Spelling suggestions: "subject:"semichemical potential"" "subject:"microchemical potential""
11 |
Hyperheavy Nuclei in Axial Relativistic Hartree-Bogoliubov CalculationsGyawali, Abhinaya 10 August 2018 (has links)
The existence of highest proton numbers at which the nuclear landscape cease to ex- ist, the end of the periodic table of elements and the limits of the existence of the nu- clei are some of the difficult questions to answer. To explore those questions, we in- vestigated hyperheavy nuclei (Z ≥ 126) using covariant density functional theory. We demonstrate the existence of three regions of spherical hyperheavy nuclei centered around (Z ∼ 138, N ∼ 230), (Z ∼ 156, N ∼ 310) and (Z ∼ 174, N ∼ 410). Also, we explored other properties of hyperheavy nuclei such as octupole deformation, alpha decay half lives, chemical potential, etc.
|
12 |
First Principles Study of Double Perovskites and Group III-V CompoundsMishra, Rohan 30 August 2012 (has links)
No description available.
|
13 |
Colloidal chemical potential in attractive nanoparticle-polymer mixtures: simulation and membrane osmometryQuant, Carlos Arturo 17 August 2004 (has links)
The potential applications of dispersed and self-assembled nanoparticles depend critically on accurate control and prediction of their phase behavior. The chemical potential is essential in describing the equilibrium distribution of all components present in every phase of a system and is useful as a building block for constructing phase diagrams. Furthermore, the chemical potential is a sensitive indicator of the local environment of a molecule or particle and is defined in a mathematically rigorous manner in both classical and statistical thermodynamics. The goal of this research is to use simulations and experiments to understand how particle size and composition affect the particle chemical potential of attractive nanoparticle-polymer mixtures.
The expanded ensemble Monte Carlo (EEMC) simulation method for the calculation of the particle chemical potential for a nanocolloid in a freely adsorbing polymer solution is extended to concentrated polymer mixtures. The dependence of the particle chemical potential and polymer adsorption on the polymer concentration and particle diameter are presented. The perturbed Lennard-Jones chain (PLJC) equation of state (EOS) for polymer chains1 is adapted to calculate the particle chemical potential of nanocolloid-polymer mixtures. The adapted PLJC equation is able to predict the EEMC simulation results of the particle chemical potential by introducing an additional parameter that reduces the effects of polymer adsorption and the effective size of the colloidal particle.
Osmotic pressure measurements are used to calculate the chemical potential of nanocolloidal silica in an aqueous poly(ethylene oxide) (PEO) solution at different silica and PEO concentrations. The experimental data was compared with results calculated from Expanded Ensemble Monte Carlo (EEMC) simulations. The results agree qualitatively with the experimentally observed chemical potential trends and illustrate the experimentally-observed dependence of the chemical potential on the composition. Furthermore, as is the case with the EEMC simulations, polymer adsorption was found to play the most significant role in determining the chemical potential trends.
The simulation and experimental results illustrate the relative importance of the particles size and composition as well as the polymer concentration on the particle chemical potential. Furthermore, a method for using osmometry to measure chemical potential of nanoparticles in a nanocolloid-mixture is presented that could be combined with simulation and theoretical efforts to develop accurate equations of state and phase behavior predictions. Finally, an equation of state originally developed for polymer liquid-liquid equilibria (LLE) was demonstrated to be effective in predicting nanoparticle chemical potential behavior observed in the EEMC simulations of particle-polymer mixtures.
|
14 |
Gestion des ressources en eau dans les régions arides : analyse expérimentale d’un sol type du Burkina Faso et modélisation numérique des transferts d’eau / Water Resources Management in Arid Regions : Experimental Analysis and NumericalModelling of Water Transfer in a Typical Soil from Burkina FasoKébré, Bawindsom 19 December 2013 (has links)
L'étude présentée dans cette thèse porte sur une analyse expérimentale des propriétés physiques (densités, porosité, granulométrie) et hydrodynamiques (isotherme de désorption, courbe caractéristique sol-eau, perméabilité à saturation) d'un sol type aride du Burkina Faso et une simulation numérique des transferts d'eau. La modélisation des transferts est abordée par une approche thermodynamique qui constitue un cadre général pour décrire à la fois l'état de l'eau dans le sol et les mécanismes de transferts mis en jeu : filtration de la phase liquide, diffusion de la vapeur d'eau, changement de phase liquide-vapeur. Des essais expérimentaux de transferts d'eau dans des colonnes de sol hermétiquement fermées et placées dans une enceinte régulée en température, ont permis d'établir l'évolution des profils de teneur en eau au cours du temps. La configuration expérimentale est choisie de sorte que seule la filtration de la phase liquide de l'eau dans le sol soit prépondérante. Les profils expérimentaux ont servi à l'estimation par approche inverse de la conductivité hydraulique dans les faibles teneurs en eau. La prise en compte des écoulements par films dans la modélisation du coefficient de perméabilité relative corrige les insuffisances des modèles capillaires. Les coefficients de changement de phase proche et loin de l'équilibre modélisés à partir de résultats expérimentaux permettent la mise en évidence du non-équilibre liquide/gaz dans les transferts aux faibles teneurs en eau. Il ressort que le non-équilibre dans les transferts aux faibles teneurs en eau est plus marqué avec le modèle capillaire avec un front de séchage plus franc à la surface. La prise en compte des écoulements par films prolonge la filtration de la phase liquide de l'eau jusqu'à l'état hygroscopique du sol avec un flux d'eau liquide maintenu à la surface du sol jusqu'à des temps plus longs. / The study presented in this thesis focuses on an experimental analysis of physical properties (densities, porosity, particle size distribution) and hydrodynamic properties (desorption isotherm, soil-water characteristic curve, saturated permeability) of an arid soil from Burkina Faso and numerical simulation of water transfers. The transfer modelling is addressed through thermodynamic approach which provides a general framework to describe both the water state in the soil and the transport mechanisms: filtration of liquid phase, water vapor diffusion, liquid/vapor phase change. Experimental attempts of water transfer in soil columns, sealed and placed into a controlled temperature chamber, have established the evolution of water content profiles over time. The experimental configuration is chosen so that only the filtration of water liquid phase is taken into account. These experimental profiles were used to estimate, by inverse approach, the unsaturated hydraulic conductivity at low water contents. Consideration of film flows in the relative permeability modelling corrects the shortcomings of capillary bundle models used to describe water flow from saturation to oven-dryness. The coefficients of phase change near and far from equilibrium modeled from experimental results prove non-equilibrium liquid/gas existence. It appears that the liquid/gas non-equilibrium at low water content is more pronounced with the capillary model with a frank drying front at the soil surface. Consideration of film flows extends liquid phase filtration into the soil until the hygroscopic state with a liquid water flux maintained at the soil surface for longer times.
|
15 |
The Hubbard model on a honeycomb lattice with fermionic tensor networksSchneider, Manuel 09 December 2022 (has links)
Supervisor at Deutsches Elektronen-Synchrotron (DESY) in Zeuthen: Dr. Habil. Karl Jansen / Mit Tensor Netzwerken (TN) untersuchen wir auf einem hexagonalen Gitter das Hubbard-Modell mit einem chemischen Potential. Wir zeigen, dass ein TN als Ansatz für die Zustände des Modells benutzt werden kann und präsentieren die berechneten Eigenschaften bei niedrigen Energien. Unser Algorithmus wendet eine imaginäre Zeitentwicklung auf einen fermionischen projected engangled pair state (PEPS) auf einem endlichen Gitter mit offenen Randbedingungen an. Der Ansatz kann auf einen spezifischen fermionischen Paritätssektor beschränkt werden, was es uns ermöglicht, den Grundzustand und den Zustand mit einem Elektron weniger zu simulieren. Mehrere in unserer Arbeit entwickelte Verbesserungen des Algorithmus führen zu einer erheblichen Steigerung der Effizienz und Genauigkeit. Wir messen Erwartungswerte mit Hilfe eines boundary matrix product state. Wir zeigen, dass Observablen in dieser Näherung mit einer weniger starken Trunkierung, als in der Literatur erwartet wird, berechnet werden können. Dies führt zu einer erheblichen Reduzierung der numerischen Kosten des Algorithmus. Für verschiedene Stärken der lokalen Wechselwirkung, sowie für mehrere chemische Potentiale berechnen wir die Energie, die Teilchenzahl und die Magnetisierung mit guter Genauigkeit. Wir zeigen die Abhängigkeit der Teilchenzahl vom chemischen Potential und berechnen die Energielücke. Wir demonstrieren die Skalierbarkeit zu großen Gittern mit bis zu 30 × 15 Gitterpunkten und machen Vorhersagen in einem Teil des Phasenraums, der für Monte-Carlo nicht zugänglich ist. Allerdings finden wir auch Limitierungen des Algorithmus aufgrund von Instabilitäten, die die Berechnungen im Paritätssektor behindern, welcher orthogonal zum Grundzustand ist. Wir diskutieren Ursachen und Indikatoren und schlagen Lösungen vor. Unsere Arbeit bestätigt, dass TN genutzt werden können, um den niederenergetischen Sektors des Modells zu erforschen. Dies eröffnet den Weg zu einem umfassenden Verständnis des Phasendiagramms. / Using tensor network (TN) techniques, we study the Hubbard model on a honeycomb lattice with a chemical potential, which models the electron structure of graphene. In contrast to Monte Carlo methods, TN algorithms do not suffer from the sign problem when a chemical potential is present. We demonstrate that a tensor network state can be used to simulate the model and present the calculated low energy properties of the Hubbard model. Our algorithm applies an imaginary time evolution to a fermionic projected entangled pair state (PEPS) on a finite lattice with open boundary conditions. The ansatz can be restricted to a specific fermionic parity sector which allows us to simulate the ground state and the state with one electron less. Several improvements of the algorithm developed in our work lead to a substantial performance increase of the efficiency and precision. We measure expectation values with a boundary matrix product state and show that observables can be calculated with a lower bond dimension of this approximation than expected from the literature. This decreases the numerical costs of the algorithm significantly. For varying onsite interactions and chemical potentials we calculate the energy, particle number and magnetization with good precision. We show the dependence of the particle number on the chemical potential and compute the single particle gap. We demonstrate the scalability to large lattices of up to 30 × 15 sites and make predictions in a part of the phase space that is not accessible to Monte Carlo methods. However, we also find limitations of the algorithm due to instabilities that spoil the calculations in the parity sector orthogonal to the ground state. We discuss the causes and indicators of such instabilities and propose solutions. Our work validates that TNs can be utilized to study the low energy properties of the Hubbard model on a honeycomb lattice with a chemical potential, thus opening the road to finally understand its phase diagram.
|
16 |
Modern Computational Physical Chemistry : An Introduction to Biomolecular Radiation Damage and Phototoxicity / Modern fysikalisk-kemisk beräkningsmetodik : En introduktion till biomolekylära strålningsskador och fototoxicitetLlano, Jorge January 2004 (has links)
<p>The realm of molecular physical chemistry ranges from the structure of matter and the fundamental atomic and molecular interactions to the macroscopic properties and processes arising from the average microscopic behaviour.</p><p>Herein, the conventional electrodic problem is recast into the simpler molecular problem of finding the electrochemical, real chemical, and chemical potentials of the species involved in redox half-reactions. This molecular approach is followed to define the three types of absolute chemical potentials of species in solution and to estimate their standard values. This is achieved by applying the scaling laws of statistical mechanics to the collective behaviour of atoms and molecules, whose motion, interactions, and properties are described by first principles quantum chemistry. For atomic and molecular species, calculation of these quantities is within the computational implementations of wave function, density functional, and self-consistent reaction field theories. Since electrons and nuclei are the elementary particles in the realm of chemistry, an internally consistent set of absolute standard values within chemical accuracy is supplied for all three chemical potentials of electrons and protons in aqueous solution. As a result, problems in referencing chemical data are circumvented, and a uniform thermochemical treatment of electron, proton, and proton-coupled electron transfer reactions in solution is enabled.</p><p>The formalism is applied to the primary and secondary radiation damage to DNA bases, e.g., absorption of UV light to yield electronically excited states, formation of radical ions, and transformation of nucleobases into mutagenic lesions as OH radical adducts and 8-oxoguanine. Based on serine phosphate as a model compound, some insight into the direct DNA strand break mechanism is given.</p><p>Psoralens, also called furocoumarins, are a family of sensitizers exhibiting cytostatic and photodynamic actions, and hence, they are used in photochemotherapy. Molecular design of more efficient photosensitizers can contribute to enhance the photophysical and photochemical properties of psoralens and to reduce the phototoxic reactions. The mechanisms of photosensitization of furocoumarins connected to their dark toxicity are examined quantum chemically.</p>
|
17 |
Modern Computational Physical Chemistry : An Introduction to Biomolecular Radiation Damage and Phototoxicity / Modern fysikalisk-kemisk beräkningsmetodik : En introduktion till biomolekylära strålningsskador och fototoxicitetLlano, Jorge January 2004 (has links)
The realm of molecular physical chemistry ranges from the structure of matter and the fundamental atomic and molecular interactions to the macroscopic properties and processes arising from the average microscopic behaviour. Herein, the conventional electrodic problem is recast into the simpler molecular problem of finding the electrochemical, real chemical, and chemical potentials of the species involved in redox half-reactions. This molecular approach is followed to define the three types of absolute chemical potentials of species in solution and to estimate their standard values. This is achieved by applying the scaling laws of statistical mechanics to the collective behaviour of atoms and molecules, whose motion, interactions, and properties are described by first principles quantum chemistry. For atomic and molecular species, calculation of these quantities is within the computational implementations of wave function, density functional, and self-consistent reaction field theories. Since electrons and nuclei are the elementary particles in the realm of chemistry, an internally consistent set of absolute standard values within chemical accuracy is supplied for all three chemical potentials of electrons and protons in aqueous solution. As a result, problems in referencing chemical data are circumvented, and a uniform thermochemical treatment of electron, proton, and proton-coupled electron transfer reactions in solution is enabled. The formalism is applied to the primary and secondary radiation damage to DNA bases, e.g., absorption of UV light to yield electronically excited states, formation of radical ions, and transformation of nucleobases into mutagenic lesions as OH radical adducts and 8-oxoguanine. Based on serine phosphate as a model compound, some insight into the direct DNA strand break mechanism is given. Psoralens, also called furocoumarins, are a family of sensitizers exhibiting cytostatic and photodynamic actions, and hence, they are used in photochemotherapy. Molecular design of more efficient photosensitizers can contribute to enhance the photophysical and photochemical properties of psoralens and to reduce the phototoxic reactions. The mechanisms of photosensitization of furocoumarins connected to their dark toxicity are examined quantum chemically.
|
18 |
Dünne Palladium-Wasserstoff-Schichten als Modellsystem: Thermodynamik struktureller Phasenübergänge unter elastischen und mikrostrukturellen Zwangsbedingungen / Palladium-hydrogen thin films as a model system: Thermodynamics of structural phase transitions with elastic and microstructural constraintsWagner, Stefan 15 July 2014 (has links)
In dieser Arbeit wurde am Modell der Hydridbildung in Wasserstoff-beladenen, 5 nm bis 2000 nm dünnen Palladium-Schichten der Einfluß der Schichtdicke sowie mikrostruktureller und elastischer Zwangsbedingungen auf die Thermodynamik von Phasenübergängen 1. Ordnung untersucht. Grundlage der Untersuchungen ist eine H-induzierte Volumendehnung des Palladiums, die infolge eines Konzentrationshubs ∆c_H bei der Hydridbildung sprunghaft erfolgt. Aus der Volumendehnung resultieren an der Schicht-Substrat-Grenzfläche und an inneren Grenzflächen wie Phasen- und Korngrenzen hohe mechanische Spannungsgradienten, die additiv zum chemischen Potential μ_H des Wasserstoffs beitragen und die Stabilität der Hydridphase verändern. Der Einfluß mechanischer Spannungen auf das chemische Potential wird durch die Mikrostruktur der Schichten modifiziert, die unterschiedliche H-Einlagerungsplätze im Palladium-Gitter mit einem Spektrum unterschiedlicher Platzenergien bereitstellt und die Kanäle eines möglichen Spannungsabbaus durch plastische Deformation der Schichten bestimmt.
Ziel dieser Arbeit war es, die sich überlagernden Einflüsse der Mikrostruktur und mechanischer Spannungen auf die Thermodynamik der Hydridbildung experimentell zu separieren und aus ihnen resultierende Abweichungen von der Thermodynamik des massiven Pd-H-Systems unter Bezugnahme auf thermodynamische Modellvorstellungen zu quantifizieren.
Durch gezielte Wahl der Herstellungsbedingungen präparierte Pd-Schichten texturiert nanokristalliner, multi-orientiert polykristalliner und epitaktischer Mikrostruktur wurden schrittweise mit Wasserstoff beladen. H-induzierte Änderungen des Spannungszustands, die Hydridbildung und plastische Änderungen der Schichten wurden in-situ insbesondere mit Methoden der Röntgendiffraktometrie, durch die Messung der Substratverbiegung, des elektrischen Widerstandes, der akustischen Emission der Schichten sowie mittels STM und Proton-Proton-Streuung untersucht.
Hinsichtlich mikrostruktureller Änderungen der Schichten bei H-Beladung wurden Kaskaden kritischer Schichtdicken und Spannungszustände des Einsetzens plastischer Deformation gefunden. Bereits im Bereich der elastischen Schichtdehnung wurden diskrete Relaxations-Ereignisse beobachtet, die auf die Bewegung intrinsischer Defekte zurückgeführt wurden. Für Schichtdicken unterhalb von 22-34 nm wurde ein neuer Typ eines partiell kohärenten Phasenübergangs belegt, bei dem die Phasengrenzflächen während des gesamten Phasenübergangs kohärent verbleiben.
Unter dem Einfluß der unterschiedlichen Mikrostrukturen und Spannungszustände der Schichten wurde eine signifikante Reduktion der elastischen H-H-Wechselwirkung – der Triebkraft der Hydridbildung – um 20-50 % gegenüber dem massiven System belegt. Für die Schichten beträgt E_HH 15-30 kJ/mol_H, während im massiven System E_HH = 36.8 kJ/mol_H. Der elastische Beitrag zur Reduktion der H-H-Wechselwirkung beträgt 2-5 kJ/mol_H. Er wächst für partiell kohärente Entmischung rasch an. Die entsprechenden Hydridbildungsenthalpien sind in Schichten um bis zu 3 kJ/mol_H erhöht. In lokal durch Faltenbildung relaxierten Schichten kann dies das räumliche Nebeneinander der α-Phase in haftenden Schichtbereichen und der Hydridphase in den Falten erzwingen.
Darüber hinaus wurde gezeigt, daß die Druck-Konzentrations-Isothermen dünner Pd-H-Schichten im Bereich des Phasenübergangs unter dem Einfluß nicht-linearer mechanischer Spannungen eine stetige Steigung aufweisen können. Dies macht eine Modifikation der Grenzbedingung zur Bestimmung der kritischen Temperatur der Hydridbildung erforderlich, bei der die Steigung ∂μ_H/∂c_H | T=T_c explizit ausgewertet wird. Die resultierenden kritischen Temperaturen der Pd-H-Schichten sind bis zu 40 % gegenüber dem massiven System reduziert. T_c ist 340-490 K für die Schichten, während T_c = 563 K für das massive System. In allen Schichten wurde bei 300 K noch immer ein Phasenübergang gefunden.
Insgesamt ließen sich die beobachteten Änderungen der Thermodynamik zumeist direkt an die Mikrostruktur und den Spannungszustand der Schichten koppeln, während allein an die Schichtdicke gebundene Finite-Size-Effekte bei den untersuchten Schichten von untergeordneter Bedeutung sind.
|
Page generated in 0.0556 seconds