various length scales. We show that flake-shaped crystallites facilitate the motion of electrons at all scale levels compared to cuboids. Charge-transfer limitations originate from the electrolyte/material interface in materials exhibiting high surface areas. Numerical simulations reveal that BET measurements largely overestimate the actual electroactive surface, which is understood by HRTEM images of flake-shaped crystallites. Only a small percentage, limited to the edge plane is truly electroactive.
|
6 |
Contribution à la compréhension de la structure de Li2MnO3, de ses défauts et de phases dérivées / Contribution to the understanding of the structure of Li2MnO3, of its defects and of derivative phasesBoulineau, Adrien 19 December 2008 (has links)
Afin de mieux comprendre les évolutions structurales mises en évidence dans les oxydes lamellaires de formule générale Li1+x(Ni0.425Mn0.425Co0.15)O2 utilisés comme électrode positive pour batterie lithium-ion, la structure du composé Li2MnO3 a été étudiée en détail. Obtenu selon différentes voies de synthèses, réalisées à différentes températures, ce matériau qui peut être considéré comme un matériau model à fait l’objet d’une étude cristallographique où l’utilisation de la microscopie électronique a été privilégiée. Deux types de défauts ont été identifiés. D’une part, l’existence de fautes d’empilement au sein du matériau a été démontrée. Leurs conséquences sur les clichés de diffraction électronique et les diagrammes de diffraction des rayons-X ont étés expliquées permettant d’unifier les controverses présentent à ce sujet dans la littérature. D’autre part, l’étude de la stabilité thermique du composé Li2MnO3 a mis en évidence l’apparition de défauts de type « phase spinelle » en surface des grains lorsque la température de traitement thermique devient supérieure ou égale à 900°C. Le traitement du matériau par la voie acide a pu être étudié et le mécanisme de désintercalation chimique du lithium par la voie acide a finalement pu être précisé. Il est montré que ce mécanisme est le même quelle que soit la taille des particules. / In order to get a better understanding of the complex structural evolutions occurring in the layered oxides like Li1+x(Ni0.425Mn0.425Co0.15)O2 materials when they are used as positive electrodes in lithium batteries, the structure of Li2MnO3 has been studied in detail. Obtained from several synthesis ways, annealed at various temperatures, this compound that can be considered as a model one regarding these complex materials has been the object of a crystallographic study where the use of electron microscopy was privileged. Two kinds of defects could be identified. From one part, the existence of stacking faults in the Li2MnO3 material has been proved and they have been visualized for the first time. Their consequences on X ray and electron diffraction patterns are explained allowing the unification of discrepancies existing in the bibliography. For other part, the study of the thermal stability of Li2MnO3 evidenced the appearance of spinel type defects when the annealing treatment is performed above 900°C. Finally the delithiation by acid leaching is studied and the lithium extraction mechanism is clarified. It is shown that this mechanism is the same whatever the particle size is.
|
7 |
Etudes structurales et électrochimiques des matériaux NaxMn1-yFeyO2 et NaNiO2 en tant qu’électrode positive de batteries Na-ion / Structural and Electrochemical studies of NaxMn1-yFeyO2 and NaNiO2 materials as positive electrode for Na-ion batteriesMortemard de boisse, Benoit 01 December 2014 (has links)
Ce travail présente les études électrochimiques et structurales menées sur deux systèmes : P2/O3-NaxMn1-yFeyO2 et O’3-NaxNiO2 utilisés en tant que matériaux d’électrode positive pour batteries Na-ion.Concernant le système P2/O3-NaxMn1-yFeyO2, l’étude par diffraction des rayons X menée in situ pendantla charge de batteries a montré de nombreuses transitions structurales. Que leur structure soit de type P2ou O3, les matériaux présentent une phase distordue pour les taux d’intercalation (x) les plus élevés etune phase très peu ordonnée pour les taux d’intercalation les moins élevés. Entre ces deux étatsd’intercalation, les phases de type P2 présentent moins de transitions que les phases de type O3. Celaentraine de meilleures propriétés électrochimiques pour les phases de type P2 (meilleure capacité endécharge, meilleure rétention de capacité…). Les spectroscopies d’absorption des rayons X et Mössbauerdu 57Fe ont montré que les couples redox Mn4+/Mn3+ et Fe4+/Fe3+ sont impliqués lors du cyclage, à bas ethaut potentiel, respectivement.Concernant O’3-NaNiO2, la diffraction des rayons-X menée in situ pendant la charge de batteriesO’3-NaNiO2//Na a montré de nombreuses transitions structurales O’3 ↔ P’3 résultant du glissement desfeuillets MO2. Ces transitions s’accompagnent de mises en ordre Na+ - lacunes dans le matériau. La tailledes grains a montré avoir un intérêt majeur puisqu’elle influe sur le nombre de phases présentessimultanément dans le matériau. Lorsque la batterie est déchargée, la phase limitante Na≈0.8NiO2 estobservée et empêche le retour à O’3-NaNiO2 / This work concerns the electrochemical and structural studies carried out on two systems used aspositive electrode materials for Na-ion batteries: P2/O3-NaxMn1-yFeyO2 and O’3-NaxNiO2. Concerning theP2/O3-NaxMn1-yFeyO2 systems, in situ X-ray diffraction carried out during the charge of the batteriesshowed that both materials undergo several structural transitions. Both the P2 and O3 phases show adistorted phase for the higher intercalation rates (x) and a poorly ordered phase for the lower ones.Between these two states, P2-based materials exhibit less structural transitions than the O3-based ones.This is correlated to the better electrochemical properties the P2-based materials exhibit (better dischargecapacity, better capacity retention…). X-ray absorption and 57Fe Mössbauer spectroscopies showed thatthe Mn4+/Mn3+ and Fe4+/Fe3+ redox couples are active upon cycling, respectively at low and high voltage.Concerning O’3-NaNiO2, in situ X-ray diffraction carried out during the charge of O’3-NaNiO2//Nabatteries showed several structural transition between O’3 and P’3 structures, resulting from slab glidings.These transitions are accompanied by Na+ - vacancies ordering within the “NaO6” slabs. Upon discharge,the material does not come back to its initial state and, instead, the Na≈0.8NiO2 phase represents themaximum intercalated state. The occurrence of this limiting phase prevents O’3-NaNiO2 to be consideredas an interesting material for real Na-ion applications.
|
8 |
Synthèse et caractérisation d'oxydes de métaux de transition à structures incommensurablesBoullay, Philippe 12 December 1997 (has links) (PDF)
Ce travail présente, dans trois systèmes différents, l'étude de nouveaux oxydes à structures incommensurables. Le composé $Ba_6Mn_{24}O_{48}$ ($Ba_{0.25}MnO_2$) possède une structure constituée par une charpente d'octaèdres $MnO_6$ dont l'arrangement définit des tunnels de type rutile, hollandite et des tunnels plus larges appelés "double barrelled". Les phénomènes d'incommensurabilité et de diffusion diffuse rencontrés dans ce composé sont décrits et expliqués par la distribution particulière des baryum dans les tunnels hollandite et "double barrelled". L'existence d'oxydes à structures lamellaires désaccordées est démontrée avec les composés de formulation $A'_{\alpha}[(AO)_{\frac{1+x}{2}}]_n(CoO_2)$. Ils sont construits sur la succession, selon un axe d'empilement, de (n-1) couches [AO] de type $NaCl$ et d'une couche hexagonale d'octaèdres $CoO_6$ joints par les arêtes. La transition entre ces deux couches est assurée par un élément de post-transition A'. Des termes n=2, avec $A'=Tl$ ou $Hg/Pb$ et des termes n=3 avec $A'=Bi$ ont été isolés. Dans les deux cas, le cation $A$ est $Sr$ et/ou $Ca$. Les composés ($Ba_{2-3x}Bi_{3x-}$)($Fe_{2x}Bi_{1-2x}$)$O_{3-\delta}$ ($x\in$[1/3, 1/2]), dérivés de la pérovskite, présentent des structures modulées de symétrie quadratique pour $x>0.4$. En utilisant le formalisme des groupes de superespace, une étude par analyse Rietveld montre que c'est la c\oe xistence sur le m\^{e}me site A pérovskite des cations $Ba$ et $Bi$ qui est responsable du phénomène d'incommensurablité observé. La structure magnétique de ces composés, déterminée par diffraction neutronique, est de type antiferromagnétique avec ferromagnétisme faible.
|
9 |
Étude de Li riche en oxydes lamellaires comme matériaux d'électrode positive pour des batteries lithium-ionKoga, Hideyuki 30 January 2013 (has links) (PDF)
Les mécanismes mis en jeu lors du cyclage de batteries au Lithium Li//Li1.20Mn0.54Co0.13Ni0.13O2 ont été étudiés avec l'objectif de déterminer l'origine des capacités très élevées délivrées par les oxydes lamellaires " (1-x)LiMO2.xLi2MnO3 ". La caractérisation par diffraction des RX et des neutrons montre que la structure est maintenue et l'existence de fluctuations de composition qui peuvent être assimilées à l'existence de deux phases de compositions voisines. Les résultats des tests électrochimiques et les analyses menées au cours du cyclage en spectroscopie d'absorption des rayons X ont suggéré la participation de l'oxygène aux processus redox. Celle-ci a été confirmée par la préparation et la caractérisation de matériaux désintercalés et réintercalés chimiquement en lithium. Les analyses en microscopie électronique à transmission (HAADF-STEM) et en nanodiffraction, montrent qu'une densification associée à un dégagement d'oxygène a lieu à la périphérie des particules
|
10 |
Optimisation de matériaux lamellaires d’électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 via une modification de surface ou une substitution cationique / Two approaches were considered for the optimization of Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 positive electrode materials for lithium-ion batteries : the surface modification (coating) and partial substitutionBains, Jessica Johanna 13 February 2009 (has links)
Deux approches ont été considérées pour l’optimisation de matériaux lamellaires d’électrode positive pour batteries lithium-ion de type Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 : la modification de surface (coating) et la substitution partielle. Dans un premier temps, nous avons montré que la substitution anionique du fluor à l’oxygène n’était pas effective contrairement aux hypothèses proposées dans la littérature par certains auteurs, mais qu’en réalité une couche de LiF était formée à la surface de ces matériaux, quelle que soit la voie de synthèse utilisée. Ces matériaux "coatés" présentent néanmoins une cyclabilité améliorée en batterie au lithium. Leurs propriétés structurales et physico-chimiques ont été caractérisées en combinant notamment la diffraction des rayons X, la spectroscopie RMN MAS du 7Li et du 19F et la spectroscopie d’électrons Auger. Dans un second temps, nous avons étudié l’effet de la substitution de l’aluminium (électrochimiquement inerte) au cobalt au sein de ces matériaux lamellaires riches en nickel et en manganèse. Les conditions de synthèse ont été optimisées et un matériau intéressant a ainsi été proposé. La structure, et plus particulièrement la distribution cationique, ont été déterminées par des analyses chimiques, par diffraction des rayons X et par des mesures magnétiques : la substitution de l’aluminium au cobalt entraîne une surlithiation moindre, un taux d’échange Li+ / Ni2+ plus important et par conséquent une diminution du caractère bidimensionnel de la structure. Ces matériaux présentent une bonne cyclabilité même à des régimes élevés et une stabilité thermique améliorée à l’état désintercalé. / Two approaches were considered for the optimization of Li1+x(Ni1/2-yMn1/2-yCo2y)1-xO2 positive electrode materials for lithium-ion batteries : the surface modification (coating) and partial substitution. First, we showed that fluorine substitution for oxygen is not effective, on the contrary to the hypotheses proposed in literature by others authors: in fact a thin LiF layer is formed at the surface of these materials irrespective of the synthesis route. These "coated" materials show a better cyclability. Their structural and physicochemical properties were characterized mainly by X-ray diffraction, 7Li and 19F MAS NMR spectroscopy and Auger electron spectroscopy. Secondly, we studied the effect of aluminum (electrochemically inert) substitution for cobalt within these layered materials rich in nickel and manganese. The synthesis conditions were optimized and an interesting material was thus proposed. The structure and cationic distribution were determined by chemical analyses, X-ray diffraction, magnetic measurements: aluminum substitution leads to a lower overlithiation, to a larger exchange Li+ / Ni2+ ratio and thus to a decreasing bidimensional character for the structure. These materials show a good cyclability even at high rates and an improved thermal stability in the deintercalated state.
|
Page generated in 0.0755 seconds