• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 91
  • 22
  • 21
  • 14
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 330
  • 85
  • 49
  • 48
  • 46
  • 46
  • 44
  • 44
  • 41
  • 41
  • 41
  • 39
  • 35
  • 35
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Study of the interferon-oxysterol antiviral response and 3-Hydroxy-3-Methylglutaryl-CoA Reductase

Lu, Hongjin January 2017 (has links)
The oxysterol, 25-hydroxycholesterol (25-HC), is important for sterol metabolism and emerging evidence suggests that 25-HC plays a more critical role in immunity and infection. However, the precise antiviral mechanism and the target of 25- HC remains unclear. Here efforts were made to investigate the link between viral infection and the triggering of the 25-HC associated interferon (IFN) response, and how this dynamically alters the endogenous level of 3-hydroxy- 3-methylglutaryl-CoA reductase (HMGCR), a key enzyme that catalyses the production of the precursor of cholesterol and oxysterols. In this thesis I have sought to specifically explore the temporal changes and role of HMGCR in DNA virus (cytomegalovirus) and RNA (Influenza) virus infections. I hypothesise that HMGCR is a target for 25-HC associated IFN-mediated host defence against viral infection. To characterise HMGCR and test this hypothesis, the following objectives were defined: (1). To establish an experimental system to quantitatively study the endogenous HMGCR protein level; (2). To investigate the mechanism of the down-regulation of HMGCR involved in the IFN-mediated innate immune response; (3). To study the behaviour of HMGCR in the influenza virus induced 25-HC associated IFN-mediated innate immune response; (4). To study the behaviour of HMGCR in the cytomegalovirus induced 25-HC associated IFN-mediated innate immune response. Chapter 3, describes establishing an experimental system for the quantification of endogenous HMGCR levels. Different protein detection methods, including a modified western blot protocol and immunostaining, were tested. The results of RNA interference of HMGCR demonstrate that under lipid-deficient condition with the supplementation of mevastatin (an HMGCR inhibitor) the modified western blot protocol specifically detects endogenous HMGCR. This chapter lays the foundational work for the temporal analysis and testing the role of HMGCR in infection. In Chapter 4, the mechanism of the degradation of HMGCR following 25-HC and IFN treatments, in wild-type and Ch25h−/− mouse bone marrow derived macrophages (BMDMs), was investigated. Similar to 25-HC, IFN-γ treatment results in the drop of both the transcript and protein abundance of HMGCR in wild-type BMDMs. Differential temporal analysis of RNA and protein alterations and the use of proteasome inhibitors reveals that both 25-HC and IFN-γ lead to a marked reduction of HMGCR protein via a proteasomal degradation mechanism within early times of treatments. Further, the immediate reduction of HMGCR levels induced by IFN-γ was completely abrogated in Ch25h−/− BMDMs. Hence, the reduction of HMGCR following IFN-γ treatment is due to the de novo synthesis in macrophages of 25-HC. However, the decrease of Hmgcr gene expression was observed in not only wild-type but also Ch25h−/− BMDMs, suggesting additional mechanisms for regulating Hmgcr RNA levels. These results demonstrate the mechanism of the down-regulation of HMGCR resulted from the induction of IFN response during viral infection, is only partially due the de novo synthesis of 25-HC. In chapter 5, influenza A virus was used to investigate the role of HMGCR in the IFN-mediated innate immune response. The inhibition of HMGCR by RNA interference inhibited viral growth, suggesting the requirement of HMGCR for optimal intracellular viral growth. Viral infection in wild-type murine BMDMs reduced the endogenous HMGCR levels. However, the reduction of HMGCR at early times was prevented in Ch25h−/− BMDMs. Intriguingly, the decrease of HMGCR at late time points was still observed in Ch25h−/− BMDMs. These results indicate that the down-regulation of HMGCR with influenza virus infection in BMDMs at early times is completely due to the de novo synthesis of 25-HC; whereas at late times alternative pathways or mechanisms exist. Additionally, human epithelial A549 cells and A549/PIV5-V cells that are deficient in STAT1 were used to study the role of IFN pathway in the down-regulation of HMGCR at late times during viral infection. Results from these studies show that at late times the reduction of HMGCR is due to IFN-independent mechanisms. Chapter 6, extends these investigations to the herpes virus murine cytomegalovirus and infection of BMDMs. HMGCR is known to be essential for cytomegaloviral infections and 25-HC, statin and RNAi inhibition of HMGCR restrict viral growth. 25-HC is shown to reduce HMGCR at immediate early times of infection. However, most notably, the down-regulation of HMGCR was also observed in Ch25h−/− BMDMs at late times with murine cytomegalovirus infected BMDMs. These results confirm that alternative pathways or mechanisms exist, playing roles in the crosstalk between cholesterol metabolism and innate immune response. Collectively, this study characterises the role of HMGCR in the 25-HC associated IFN-mediated host defence against viral infection. Results indicate that, in addition to the IFN-mediated host response, alternative pathways or other mechanisms also result in the down-regulation of HMGCR during viral infection. HMGCR is at the crossroad of different pathways or mechanisms, and is therefore not only targeted by 25-HC. Hence, further questions can be addressed from these results: (1). What are the alternative pathways or mechanisms for the down-regulation of HMGCR? (2). How do these pathways or mechanisms work in hosts’ immune system? Answering these questions can contribute to refining the pathway map of innate immunity and understanding the precise role of HMGCR, or even the sterol biosynthesis pathway, in hosts’ immune response against pathogens.
232

Low Voltage, Low Power CMOS OTA and COA

Han, Cheng-ping 15 July 2004 (has links)
Low voltage, low power amplifiers are proposed. One of the operational amplifiers is an Operational Transconductance Amplifier (OTA) with wide input and output swing and constant gm. The second and third amplifiers are high-performance Current Operational amplifiers (COAs). All amplifiers have power supply as low as one threshold voltage plus two overdrive voltage. In this thesis, the supply voltage is 1V. Simulation results show that the OTA has the maximum linear range over 0.7V. The transconductance can be 147£gA/V, the power consumption is 0.133mW. There are two designs of the COA. Simulation results show COA(1) with a current gain of 143. The input impedance is 110£[, the output impedance is 240K£[ and the power consumption is 0.15mW. In the simulation results of the COA(2), the current gain is 110. The DC power dissipation is 0.07mW. The input and output impedance are 95£[ and 500K£[, respectively. All the proposed amplifiers are implemented on a TSMC 0.35£gm 2p4m CMOS process technology and analyzed using HSPICE.
233

Serum lipoprotein(a) in relation to ischemic heart disease and associated risk factors

Slunga, Lisbeth January 1993 (has links)
Lipoprotein(a) (Lp(a)) consists of an LDL-like particle and the specific protein apo(a), which is very similar to plasminogen. Apo(a) contains repeated kringle structures and a serine protease domain, which cannot be activated by t-PA. Lp(a) is considered to be a predictor for atherosclerotic disease. It has been found incorporated in atherosclerotic plaques and inhibits in vitro fibrinolysis. Lp(a) was determined in 1527 randomly selected individuals participating in the Northern Sweden WHO-MONICA project. A weak but significant relation between Lp(a) and increasing age was found. Menopausal status was the strongest independent predictor of Lp(a) level in women. Fibrinogen was independently related to Lp(a) in both sexes. Only a minor fraction of Lp(a) variance could be explained for in a multiple regression model, which is in agreement with the contention that Lp(a) is highly genetically determined. Lp(a) was determined in 1571 patients investigated with coronary angiography because of suspected severe coronary artery disease (CAD). Patients with proven CAD at elective angiography had significantly higher Lp(a) than patients without significant CAD or healthy controls. Lp(a) was found to be an independent discriminator of CAD in both sexes. HLA-DR genotype 13 or 17 was found more frequently in 30 male patients with angiographic CAD at young age (&lt; 50 years) than in 30 age matched controls. These genotypes were common in patients with high Lp(a) levels, which indicates that Lp(a) may be related to immunological processes. The reaction of Lp(a) was investigated in 32 patients with acute myocardial infarction (AMI). Lp(a) increased during the first week, but the response was comparatively weak. Individual Lp(a) responses were heterogeneous and no correlations to infarct size or changes in the acute phase proteins were found. In a randomized cross-over study on 36 hypercholesterolaemic patients treated with simvastatin/placebo during 12+12 weeks Lp(a) did not change significantly, but patients with high Lp(a) levels at baseline tended to develop further increased Lp(a). To conclude, Lp(a) was found to be an independent predictor of angiographic CAD in both men and women. Lp(a) levels are primarily genetically determined and only a small fraction of Lp(a) variance could be explained by other factors in this study. Lp(a) may be related to HLA DR types and immunological processes involved in atherosclerotic disease. Lp(a) increased slightly during the first week of AMI, but was not related to changes in the acute-phase proteins. The effective LDL-lowering agent simvastatin did not influence Lp(a) significantly. / <p>Diss. (sammanfattning) Umeå : Umeå universitet, 1993, härtill 5 uppsatser.</p> / digitalisering@umu
234

LPIN1 - étude génétique d'une nouvelle cause de rhabdomyolyse héréditaire et analyses physiopathologiques à partir de myoblastes de patients

Michot, Caroline 26 November 2013 (has links) (PDF)
Les rhabdomyolyses correspondent à la destruction de fibres musculaires striées squelettiques et mettent en jeu le pronostic vital. La principale cause génétique est liée à un défaut d'oxydation des acides gras ; néanmoins, plus de la moitié des cas n'ont pas de cause identifiée. En 2008, des mutations du gène LPIN1 ont été rapportées comme une nouvelle étiologie de rhabdomyolyse de transmission autosomique récessive. La protéine lipin1 a une double fonction : un rôle de PAP1 intervenant dans la synthèse du triacylglycérol et des phospholipides membranaires ; un rôle de co-activateur transcriptionnel en association avec les PPARs et PGC1α pour réguler de nombreux gènes impliqués dans le métabolisme, dont certains de l'OAG. Lipin1 a deux homologues, lipin2 et lipin3, qui possèdent une activité PAP1 et un site de fixation à des récepteurs nucléaires tels que les PPARs. Nous avons montré que les mutations de LPIN1 rendent compte de plus de 50% des cas de rhabdomyolyse sévère de la petite enfance, une fois écarté le diagnostic de déficit de l'OAG. Une délétion intragénique en phase a été fréquemment identifiée chez les Caucasiens. Nous avons montré qu'il s'agissait d'un probable effet fondateur et que cette délétion est délétère. En effet, à l'inverse de la forme normale de lipin1, la forme délétée est incapable de complémenter la levure pah1, déficiente pour l'homologue de LPIN1. Nous avons ensuite étudié, dans une série de 171 patients, l'implication de LPIN1 dans des pathologies musculaires moins sévères, ainsi que le rôle des deux homologues LPIN2 et LPIN3. Les mutations de LPIN1 sont impliquées dans les rhabdomyolyses sévères et précoces uniquement et les accès de rhabdomyolyse ont toujours un facteur déclenchant, le principal étant les infections aiguës fébriles. Aucune altération majeure de LPIN2 et de LPIN3 n'a été identifiée, même dans des phénotypes modérés. Enfin, nous avons cultivé des myoblastes et des myotubes de patients avec mutations de LPIN1 afin d'étudier les mécanismes de rhabdomyolyse. Les myoblastes déficients en lipin1 ont une activité PAP1 très diminuée et une accumulation de gouttelettes lipidiques. Le niveau d'expression des gènes cibles des facteurs de transcription co-activés par lipin1 (PPARδ, PPARα, PGC1α, ACADVL, CPT1B and CPT2) sont inchangés par rapport aux contrôles, alors que le niveau de lipin2 est augmenté. L'analyse transcriptomique sur cultures de myotubes a identifié chez les patients 19 gènes sous-exprimés et 51 sur-exprimés, notamment ACACB, qui code pour Accβ, enzyme clé de la balance synthèse d'acides gras/OAG. L'invalidation d'ACACB par siRNA dans des myoblastes déficients en lipin1 diminue le nombre de gouttelettes lipidiques, confirmant le lien entre la sur-expression d'ACACB et l'accumulation d'acides gras libres chez les patients. Cependant, le taux de malonyl-CoA, produit d'Accβ, et l'activité CPT1 (étape limitatrice de l'OAG, inhibée par le malonyl-CoA), sont comparables entre myoblastes de patients et de contrôles. Néanmoins, le traitement des cultures par l'association de tumor necrosis factor alpha et d'interleukine-1 β, choisis pour simuler les conditions pro-inflammatoires des infections aiguës, entraîne une augmentation encore plus poussée du taux de malonyl-CoA, une diminution de l'activité CPT1 et une augmentation de l'accumulation de gouttelettes lipidiques chez les patients. Au total, nos données placent LPIN1 comme une cause importante de rhabdomyolyse héréditaire. Le déficit en lipin1 entraine une perturbation du métabolisme lipidique, via une sur-expression d'ACACB, qui est exacerbée en conditions pro-inflammatoires. Nos résultats suggèrent que les conséquences du déficit en lipin1 sont compensées par des mécanismes d'adaptation suffisants en condition normale, mais insuffisants pour la demande métabolique induite par des stress environnementaux comme l'infection, conduisant aux rhabdomyolyses.
235

Molecular Markers of Sensitivity to the Anticancer Effects of Different Statins in Human Tumour Cell Lines

Goard, Carolyn Anna 20 June 2014 (has links)
Statins, common cholesterol control drugs, are appreciated to have promising anticancer activity through inhibition of the mevalonate pathway. Several lines of evidence suggest that certain tumours are susceptible to statins, but the underlying molecular features arbitrating this sensitivity remain unknown. We hypothesize that (i) not all statins will behave equivalently in the context of anticancer therapy, and (ii) a molecularly-defined subset of tumours are intrinsically sensitive to statins. My objectives have therefore been to further our understanding of functional differences between statins influencing their anticancer effects, and to investigate molecular features associated with statin sensitivity in breast cancer. Specifically, this thesis addresses two aims: (i) to characterize differential interactions between four statins and the xenobiotic transporter P-glycoprotein (P-gp; also known as ABCB1), and (ii) to identify molecular features associated with fluvastatin and lovastatin sensitivity in breast tumour cell lines. We first characterized the interactions of statins with P-gp in vitro and in multidrug-resistant (MDR) tumour cells. While lovastatin could directly bind to P-gp and modulate MDR, no significant interactions were observed with fluvastatin. Fluvastatin may therefore be appropriate for use in unselected patients, to avoid adverse drug interactions with coadministered P-gp substrate chemotherapeutics. Fluvastatin has also shown promise in breast cancer treatment, where molecular features predictive of statin sensitivity would be particularly valuable. A panel of 19 immortalized breast cell lines was therefore characterized for sensitivity to fluvastatin and lovastatin. Relatively statin-sensitive cells underwent apoptosis upon statin treatment, and were more likely to have an estrogen receptor alpha (ERα)-negative, basal-like phenotype. By mining available baseline gene expression data, a candidate 10-gene signature predictive of fluvastatin sensitivity was also generated. Taken together, this research provides insight into molecular markers of statin sensitivity that may facilitate fast-tracking of these drugs to clinical trials in subsets of cancer patients most likely to respond.
236

The implementation of the molecular characterisation of 3-methylcrotonyl-CoA carboxylase deficiency in South Africa / y Lizelle Zandberg

Zandberg, Lizelle January 2006 (has links)
The perception is that inborn errors of metabolism (IEM) are rare, but the reality is that more than 600 lEMs are now recognized. The organic aciduria, 3-methylcrotonyl-CoA carboxylase (MCC) deficiency arises when 3-methylcrotonyl-Coenzyme A (CoA) carboxylase that participates in the fourth step of the leucine catabolism is defective. Tandem mass spectrometry (MS/MS) based screening programmes in North America, Europe and Australia, showed that MCC deficiency is the most frequent organic aciduria detected, with an average frequency of 1:50 000. Therefore MCC deficiency is considered an emerging disease in these regions. The incidence of MCC deficiency in the Republic of South Africa (RSA) is not yet known. However, one 48 year old male Caucasian individual (HGS) was diagnosed suffering from mild MCC deficiency, since elevated levels of 3-hydroxyisovaleric acid, 3- hydroxyisovalerylcarnitine, 3-methylcrotonylglycine was present in his urine. Several groups are currently working on various aspects of this emerging disease with the focus on the molecular characterisation of MCC deficiency. In the RSA no molecular based diagnostic method which complements MS/MS screening programmes have yet been implemented. Therefore, the aim of this study was to implement the necessary techniques for the molecular characterisation of MCC deficiency, the determination of the sequence of the open reading frame (ORF) of mccA and mccB subunits to determine which mutation(s) are present in the South African MCC deficient patient. For the implementation of the molecular characterisation, a two-pronged approached was used to characterize MCC of a MCC non-deficient individual (CFC). This approach included the reverse transcriptase polymerase chain reaction (RT-PCR) amplification of the ORFs of the associated genes [mccA (19 exons) and mccB (17 exons] and the PCR amplification of selected (genomic deoxyribonucleic acid (gDNA) regions (exons mccA8, mccA11 , mccB5, mccB6 and mccB5-intron 5-6 exon 6 (mccB5-6) which have been found to have mutations associated with MCC deficiency in Caucasians. The sequence analyses produced surprising results of the amplified ORFs (CFCmccA and CFCmccB) of the MCC non-deficient individual CFC. A non-synonymous single nucleotide polymorphism (SNP) (1391C→A, H464P) associated with MCC deficiency (Gallardo et al., 2001) was identified in the CFCmccA subunit. Another SNP (1368G→A, A456A) recently listed in GenBank was observed in the amplified CFCmccB ORF. No significant novel variations or described mutations were identified in the amplified genomic regions mccA8, mccA11 ,mccB5, mccB6 and mccB5-6. The implemented molecular approach was used to characterise MCC of our MCC deficient patient (HGS). The patient did not have any mutation in the four selected exons mccA8, mccA11, mccB5, mccB6 or the genomic region mccB5-6. The RT-PCR amplification of both ORFs (HGSmccA and HGSmccB) resulted in multiple amplicons. Gel extracted amplicons of the expected size were sequenced. Of the 36 exons, 34 exons were sequenced. This includes all 19 exons of HGSmccA and 15 of 17 exons of HGSmccB (exons 1-6 and exons 9-17). The non-synonymous SNP (1391C→A, H464P) detected in CFCmccA (MCC non-deficient individual), seems to be present in the HGSmccA subunit of the MCC deficient individual, HGS. The HGSmccB amplicons could not be entirely sequenced. However, the region exon 1-6 and 9-17 was sequenced but no described or novel mutations were identified. The lack of sequence data of region exon 7-8 led to an incomplete molecular characterisation of the MCC deficiency in HGS. In conclusion, the basic methods and techniques for the molecular characterisation of MCC deficient patients have been implemented locally. A few additional sequencing primers need to be designed to cover mccB7 and mccB8 as well as the entire coding and non-coding strands of each MCC gene (mccA and mccB). The primers for RT-PCR of both mccA and mccB need to be further refined to ensure better specificity. / Thesis (M.Sc. (Biochemistry))--North-West University, Potchefstroom Campus, 2007.
237

An exploration of biochemistry including biotechnology, structural characterization, drug design, and chromatographic analyses

Burns, Kristi Lee 28 September 2006 (has links)
We now report an in depth analysis of the successful in vitro enzymatic synthesis of PHB utilizing the three-enzyme system from the bacteria Cupriavidus necator. Using HPLC methodology developed in this laboratory, and by adding each enzyme in a step-wise manner, we follow each individual stage in the three-enzyme route for PHB synthesis and delineate all stoichiometric relationships. We report the construction of the first metabolic model developed specifically for analyzing in vitro enzymatic PHB synthesis. We developed a hands-on student laboratory for culturing, producing, isolating, and purifying the bacterial biopolyesters PHB. We now report the first structural characterizations of iso-CoA, acetyl-iso-CoA, acetoacetyl-iso-CoA, and beta-hydroxybutyryl-iso-CoA using MS, MS/MS, and homo- and hetero-nuclear NMR analyses.We describe HPLC methodology to separate the isomers of several iso-CoA-containing compounds and report the first examples of iso-CoA-containing compounds acting as substrates in enzymatic acyl-transfer reactions. We describe a simple regioselective synthesis of iso-CoA from CoA. We also demonstrate a plausible mechanism, which accounts for the existence of iso-CoA isomers in commercial preparations of CoA-containing compounds. Herein we report that phenylaminoethyl selenide compounds protect DNA from peroxynitrite-mediated single-strand breaks. The mechanism of protection against peroxynitrite mediated DNA damage was investigated by HPLC. The chemistry of the reaction between peroxynitrite and HOMePAES was investigated using HPLC and HPLC/MS. The unique chemistry of the reaction between peroxynitrite and HOMePAES was investigated using HPLC and HPLC/MS. We report the development of novel CDB derivatives, which are selective COX-II inhibitors. A series of compounds were assayed with an in vitro colorimetric inhibitor screening and with a whole blood ELISA screening and the results indicate that MST is a selective inhibitor of COX-II.
238

Cardioprotective mechanisms by inhibition of the HMG-CoA reductase pathway and stimulation of peroxisome proliferator-activated receptors in myocardial ischaemia-reperfusion /

Bulhak, Aliaksandr, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
239

In vivo detection of alterations in fatty acyl species unsaturation in a mouse hepatocarcinogenesis model

Griffitts, Jeffrey Daniel. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Oklahoma. / Bibliography: leaves 155-161.
240

Entwicklung einer Gensondenanalytik für die Mineralisation von DMSO sowie Untersuchungen an den Genen des ß-Ketoadipatweges in Pseudomonas sp. B13

Kassel-Çati, Kerstin. Unknown Date (has links) (PDF)
Universiẗat, Diss., 1999--Wuppertal.

Page generated in 0.0409 seconds