• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 91
  • 22
  • 21
  • 14
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 330
  • 85
  • 49
  • 48
  • 46
  • 46
  • 44
  • 44
  • 41
  • 41
  • 41
  • 39
  • 35
  • 35
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
191

Kinetic Studies of the Glycerophosphate Acyltransferase From Euglena Microsomes, Including the Effects of Serum Albumin

Hershenson, Susan, Lou Ernst-Fonberg, Mary 16 May 1983 (has links)
The kinetics of the reaction catalyzed by acyl-CoA: sn-glycerol-3-phosphate O-acyltransferase solubilized from Euglena gracilis microsomes were examined. For myristoyl-, palmitoyl-, stearoyl-, and oleoyl-CoAs, the initial reaction rates rose with increasing substrate concentration up to an optimal concentration that varied from 18.5 to 25 μ M, well above the respective critical micelle concentrations. At higher substrate concentrations, reaction was progressively inhibited. Arachidoyl-CoA was a relatively poor substrate for the acyltransferase, and substrate inhibition was not seen with it. Km values for acyl-CoAs ranged from 13 to 20 μ M while the corresponding V values varied almost 40-fold. Bovine serum albumin, among other effects, caused a change in the kinetic pattern of the reaction acyl-CoA dependency. Both acyl-CoA micelles and albumin-bound acyl-CoA were substrates. The binding of palmitoyl- and oleoyl-CoA was 2.7 and 1.5 mol, respectively, per mol of albumin. The critical micelle concentration of palmitoyl-CoA under the reaction conditions was shown by low angle light scattering photometry to be 7.1 p.M. The sn-glycerol 3-phosphate concentration dependency of the acyltransferase initial velocity exhibited Michaelis-Menten kinetics with Km values of 1.3 and 2.9 mM in the presence of 12.5 and 25 μM palmitoyl-CoA, respectively. The substrate analogues sn-glyceraldehyde 3-phosphate and dihydroxyacetone phosphate inhibited the reaction.
192

Using the Medication Cabinet to Predict Fall Risk In Elderly Adults

Lopez, Jessica 01 January 2017 (has links)
Background: In the United States, 30-60% of older adults fall each year; 10-20% of these falls result in injury, hospitalization, or even death. Better prevention of falls in this population may be facilitated by broader identification of risk factors. The use of statins has emerged as a potential risk factor, but the data provide conflicted results. Purpose: To examine the relationship between statin use and falls among community-dwelling older adults. Methods: We evaluated the patient registry of a Level 1 trauma center. All patients aged > 50 years who were admitted for falls in 2015 were included (n=615). Many of these patients had been previously admitted for falls and many were later readmitted for falls. We analyzed predictors of both prior admission and readmission with linear regressions. Independent variables were self-reported balance problems, diagnosis of dementia, and the use of statins. Results: On average, patients admitted for falls were 79.9 + 9.3 years old and 28% (n=173) were taking statins. Our collection of predictors explained 14.2% of the variance in the number of prior admissions (p<0.001). In this model, the use of statins significantly predicted the number of previous fall-related admissions (95% CI: 0.07–0.50, p=0.010). This same model maintained its significance when predicting admissions for future falls (p<0.001) and the use of statins continued to predict a greater number of readmissions (95% CI: 0.04–0.36, p=0.015). Conclusion: More than 25% of all Americans age > 40 years are taking cholesterol-lowering medication; 93% of those medications are statins. Although evidence is conflicted, these data support the finding that statin therapy increases the risk of falls in older adults. Incorporating exercise training as a prophylactic measure: enhancing lipid profiles and decreasing the need for statins while also improving balance, coordination, and mobility, may reduce fall-related injuries.
193

Regulation of LKB1-STRAD-MO25 Complex Expression and Activation of AMPK in Skeletal Muscle by Thyroid Hormone

Branvold, Devon Jack 11 July 2007 (has links) (PDF)
AMP-activated protein kinase (AMPK), a heterotrimeric protein which serves as a metabolic master switch in skeletal muscle, is a research target for the pharmaceutical treatment and prevention of type 2 diabetes. The expression of all of the isoforms of the subunits of AMPK and AMPK activity are increased in skeletal muscle tissue of hyperthyroid rats. Activity of AMPK is regulated by an upstream kinase (AMPKK). The LKB1-STRAD-MO25 complex is a major AMPKK in skeletal muscle. This experiment was designed to determine whether the increase in AMPK activity is accompanied by a thyroid hormone-induced increase in the expression of the LKB1-STRAD-MO25 complex. LKB1-STRAD-MO25 complex protein expression was determined by Western blots in control rats, in rats given 3 mg of thyroxine and 1 mg of triiodothyronine per kilogram chow for 4 weeks, and in rats given 0.01% propylthiouracil (PTU) in drinking water for 4 weeks. The relative expression of LKB1, MO25, and STRAD, as well as PGC-1α, increased in the soleus of thyroid hormone treated rats vs. the controls. MO25 mRNA increased with thyroid hormone treatment, and STRAD mRNA increased with PTU treatment. Phospho-AMPK and phospho-ACC increased in response to electrical stimulation in muscles of all treatment groups, but was most markedly increased in hyperthyroid rats. Thyroid hormone treatment also increased the amount of phospho-CREB in the soleus, heart, and red quadriceps. These data provide evidence that thyroid hormone partially controls expression of the LKB1-STRAD-MO25 complex, as well the subsequent activation of AMPK.
194

Acetyl-CoA Carboxylase Alpha the Rate-limiting Enzyme of Fatty Acid Synthesis Modulates Mitotic Progression and Chromosome Segregation

Landgrave-Gomez, Jorge 10 1900 (has links)
While metabolic enzymes inside the cell nucleus were initially considered “contaminants”, recent evidence has shown that these fulfill essential functions in epigenetic regulation. Indeed a model is emerging in which local metabolite pools influence various nuclear processes. In this model, the subcellular distribution and organization of metabolic factors have a crucial role in the complex logic and regulation of nuclear functions. Cancer cells exploit nuclear metabolic enzymes to alter the synthesis and utilization of metabolites that sustain their transcriptional programs allowing their abnormal proliferation. Understanding the precise molecular mechanisms that modulate the distribution of nuclear metabolic enzymes and their related biological functions has the potential to uncover novel therapeutic vulnerabilities of malignant cells. Here, we describe an unexpected subcellular distribution of acetyl-CoA carboxylase alpha (ACC1), the rate-limiting enzyme of de novo fatty acid synthesis. We found that in cancer cells, ACC1 is not restricted to the cytoplasm. Instead, at mitosis and after the nuclear envelope breakdown, it transiently redistributes into filament-like structures that contact condensed chromosomes. Simultaneous profiling of protein-protein and -DNA interactions defined ACC1 association with different factors associated with the cellular machinery that modulates chromosome segregation, including the centromere, the kinetochore, and the fibrous corona. Inducible depletion of ACC1 resulted in altered mitotic progression and accumulation of chromosome segregation defects – effects that are abolished only with the reconstituted expression of catalytically active mutants of ACC1 but not its inactive counterparts. We further found that the abundance of malonyl-CoA – the main product of ACC1 enzymatic activity – gradually increases towards the onset of mitosis, being a significant determinant for histone malonylation. Overall we uncovered a previously unknown function of ACC1 in modulating mitotic progression and chromosome segregation. Our findings support a model where local niches of malonyl-CoA might act as signal molecules for faithful chromosome segregation.
195

Evaluating the effects of HMG -CoA reductase inhibitors on C -reactive protein, butyrylcholinesterase, and lipids

Shinn, Annie Heekyung 01 January 2004 (has links) (PDF)
The objectives of this two part prospective study were to evaluate the effects of statins on C-reactive protein (CRP), butyrylcholinesterase (BChE), lipids, and the relationships between these parameters. Subjects enrolled in this study were separated into two cohorts. The first group (study 1) consisted of 37 subjects converted from pravastatin to cerivastatin. The second group (study 2) consisted of 11 subjects with diabetes initiated on cerivastatin therapy. The subjects were followed for 12-weeks in the Lipid Clinic at David Grant Medical Center at Travis Air Force Base. CRP, BChE, total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and triglycerides (TG) were measured at baseline, 6-weeks, and 12-weeks. In study 1, CRP (p = 0.704) and BChE (p = 0.746) remained relatively stable over 12-weeks. The lipid panel changed significantly with TC (p < 0.001) and LDL (p < 0.001) decreasing and HDL (p = 0.017) increasing. Although TG declined numerically, it was not statistically significant (p = 0.649). A significant negative correlation was detected at baseline (r = −0.353, p = 0.032), but lost at 6-weeks and 12-weeks. In study 2, CRP declined by 42.9%, but was not statistically significant (p = 0.178). BChE remained relatively stable over 12-weeks (p = 0.666). TC (p < 0.001) and LDL (p < 0.001) declined and TG (p = 0.035) fluctuated over the course of the study. HDL increased, but it was not statistically significant (p = 0.396). Significant positive correlations were seen between CRP and TG (r = 0.908, p < 0.001) and BChE and TC (r = 0.721, P = 0.012) at baseline and BChE and TG (r = 0.64, p = 0.034) at 12-weeks. These results suggest that statin effects on CRP are independent of the lipid-lowering effects and switching statins may not affect CRP disposition. Cerivastatin does not appear to have effects on BChE activity. Lastly, a possible competitive relationship may exist between CRP and BChE. This is suggested by the negative correlation seen in study 1 and with the gain in correlation between BChE and TG as the correlation was lost between CRP and TG in study 2.
196

Molecular regulation of G protein localization and its pharmacological implications

Tennakoon, Mithila Indracharuni 11 July 2022 (has links)
No description available.
197

Effect of biotin supplementation on the metabolism of lactating dairy cows

Ferreira, Gonzalo 13 March 2006 (has links)
No description available.
198

Role of Subcellular Differentiation in Plant Disease Resistance

Lang, Saara Susanna 07 March 1997 (has links)
3-Hydroxy-3-methylglutaryl CoA reductase (HMGR, EC 1.1.1.34) catalyzes the reaction from hydroxymethylglutaryl CoA to mevalonate in the isoprenoid pathway. In solanaceous plants, one class of endproducts of the pathway are sesquiterpenoid phytoalexins, antibiotic compounds produced by plants in response to pathogens. We are interested in the role of the defense-inducible isoforms of HMGR in phytoalexin production and disease resistance. Transgenic tobacco, constitutively expressing the defense-inducible tomato hmgr isogene, hmg2, showed fewer and smaller lesions following tobacco mosaic virus (TMV) inoculation. There is little evidence of phytoalexins acting directly against viruses, but they may reduce the spread of viruses as part of the hypersensitive response resulting in death of the host cell. Transmission electron microscopy of leaf cells of the transgenic plants revealed a larger volume of cytosol and accumulation of electron-dense inclusion bodies within the vacuoles. No structures resembling crystalloid ER or karmellae, caused by overexpression of hmgr in mammalian or yeast cells, respectively, were observed. Similar inclusion bodies were found in the vacuoles of wild-type tobacco leaf cells adjacent to necrotic cells in a TMV lesion. Tobacco expressing a truncated (membrane domain) form of hmg2 did not show enhanced resistance to TMV or any ultrastructural changes, indicating the importance of catalytically active HMG2 in mediating these changes. Sesquiterpene cyclase (a key branch point enzyme controlling sesquiterpene phytoalexin biosynthesis) was not induced and the amount of capsidiol, the tobacco phytoalexin, was not elevated by expression of hmg2. After TMV-inoculation, HMGR activity and the amount of capsidiol were higher in the wild-type than in the transgenic plants. Consequently, the enhanced resistance to TMV was not due to constitutive capsidiol production. The transgenic plants may have been able to produce sesquiterpenoid phytoalexins faster due to constitutive hmg2- expression and restricted the spread of the virus earlier, so that only a few cells were sacrificed. The subcellular localization of the defense-specific HMG2 isoform was determined by tagging tomato hmg2 with a c-myc epitope, and constitutively expressing the construct in transgenic tobacco plants. In non-induced leaves, MYC-HMG2 was found localized in small clusters associated with the ER. In TMV-inoculated leaves MYC-HMG2 co-localized with sesquiterpene cyclase to the vacuolar inclusion bodies suggesting that they may contain a defense-induced, membrane-associated multienzyme complex dedicated to sesquiterpene production. Our results support the hypothesis of the multibranched plant isoprenoid pathway being partly regulated by pathway partitioning. / Ph. D.
199

Protein Phosphorylation in Archaea

Thurston, Barbara 10 March 1997 (has links)
Protein phosphorylation constitutes an important mechanism for cellular regulation in both Eucarya and Bacteria. All living organisms evolved from a common progenitor; this implies that protein phosphorylation as a means of regulation also exists in Archaea. Previously, in the sulfur-dependent archaeon Sulfolobus solfataricus a gene was cloned encoding a protein-serine/threonine phosphatase that was similar to eucaryal protein-serine/threonine phosphatases type 1, 2A, and 2B. To identify protein phosphatases in other archaeons, oligonucleotides encoding conserved regions of eucaryal protein-serine/threonine phosphatases were used in the polymerase chain reaction to amplify genomic DNA from the methanogenic archaeon Methanosarcina thermophila. From the PCR reaction a fragment of DNA was isolated that encoded a portion of a protein phosphatase. Using this DNA fragment as a probe, the entire phosphatase gene was isolated. The amino acid sequence of the phosphatase encoded by this gene displayed greater than 30% identity with eucaryal protein-serine/threonine phosphatase type 1. The gene encoding the Methanosarcina phosphatase was expressed in Escherichia coli. The expressed protein exhibited protein serine phosphatase activity that was sensitive to inhibitors of eucaryal phosphatases such as okadaic acid, microcystin, calyculin, and tautomycin. In order to identify potential endogenous substrates of archaeal protein-serine/threonine phosphatases and kinases, a study was initiated to characterize the most prominent phosphoproteins in S. solfataricus. Cell extracts were incubated with [γ-³²P] ATP, MgCl₂, and MnCl₂, and the proteins in the extracts were separated by SDS-PAGE. Autoradiography of the gels revealed four prominent phosphoproteins with apparent molecular masses of 35, 46, and 50 kDa. N-terminal sequence analysis and enzymatic assays of the 35 kDa phosphoprotein identified this phosphoprotein as the a-subunit of succinyl-CoA synthetase. N-terminal sequence analysis and enzymatic assays revealed that the 50 kDa phosphoprotein was a hexosephosphate mutase. Neither the 50 kDa nor the 35 kDa phosphoprotein appeared to be the target of protein kinases or phosphatases. Therefore, while protein-serine phosphatases exist in Archaea, the targets of these phosphatases have yet to be determined. / Ph. D.
200

Stearoyl-COA Desaturase Gene Transcription, mRNA, And Activity In Response To Trans-Vaccenic Acid And Conjugated Linoleic Acid Isomers

Lin, Xiaobo 29 August 2000 (has links)
Studies were conducted to investigate: 1) desaturation of dietary trans-vaccenic acid (TVA, trans11-18:1) to the cis9,trans11-18:2 isomer of conjugated linoleic acid (9/11CLA), 2) effects of two conjugated linoleic acid isomers [9/11CLA or trans10,cis12-18:2 (10/12CLA)] and TVA on enzyme activities and mRNA abundance for lipogenic enzymes, and 3) regulation of stearoyl-CoA desaturase (SCD) gene transcription. In the first study, lactating mice were fed 3% linoleic acid (LA), or 2% LA plus 1% stearic acid (SA), 1% TVA, or 1% CLA mixture. Dietary TVA enriched the 9/11CLA content of carcass, liver, and mammary tissue of lactating mice. A similar enhancement of 9/11CLA also was observed in liver, but not carcass, of suckling pups nursing TVA-fed dams. The CLA mixture decreased mammary acetyl-CoA carboxylase (ACC) activity compared with other treatments. However, total fatty acid content of mammary tissue was reduced only when compared with TVA. In the second experiment, lactating mice were fed 3% canola oil (OA), or 2% OA plus 1% SA, 1% TVA, 1% 9/11CLA, or 1% 10/12CLA. Dietary TVA, 9/11CLA, and 10/12CLA decreased mRNA abundance for ACC and fatty acid synthase (FAS) in mammary tissue, suggesting each had the potential to reduce de novo fatty acid synthesis. However, only the CLA isomers decreased ACC activity in mammary tissue and concentration of medium-chain fatty acids (MCFA = 12:0+14:0+16:0) in milk fat. The 10/12CLA isomer caused greater reductions in MCFA and milk fat percentage than the 9/11CLA, indicating that 10/12CLA is the primary CLA isomer affecting lipid metabolism in the mammary gland. Dietary TVA, 9/11CLA, or 10/12CLA decreased SCD enzyme activity and mRNA abundance in mammary tissue. In study 3, mouse (COMMA-D/MME) and bovine (Mac-T) mammary epithelial cells were transfected with the putative promoter (600 bp) of SCD gene. The 9/11CLA reduced SCD gene transcription in mouse cells, but not bovine cells. Transcription, however, was reduced in both cell lines by 10/12CLA, linoleic acid, and linolenic acid. Thus, reduced SCD transcription in response to the CLA isomers in mouse mammary cells in vitro may provide an explanation for reduced SCD enzyme activity and mRNA abundance in mammary tissue when lactating mice were fed either of the CLA isomers. In contrast, stearic acid, oleic acid, and TVA did not affect SCD transcription. Although TVA did not reduce SCD transcription in mouse mammary cells in vitro, it did reduce SCD enzyme activity and mRNA abundance in mammary tissue when fed to lactating mice. The results suggested TVA may influence SCD mRNA processing or stability in the nucleus after transcription. Despite the reduction in SCD mRNA and enzyme activity, however, substantial quantities of TVA were desaturated to the 9/11CLA isomer when TVA was fed to lactating mice in the first two studies. Thus, dietary TVA provides an alternate supply of the anticarcinogenic 9/11CLA isomer in tissues. / Ph. D.

Page generated in 0.0661 seconds