• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 91
  • 22
  • 21
  • 14
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 330
  • 85
  • 49
  • 48
  • 46
  • 46
  • 44
  • 44
  • 41
  • 41
  • 41
  • 39
  • 35
  • 35
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Transcriptional regulation of CD40 and class II MHC molecules in macrophages and microglia by statins

Lee, Sun Jung, January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed June 6, 2008). Includes bibliographical references.
272

Thyroid hormone regulation of cholesterol metabolism /

Boone, Lindsey R. January 2009 (has links)
Dissertation (Ph.D.)--University of South Florida, 2009. / Includes vita. Includes bibliographical references. Also available online.
273

Protective role of coronary endothelium during the development of cardiac hypertrophy insights from pharmacological intervention studies /

Sun, Xiaowei. January 2008 (has links) (PDF)
Thesis (Ph.D.)--University of Alabama at Birmingham, 2008. / Title from PDF title page (viewed on July 16, 2010). Includes bibliographical references.
274

Gene Therapy for Very Long Chain Acyl-coA Dehydrogenase Deficiency Using Adeno-Associated Virus Vectors: A Dissertation

Keeler, Allison M. 10 April 2012 (has links)
Very long chain acyl-coA dehydrogenase (VLCAD) is the rate-limiting step in mitochondrial fatty acid oxidation. VLCAD deficient mice and patients’ clinical symptoms stem from not only an energy deficiency but also long-chain metabolite accumulations. VLCAD deficient mice were treated systemically with 1x10 12 vector genomes of rAAV9-VLCAD. Expression was detected in the liver, heart and muscle. Also substantial expression of VLCAD was noted in the brain, where it was expressed across different sections of the brain and in different cell types with different morphologies. Biochemical correction was observed in vector-treated mice beginning two weeks post-injection, as characterized by a significant drop in long chain fatty acyl accumulates in whole blood after an overnight fast. Changes persisted through the termination point around 20 weeks post injection. Magnetic resonance spectroscopy (MRS) and tandem mass spectrometry (MS/MS) revealed normalization of intramuscular lipids in treated animals. Correction was not observed in liver tissue extracts, but cardiac muscle extracts showed significant reduction of long chain metabolites. Disease-specific phenotypes were characterized, including thermoregulation and maintenance of euglycemia after a fasting cold challenge. Internal body temperatures of untreated VLCAD-/- mice dropped below 20°C and the mice became lethargic, requiring euthanasia. In contrast all rAAV9-treated VLCAD-/- mice and the wild-type controls maintained body temperatures. rAAV9-treated VLCAD-/- mice maintained euglycemia, whereas untreated VLCAD-/- mice suffered hypoglycemia following a fasting cold challenge. These promising results suggest rAAV9 gene therapy as a potential treatment for VLCAD deficiency in humans.
275

Purification of HMG-CoA Reductase and Regulation by Protein-Lipid Interactions

Brent, Lynn G. (Lynn Gran) 12 1900 (has links)
The enzyme 3-Hydroxy-3- Methylglutaryl Coenzyme A Reductase catalyzes the rate limiting step of hepatic cholesterol biosynthesis and is unique among the enzymes in the early part of the pathway in that it is membrane bound. This gives rise to potential regulation of the enzyme through interactions with the endoplasmic reticulum membrane. A purification procedure has been developed which consistently produces enzyme of high specific activity. In order to fully characterize the interactions between HMG-CoA reductase and the lipids in its immediate environment, HMG-CoA reductase was purified to homogeneity and shown to be a protein-lipid complex.
276

Planejamento e síntese de peptideomiméticos como candidatos a inibidores de calicreínas teciduais humanas 5 e 7

Azevedo, Pedro Henrique Rodrigues de Alencar 12 March 2018 (has links)
Submitted by Biblioteca da Faculdade de Farmácia (bff@ndc.uff.br) on 2018-03-12T17:36:57Z No. of bitstreams: 1 PEDRO HENRIQUE RODRIGUES DE ALENCAR AZEVEDO.pdf: 15048741 bytes, checksum: a121d29e5dc4898c7b8e4a85def01e12 (MD5) / Made available in DSpace on 2018-03-12T17:36:57Z (GMT). No. of bitstreams: 1 PEDRO HENRIQUE RODRIGUES DE ALENCAR AZEVEDO.pdf: 15048741 bytes, checksum: a121d29e5dc4898c7b8e4a85def01e12 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / As calicreínas teciduais humanas (KLKs) compreendem uma família de 15 enzimas serina proteases (KLKs 1-15) amplamente encontradas nos tecidos humanos. Em diversas patologias como a dermatite atópica, psoríase, síndrome de Netherton, câncer de ovário, mama e testículos, as KLKs encontram-se em concentrações elevadas. Por exemplo, as KLKs 5 e 7 estão mais abundantemente expressadas na pele, na qual estão envolvidas com o processo de descamação da mesma, e também presentes em alguns tipos de carcinomas. Dessa forma, as KLKs 5 e 7 são consideradas importantes alvos terapêuticos para o tratamento de doenças onde elas encontram-se superexpressadas, enfatizando a existência de somente um fármaco comercialmente disponível como inibidor de KLK. Nesse contexto, o trabalho descreve a síntese de 3 séries de compostos peptideomiméticos, incorporando o cerne estatina e diferentes resíduos de aminoácidos, planejados como candidatos a inibidores das enzimas serina proteases do KLKs 5 e 7. Os compostos finais foram obtidos utilizando uma rota sintética eficiente tendo como reação-chave a formação da ligação peptídica entre o cerne estatina e cloridratos de aminoésteres, previamente sintetizados. Os compostos sintetizados foram identificados por técnicas de Ressonância Magnética Nuclear, Infravermelho e Espectrometria de massas de alta resolução e os produtos finais serão avaliados em testes in vitro de inibição das enzimas KLKs / Human tissue kallikreins (KLKs) comprise a family of 15 serine protease enzymes (KLKs 1-15) widely found in human tissues. In several pathologies such as atopic dermatitis, psoriasis, Netherton syndrome, ovarian, breast and testis cancer, KLKs are in high concentrations. For example, KLKs 5 and 7 are more abundantly expressed in the skin, in which they are involved in the desquamation process, and also present in some types of carcinomas. Thus, KLKs 5 and 7 are considered important therapeutic targets for the treatment of diseases where they are over expressed, emphasizing the existence of only one commercially available drug as a KLK inhibitor. In this context, the work describes the synthesis of three series of peptideomimetic compounds incorporating the statin core and different amino acid residues, designed as candidates for inhibitors of the serine protease enzymes of KLKs 5 and 7. The final compounds were obtained using an efficient synthetic route based on the reaction of formation of the peptide bond between the statin core and previously synthesized amino acid hydrochlorides. The synthesized compounds were identified by Nuclear Magnetic Resonance, Infrared and High Resolution Mass Spectrometry techniques and the final products will be evaluated in in vitro inhibition assays of the KLKs enzymes
277

Atividade anti-hiperglicemiante oral e segurança de uso do extrato aquoso da casca de Caesalpinia ferrea Martius Ex Tul (Leguminosae) em ratos Wistar

Fernando Brasileiro de Vasconcelos, Carlos 31 January 2011 (has links)
Made available in DSpace on 2014-06-12T16:28:29Z (GMT). No. of bitstreams: 2 arquivo6583_1.pdf: 2036261 bytes, checksum: 2f9456a9138bbf6c7d3482c028af1558 (MD5) license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5) Previous issue date: 2011 / O diabetes mellitus é um grave problema de saúde pública caracterizado por hiperglicemia crônica ocasionada pela ausência ou ineficiência da insulina nos tecidos-alvo. Muitas espécies de plantas têm sido usadas na medicina popular para tratar os sintomas da doença. Na etnofarmacologia, o chá da casca de Caesalpinia ferrea Martius Ext Tul tem sido usado no tratamento do diabetes. Nesse estudo, metabólitos secundários foram identificados e quantificados por HPLC. A fim de verificar a atividade antidiabética de C. ferrea, quatro grupos de ratos Wistar diabéticos induzidos por estreptozotocina (50mg/Kg) (n=7/grupo) foram tratados com o extrato aquoso da casca do caule de C. ferrea (EaCf) (300 e 450mg/Kg/dia), veículo e metformina (500mg/Kg/dia) durante 4 semanas. Mudanças no ganho de massa, no consumo de água e ração e nos parâmetros bioquímicos foram avaliadas. A expressão da proteína quinase B (Akt), da proteína quinase ativada por AMP (AMPK) e acetil-CoA carboxilase (ACC) foram determinadas no fígado e músculo esquelético dos animais usando Western blot. A avaliação da segurança de uso do EaCf foi verificada através dos ensaios de toxicidade aguda, subcrônica, crônica e reprodutiva. Para os ensaios de toxicidade aguda, o EaCf (2000mg/Kg) foi administrado em ratos Wistar de ambos os sexos (n= 5/grupo/sexo). Na toxicidade subcrônica, ratos Wistar machos (n=10/grupo) foram tratados durante 30 dias com o EaCf (300 e 1500mg/Kg/dia) e na crônica, o EaCf (300 e 1500mg/Kg/dia) foi administrado aos camundongos Swiss machos durante 90 dias. Ao final do tratamento foram realizadas análises bioquímicas, hematológicas, macro e microscópicas dos órgãos. Na toxicidade reprodutiva, o EaCf (300 e 1500mg/Kg/dia) foi administrado em ratas Wistar prenhes durante o período integral de gestação para avaliação dos parâmetros reprodutivos maternos e comportamentais da prole. O conteúdo de ácido gálico, catequina, epicatequina e ácido elágico quantificado por HPLC foi de 112,76; 17,75; 6,13 e 12,00mg/g. Os resultados ainda mostraram que EaCf reduziu os níveis glicêmicos e melhorou o estado metabólico geral dos animais diabéticos. A ativação da Akt foi observada no fígado e músculo esquelético dos animais tratados com conseqüente desativação da AMPK no músculo e ativação da ACC em ambos quando comparado aos não-tratados. Na toxicidade aguda, o tratamento não induziu nenhum sinal de toxicidade ou morte, e na subcrônica, não houve alterações macro e microscópicas dos órgãos e nem nos parâmetros hematológicos e bioquímicos, exceto a amilasemia observada. Na toxicidade crônica, houve reduções no ganho de massa corporal, nos níveis séricos de proteínas totais e albumina (em ambas as doses). Na dose de 1500mg/Kg, houve aumento da lactato desidrogenase, amilase e necrose do intestino delgado. Durante toda a gestação, houve redução no ganho de massa corporal (1500mg/Kg) e na prole foram observadas reduções na massa corporal no 1º e 4º dias de vida e no comprimento, no 21º dia de vida pós-natal (1500mg/Kg). Os resultados sugerem que EaCf apresenta atividade antidiabética e age, possivelmente, regulando a captação hepática e muscular de glicose via Akt. O tratamento crônico sugere toxicidade principalmente na maior dose, provavelmente pela ação dos taninos que comprometem a absorção de macronutrientes
278

Altérations métaboliques cellulaires : la voie de biosynthèse des acides gras monoinsaturés comme cible thérapeutique / Cellular metabolic alteration : the voice of monoinsaturated fatty acid as therapeutic target

Minville, Mélaine 17 December 2010 (has links)
La stéaroyl Co-A désaturase (SCD) est l’enzyme clé du métabolisme des acides gras mono-insaturés (AGMI). Son activité 9 désaturase introduit une double liaison cis en position 9 des acides gras saturés (AGS), formant des AGMI. Une altération de la voie de biosynthèse des AGMI est impliquée dans de nombreuses pathologies, telles que le cancer et les maladies cardiovasculaires. Les cellules cancéreuses présentent une synthèse de novo en acide gras accrue avec une accumulation d'AGMI. Ce changement dans le métabolisme des acides gras est associé à la surexpression de la SCD1. Plusieurs études ont démontré que l'inhibition de SCD1 conduit au blocage de la prolifération et l'induction de l'apoptose dans les cellules cancéreuses. Néanmoins, les mécanismes d'activation mort cellulaire restent à être mieux compris. Dans cette étude, nous avons démontré que l’extinction de SCD1 par siRNA, inhibiteur synthétique ou naturel induit l’abolition de la synthèse de novo AGMI dans les cellules cancéreuses ou non. L’activation de la mort cellulaire par apoptose lors de l’inhibition de SCD1 n’est observée que dans les cellules cancéreuses. En outre, la déplétion en SCD1 induite un stress du réticulum endoplasmique, ces caractéristiques étant l’épissage de l'ARNm XBP1, la phosphorylation de eIF2α et augmentation de l'expression CHOP. Toutefois, l'activation du stress du RE lors de l’abolition de SCD1 est particuliers puisque nous ne mettons pas en évidence de modification de l’expression de la protéine chaperonne GRP78, une autre caractéristique du stress du RE. Enfin, nous avons montré que l'induction de CHOP participe à l’activation de la mort cellulaire lors de l’extinction de SCD1. En effet, la surexpression de constructions dominants négatifs et anti-CHOP restaure partiellement la viabilité des cellules cancéreuses déplétées en SCD1. Pour conclure, ces résultats suggèrent que l’inhibition de la synthèse de novo en AGMI via l’extinction de SCD1 pourrait être une cible thérapeutique prometteuse contre le cancer en induisant la mort cellulaire par l’activation de la voie du stress du réticulum endoplasmique et du facteur de transcription CHOP. Nous nous sommes également intéressés à la régulation de SCD par différents AGMI dans un modèle cellulaire en lien avec la pathologie athéromateuse. De nombreux facteurs de risque participent au développement de cette pathologie, parmi lesquels les acides gras trans (AGT). En effet, des études épidémiologiques ont mis en corrélation la consommation d’AGT d’origine industrielle et le risque de maladie cardiovasculaire. Les AGT pourraient jouer leurs effets athérogènes par l’altération du métabolisme lipidiques des cellules vasculaires. L'accumulation de lipides dans les cellules musculaires lisses vasculaires (CML) est une caractéristique de l'athérosclérose et une conséquence de la lipogenèse accrue. L’expression de la SCD est associée à l'induction de la lipogenèse et développement de l'athérosclérose. Nous nous sommes intéressés à la régulation de l'activité SCD1 dans les CML exposés à des isomères d’AGMI en C18 [l’acide cis-9oléique(OL), l'acide trans-11 vaccénique (TVA) ou l’acide trans-9 élaïdique (ELA)]. Nous avons montré que la SCD, présente dans les CML était régulée différemment selon l’isomère en C18 :1. En effet, nous observons une augmentation de l’expression et de l’activité de SCD1 sous l’effet d’un traitement par ELA et une diminution importante pour le traitement par OL. L’effet du TVA sur l’expression et l’activité dans les CML reste modeste mais une diminution est néanmoins trouvée. Nous avons corrélé l'activité de SCD avec son niveau d'expression protéique. En effet, celle-ci est augmentée par l’ELA et diminuée par l'OL. Cette régulation n’est pas post-traductionnelle et l’expression de SCD1 lors des traitements par l’OL et l’ELA est moduler au niveau transcriptionnel.Pour conclure, nous avons démontré une modulation de l'activité SCD par des AGMI (C18: 1) de configuration cis et [...] / Stearoyl Co-A desaturase (SCD) is the key enzyme of the metabolism of mono-unsaturated fatty acids (MUFA). Its activity  9 desaturase introduces a double bond cis in position 9 of saturated fatty acids (SFA), induced formation of MUFA. Impaired biosynthesis of MUFA is involved in many diseases such as cancer and cardiovascular disease. Cancer cells have a de novo synthesis of fatty acids increased with an accumulation MUFA. This change in the metabolism of fatty acids is associated with overexpression SCD1 which catalyzes the conversion of saturated fatty acids, monounsaturated fat. Several reports have shown that inhibition of SCD1 leads to blockage of proliferation and induction of apoptosis in cancer cells. However, the mechanism of cell death activation remains to be understood. In this study, we demonstrated that the extinction of SCD1 by siRNA, synthetic or natural inhibitor induces the abolition of de novo MUFA synthesis in cancer cells or not. SCD1 inhibition activates cell death by apoptosis only in cancer cells. In addition, depletion of SCD1 induced endoplasmic reticulum stress, these features being XBP1 mRNA splicing, phosphorylation of eIF2α and increased expression of CHOP. However, activation of ER stress in the abolition of SCD1 is special because we do not show changes in expression of the chaperone protein GRP78, another characteristic of ER stress. Finally, we showed that induction of CHOP is involved in activation of cell death during shutdown of SCD1. Indeed, overexpression of dominant negative constructs and anti-CHOP partially restores the viability of cancer cells depleted of SCD1. In conclusion, these results suggest that inhibition of de novo synthesis of MUFA through the extinction of SCD1 could be a promising therapeutic target against cancer by inducing cell death through the activation of the stress and endoplasmic reticulum transcription factor CHOP. We are also interested in the regulation of SCD by different MUFA in a cellular model linked with atherosclerotic disease. Many risk factors contribute to the development of this disease, including trans fatty acid (TFA). Indeed, epidemiological studies have correlated the consumption of TFA from industrial sources and the risk of cardiovascular disease. TFA could play their atherogenic effects by altering the lipid metabolism of vascular cells. The accumulation of lipids in vascular smooth muscle cells (SMC) is a feature of atherosclerosis and a consequence of increased lipogenesis. The expression of SCD is associated with the induction of lipogenesis and development of atherosclerosis. We are interested in the regulation of SCD1 activity in SMCs exposed to isomers of MUFA C18 [cis-9 oleic (OL), trans-11 vaccenic acid (TVA) and acid trans -9 elaidic (ELA)]. We showed that SCD which is present in SMC was regulated differently depending on the isomer C18: 1. Indeed, we observed an increase in the expression and activity of SCD1 as a result of treatment with ELA and a significant decrease for treatment with OL. The effect of the TVA on the expression and activity in SMCs remains modest decrease is nevertheless found. We correlated the activity of SCD with its level of protein expression. Indeed, it is increased by the ELA and decreased by OL. This regulation is posttranslational and expression of SCD1 during treatment with the OL and the ELA is modulated at the transcriptional level. To conclude, we demonstrated a modulation of SCD activity by MUFA (C18: 1) cis and trans-mediated regulation of SCD1 gene transcription.
279

Mechanistic And Regulatory Aspects Of The Mycobacterium Tuberculosis Dephosphocoenzyme A Kinase

Walia, Guneet 11 1900 (has links) (PDF)
The current, grim world-TB scenario, with TB being the single largest infectious disease killer, warrants a more effective approach to tackle the deadly pathogen, Mycobacterium tuberculosis. The deadly synergy of this pathogen with HIV and the emergence of drugresistant strains of the organism present a challenge for disease treatment (Russell et al., 2010). Thus, there is a pressing need for newer drugs with faster killing-kinetics which can claim both the actively-multiplying and latent forms of this pathogen causing the oldest known disease to man. This thesis entitled “Mechanistic and Regulatory Aspects of the Mycobacterium tuberculosis Dephosphocoenzyme A Kinase” describes one such potential drug target, which holds promise in future drug development, in detail. The development of efficacious antimycobacterials now requires previously unexplored pathways of the pathogen and cofactor biosynthesis pathways present a good starting point. Therefore, the mycobacterial Coenzyme A (CoA) biosynthesis was chosen for investigation, with the last enzyme of this pathway, dephosphocoenzyme A kinase (CoaE) which was shown to be essential for M. tuberculosis survival, as the focus of the present study (Sassetti et al., 2003). This thesis presents a detailed biochemical and biophysical characterization of the enzymatic mechanism of mycobacterial CoaE, highlighting several hitherto-unknown, unique features of the enzyme. Mutagenic studies described herein have helped identify the critical residues of the kinase involved in substrate recognition, binding and catalysis. Further, a role has been assigned to the UPF0157 domain of unknown function found in the mycobacterial CoaE as well as in several organisms throughout the living kingdom. Detailed insights into the regulatory characteristics of this enzyme from this work further our current understanding of the regulation of the universal CoA biosynthetic pathway and call for the attribution of a greater role to the last enzyme in pathway regulation than has been previously accredited. The thesis begins with a survey of the current literature available on tuberculosis and where we stand today in our fight against this dreaded pathogen. Chapter 1 details the characteristic features of the causative organism M. tuberculosis, briefly describing its unique genome and the cellular envelope which the organism puts forward as a tough shield to its biology. This is followed by a brief description of the infection cycle in the host, the pathogen-host interplay in the lung macrophages, the deadly alliance of the disease with HIV and our current drug arsenal against tuberculosis. Further, emphasizing on the need for newer, faster-acting anti-mycobacterials, Chapter 1 presents the rationale for choosing the mycobacterial coenzyme A biosynthetic pathway as an effective target for newer drugs. A detailed description of our current understanding of the five steps constituting the pathway follows, including a comparison of all the five enzymatic steps between the human host and the pathogen. This chapter also sets the objectives of the thesis, describing the choice of the last enzyme of the mycobacterial CoA biosynthesis, dephosphocoenzyme A kinase, for detailed investigation. As described in Chapter 1, the mycobacterial CoaE is vastly different from its human counterpart in terms of its domain organization and regulatory features and is therefore a good target for future drug development. In this thesis, Rv1631, the probable mycobacterial dephosphocoenzyme A kinase annotated in the Tuberculist database (http://genolist.pasteur.fr/TubercuList), has been unequivocally established as the last enzyme of the tubercular CoA biosynthesis through several independent assays detailed in Chapter 2. The gene was cloned from the mycobacterial genomic DNA, expressed in E. coli and the corresponding recombinant protein purified via a single-step affinity purification method. The mechanistic details of the enzymatic reaction phosphorylating dephosphocoenzyme A (DCoA) to the ubiquitous cofactor, Coenzyme A, have been described in this chapter which presents a detailed biochemical and biophysical characterization of the mycobacterial enzyme, highlighting its novel features as well as unknown properties of this class of enzymes belonging to the Nucleoside Tri-Phosphate (NTP) hydrolase superfamily. The kinetics of the reaction have been biochemically elucidated via four separate assays and the energetics of the enzyme-substrate and enzymeproduct interactions have been detailed by isothermal titration Calorimetry (ITC). Further details on the phosphate donor specificity of the kinase and the order of substrate binding to the enzyme provide a complete picture of the enzymatic mechanism of the mycobacterial dephosphocoenzyme A kinase. Following on the leads generated in Chapter 2 on the unexpected strong binding of CTP to the enzyme but its inability to serve as a phosphate donor to CoaE, enzymatic assays described in Chapter 3 helped in the identification of a hitherto unknown, novel regulator of the last enzyme of CoA biosynthesis, the cellular metabolite CTP. This chapter outlines the remarkable interplay between the regulator, CTP and the leading substrate, dephosphocoenzyme A, possibly employed by the cell to modulate enzymatic activity. The interesting twist to the regulatory mechanisms of CoaE added by the involvement of various oligomeric forms of the enzyme and the influence of the regulator and the leading substrate on the dynamic equilibrium between the trimer and the monomer is further detailed. This reequilibration of the oligomeric states of the enzyme effected by the ligands and its role in activity regulation is further substantiated by the fact that CoaE oligomerization is not cysteine-mediated. Further, the effects of the cellular metabolites on the enzyme have been corroborated by limited proteolysis, CD and fluorescence studies which helped elucidate the conformational changes effected by CTP and DCoA on the enzyme. Thus, the third chapter discusses the novel regulatory features employed by the pathogen to regulate metabolite flow through a critical biosynthetic pathway. Results presented in this chapter highlight the fact that greater importance should be attributed to the last step of CoA biosynthesis in the overall pathway regulation mechanisms than has been previously accorded. The availability of only three crystal structures for a critical enzyme like dephosphocoenzyme A kinase (those from Escherichia. coli, Haemophilus influenzae and Thermus thermophilus) is indeed surprising (Obmolova et al., 2001; O’Toole et al., 2003; Seto et al., 2005). In search of a structural basis for the dynamic regulatory interplay between the leading substrate, DCoA and the regulator, CTP, a computational approach was adopted. Interestingly, the mycobacterial enzyme, unlike its other counterparts from the prokaryotic kingdom, is a bi-domain protein of which the C-terminal domain has no assigned function. Thus both the N- and C-terminal domains were independently modeled, stitched together and energy minimized to generate a three-dimensional picture of the mycobacterial dephosphocoenzyme A kinase, as described in Chapter 4. Ligand-docking analyses and a comprehensive analysis of the interactions of each ligand with the enzyme, in terms of the residues interacted with and the strength of the interaction, presented in this chapter provide interesting insights into the CTP-mediated regulation of CoaE providing a final confirmation of the enzymatic inhibition effected by CTP. These homology modeling and ligand-docking studies reveal that CTP binds the enzyme at the site overlapping with that occupied by the leading substrate, thereby potentially obscuring the active site and preventing catalysis. Further, very close structural homology of the modeled full-length enzyme to uridylmonophosphate/cytidylmonophosphate kinases, deoxycytidine kinases and cytidylate kinases from several different sources, with RMSD values in the range of 2.8-3 Å further lend credence to the strong binding of CTP detailed in Chapter 2 and the regulation of enzymatic activity described in Chapter 3. Computational analyses on the mycobacterial CoaE detailed in this chapter further threw up some interesting features of dephosphocoenzyme A kinases, such as the universal DXD motif in these enzymes, which appears to play a crucial role in catalysis as has been assessed in the next chapter. It is interesting to note that the P-loop-containing nucleoside monophosphate kinases (NMPK), with which the dephosphocoenzyme A kinases share significant homology, have three catalytic domains, the nucleotide-binding domain, the acceptor substrate-binding domain and the lid domain. Computational analyses detailed in Chapter 4 including the structural and sequential homology studies, helped in the delineation of the three domains in the mycobacterial enzyme as well as highly conserved residues potentially involved in crucial roles for substrate binding and catalysis. Therefore important residues from all three domains of the mycobacterial CoaE were chosen for mutagenesis to study their contributions to catalysis. Conservative and non-conservative replacements of these residues detailed in Chapter 5 helped in the identification of crucial residues involved in phosphate donor, ATP binding (Lys14 and Arg140); leading substrate, DCoA binding (Leu113); stabilization of the phosphoryl transfer reaction (Asp32 and Arg140) and catalysis (Asp32). Thus, the results reported here present a first attempt to identify the previously unknown functional roles of highly conserved residues in dephosphocoenzyme A kinases. Chapter 5 also delineates the dependence of this kinase on the divalent cation, magnesium, for catalysis, describing a comparison of the kinetic activity by the wild type and the mutants, in the presence and absence of Mg2+. Therefore, this chapter presents a thorough molecular dissection of the roles played by crucial amino acids of the protein and the results herein can serve as a good starting point for targeted drug development approaches. As described above, another unusual characteristic of the mycobacterial CoaE is the fact that it carries a domain of unknown function, UPF0157, C-terminal to the N-terminal dephosphocoenzyme A kinase domain. The function of this unique C-terminal domain carried by the mycobacterial CoaE has been explored in Chapter 6. The failure of the Nterminal domain (NTD) to be expressed and purified in the soluble fraction in the absence of a domain at its C-terminus (either the mycobacterial CoaE CTD or GST from the pETGEXCT vector) pointed out a possible chaperonic activity for the CTD. A universal chaperonic activity by this domain in the cell was ruled out by carrying out established chaperone assays with insulin, abrin and -crystallin. In order to delineate the CTD sequence involved in the NTD-specific chaperoning activity, deletion mutagenesis helped establish the residues 35-50 (KIACGHKALRVDHIG) of the CTD in the N-terminal domain-specific assistance in folding. Chapter 6 further details the several other potential roles of the mycobacterial CTD probed, including the 4’-phosphopantethienyl transfer, SAM-dependent methyltransferase activity, activation of the NTD via phospholipids among others. Thus the results presented in this chapter are a first attempt at investigating the role of this domain found in several unique architectures in several species across the living kingdom. Chapter 7 is an attempt to stitch together and summarize the results presented in all the preceding chapters, giving an overview of our present understanding of the mycobacterial CoaE and its novel features.
280

Efeitos da adição de sinvastatina ao enalapril em indivíduos hipertensos com níveis de colesterol limítrofe e disfunção diastólica: um estudo aleatorizado, controlado, duplo-cego, com ecocardiograma e Doppler tecidual de repouso e estresse / Effect of the addition of simvastatin to enalapril in hypertensive individuals with average cholesterol levels and diastolic dysfunction: a randomized, placebo-controlled, double-blind trial, with ecochardiography and tissue Doppler of rest and stres

Adenalva Lima de Souza Beck 07 May 2010 (has links)
Introdução: Disfunção diastólica (DD) e diminuição da reserva contrátil do ventrículo esquerdo aumentam o risco cardiovascular de pacientes com hipertensão arterial sistêmica. As estatinas, pelos seus benefícios sobre a fibrose miocárdica, podem melhorar a função diastólica ou reserva contrátil de forma mais eficaz que inibidores da enzima de conversão da angiotensina (I-ECA) nesses pacientes. Objetivos: Investigar o efeito aditivo da estatina ao I-ECA na função diastólica e reserva contrátil de hipertensos com níveis de colesterol limítrofe. Métodos: Pacientes hipertensos com DD e LDL-colesterol < 160mg/dl submeteram-se a uma fase experimental para atingir pressão arterial sistólica (PAS) < 135mmHg e pressão arterial diastólica (PAD) < 85mmHg com enalapril ou enalapril e hidroclorotiazida. Quatro semanas após atingir o objetivo terapêutico, 55 pacientes foram aleatorizados para receber 80mg de sinvastatina (n = 27) ou placebo (n = 28) por um período de 20 semanas. Ecocardiograma de repouso e de estresse com dobutamina foram realizados antes e após o tratamento. O volume máximo do átrio esquerdo (VAE) foi medido pelo método biplanar de Simpson. Foram obtidas as velocidades de Doppler convencional e tecidual (DT) na diástole precoce (E, e) e diástole tardia (A, a) em repouso e durante estresse. As velocidades de DT foram a média dos 4 anéis mitrais basais. A reserva contrátil e a reserva diastólica do VE foram calculadas. A PA foi aferida mensalmente em consultório e o perfil lipídico foi dosado a cada 2 meses. Resultados: Após 20 semanas, a sinvastatina reduziu significativamente a PAS (-4±2mmHg; p=0,02), os níveis de colesterol total (-47±6 para estatina versus 6,2±5mg/dl para placebo; p<0,0001), LDL-colesterol (-41±5 para estatina versus 9,6±4mg/dl para placebo; p<0,0001) e triglicérides (-22,8±11,1 para estatina versus 15,3±8,3mg/dl para placebo; p<0,01). A razão E/A aumentou significativamente no grupo estatina (1,00±0,05 para 1,18±0,06 para estatina versus 1,06±0,05 para 1,06±0,04 para placebo; p=0,03), ao mesmo tempo em que o VAE reduziu significativamente neste grupo quando comparado ao placebo (24,5±0,9 para 21,1±0,8ml/m² para estatina versus 23,5±1,0 para 23,2±1,1ml/m² para placebo; p=0,048). A velocidade de e aumentou marginalmente no grupo estatina (9,6±0,6 para 10,2±0,5cm/s; p=0,05), mas sem diferença entre os grupos. A reserva contrátil aumentou significativamente em ambos os grupos (0,53±0,03 para 0,66± 0,05, p=0,009 para placebo versus 0,58±0,05 para 0,70±0,05, p=0,02 para estatina). Não houve correlação entre razão E/A, VAE e mudanças na pressão arterial ou níveis de colesterol. Houve uma moderada correlação positiva entre pressão arterial e LDL-colesterol (r=0,54; p=0,004). Conclusões: 1) A adição da sinvastatina ao enalapril melhora parâmetros de função diastólica em pacientes hipertensos com níveis de colesterol limítrofe, sendo este efeito independente da redução da pressão arterial ou do colesterol. 2) A PAS reduz com a sinvastatina, sendo esta redução correlacionada à redução do LDL-colesterol. 3) A reserva contrátil melhora com o tratamento com enalapril independente do uso da sinvastatina / Background: Diastolic dysfunction (DD) and decreased contractile reserve associated with hypertension are a surrogate for increased cardiovascular risk. Statins have experimental benefits on myocardial fibrosis, and could improve diastolic function or contractile reserve to a greater extend than ACE-inhibitors in hypertension. Objectives: Test in a double-blinded, placebo-controlled randomized study the effects of simvastatin added to enalapril treatment on DD and contractile reserve in hypertensive patients with average cholesterol levels. Methods: Hypertensive patients with DD and LDL-cholesterol < 160mg/dl underwent a run-in phase to achieve a systolic blood pressure (SBP) < 135mmHg and diastolic blood pressure (DBP) < 85mmHg with enalapril. Hydrochlorothiazide was added when need to achieve SBP or DBP control. Four weeks after reaching the optimum anti-hypertensive regimen, 55 patients were randomized to receive 80mg simvastatin (n = 27) or placebo (n = 28) for a period of 20 weeks. Transthoracic echocardiograms at rest and with dobutamine stress were performed before and after treatment. Left atrial volume (LAV) was measured by biplane modified Simpsons rule. Conventional mitral Doppler velocities were obtained at early diastole (E), late diastole (A) and E/A ratio was calculated, also Tissue Doppler velocities from mitral annulus (average from 4 basal walls) were measured at early diastole (e), late diastole (a) and systole (s); both at rest and during stress. The contractile and diastolic reserves were calculated at low dose of dobutamine stress. Blood pressure was measured monthly and lipid profile was analyzed every two months. Results: After 20 weeks, statin group showed a significant decrease in SBP (-4±2mmHg; p=0.02), total cholesterol (-47±6 for statin and 6.2±5mg/dl for placebo; p<0,0001), LDL-cholesterol (-41±5 for statin and 9.6±4mg/dl for placebo; p<0,0001) and tryglicerides levels (-22.8±11 for statin and 15.3±8mg/dl for placebo; p<0,01). E/A ratio increased significantly in statin group (1±0.05 to 1.18±0.06 for statin and 1,06±0,05 to 1,06±0,04 for placebo; p=0.03) at the same time that left atrial volume decreased (24.5±0.9 to 21.1±0.8ml/m² for statin and 23.5±1.0 to 23.2±1.1ml/m² for placebo; p=0.048). Moreover, e velocity had a trend to increase in statin (9.6±0.6 to 10.2±0.5cm/s; p=0.05) but there was no difference from placebo. Contractile reserve increased equally in both groups at lower dose of dobutamine (0.53±0.03 to 0.66±0.05, p=0.009 for placebo; 0.58±0.05 to 0.70±0.05, p=0.02 for statin). There was no correlation between E/A ratio, LAV and changes in blood pressure or cholesterol levels. There was a positive moderate correlation of blood pressure and LDL-cholesterol changes (r=0.54; p=0.004). Conclusions: 1) Simvastatin added to enalapril treatment in hypertensive patients with average cholesterol levels improves parameters of diastolic function independent of blood pressure or cholesterol changes. 2) Simvastatin decrease in SBP is correlated with LDL-cholesterol decrease. 3) Contractile reserve improves with hypertensive treatment irrespective to treatment with simvastatin

Page generated in 0.1358 seconds