• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 6
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 32
  • 8
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Scharfe Ungleichungen für Normen von Kommutatoren endlicher Matrizen

Wenzel, David 30 July 2011 (has links) (PDF)
In der Dissertation werden Schranken für Abschätzungen des Kommutators in verschiedenen Normen gegeben. Den Ausgangspunkt bildet die Frobenius-Norm, für die eine überraschend kleine Schranke bewiesen werden kann. Auf diesem Resultat aufbauend lassen sich über eine spezielle Adaption der Interpolationsmethode von Riesz-Thorin scharfe Schranken bei Verwendung von Schatten- und Vektornormen weitestgehend bestimmen. Es werden ferner die Fälle untersucht, in denen die obere Abschätzung erreicht wird (sog. Maximalität). Eine wichtige Rolle spielen verschiedene Darstellungen der Ungleichung, welche vielfältige Interpretationsmöglichkeiten eröffen und Verbindungen der algebraischen Abschätzung zu einem wichtigen Satz der Differentialgeometrie über die Krümmung von Mannigfaltigkeiten aufzeigen.
22

Kluzný kontakt u elektrických strojů / Sliding contact in electrical machine

Bernard, Ivo January 2009 (has links)
The work deals with the sliding contact of electrical machines. The work is focused on individual components of sliding contact and the evaluation qualitative criterions of certain components of sliding contact. In the final section is presented a comparative method that has been designed for large machines. In this work we used this method on a small machine.
23

Scharfe Ungleichungen für Normen von Kommutatoren endlicher Matrizen

Wenzel, David 21 March 2011 (has links)
In der Dissertation werden Schranken für Abschätzungen des Kommutators in verschiedenen Normen gegeben. Den Ausgangspunkt bildet die Frobenius-Norm, für die eine überraschend kleine Schranke bewiesen werden kann. Auf diesem Resultat aufbauend lassen sich über eine spezielle Adaption der Interpolationsmethode von Riesz-Thorin scharfe Schranken bei Verwendung von Schatten- und Vektornormen weitestgehend bestimmen. Es werden ferner die Fälle untersucht, in denen die obere Abschätzung erreicht wird (sog. Maximalität). Eine wichtige Rolle spielen verschiedene Darstellungen der Ungleichung, welche vielfältige Interpretationsmöglichkeiten eröffen und Verbindungen der algebraischen Abschätzung zu einem wichtigen Satz der Differentialgeometrie über die Krümmung von Mannigfaltigkeiten aufzeigen.
24

Mathematical Foundations of Quantum Mechanics / Kvantfysikens Matematiska Grunder

Israelsson, Anders January 2013 (has links)
No description available.
25

High accuracy computational methods for the semiclassical Schrödinger equation

Singh, Pranav January 2018 (has links)
The computation of Schrödinger equations in the semiclassical regime presents several enduring challenges due to the presence of the small semiclassical parameter. Standard approaches for solving these equations commence with spatial discretisation followed by exponentiation of the discretised Hamiltonian via exponential splittings. In this thesis we follow an alternative strategy${-}$we develop a new technique, called the symmetric Zassenhaus splitting procedure, which involves directly splitting the exponential of the undiscretised Hamiltonian. This technique allows us to design methods that are highly efficient in the semiclassical regime. Our analysis takes place in the Lie algebra generated by multiplicative operators and polynomials of the differential operator. This Lie algebra is completely characterised by Jordan polynomials in the differential operator, which constitute naturally symmetrised differential operators. Combined with the $\mathbb{Z}_2$-graded structure of this Lie algebra, the symmetry results in skew-Hermiticity of the exponents for Zassenhaus-style splittings, resulting in unitary evolution and numerical stability. The properties of commutator simplification and height reduction in these Lie algebras result in a highly effective form of $\textit{asymptotic splitting:} $exponential splittings where consecutive terms are scaled by increasing powers of the small semiclassical parameter. This leads to high accuracy methods whose costs grow quadratically with higher orders of accuracy. Time-dependent potentials are tackled by developing commutator-free Magnus expansions in our Lie algebra, which are subsequently split using the Zassenhaus algorithm. We present two approaches for developing arbitrarily high-order Magnus--Zassenhaus schemes${-}$one where the integrals are discretised using Gauss--Legendre quadrature at the outset and another where integrals are preserved throughout. These schemes feature high accuracy, allow large time steps, and the quadratic growth of their costs is found to be superior to traditional approaches such as Magnus--Lanczos methods and Yoshida splittings based on traditional Magnus expansions that feature nested commutators of matrices. An analysis of these operatorial splittings and expansions is carried out by characterising the highly oscillatory behaviour of the solution.
26

Sobre uma Construção Relacionada ao Quadrado Tensional não-Abeliano de um Grupo / On a Construction Related to the non-Abelian Tensor Square of a Group

ANDRADE, Agenor Freitas de 01 July 2011 (has links)
Made available in DSpace on 2014-07-29T16:02:18Z (GMT). No. of bitstreams: 1 Dissertacao Agenor Freitas de Andrade.pdf: 1042479 bytes, checksum: 049cc003452cdaee484bef8ab2c371b3 (MD5) Previous issue date: 2011-07-01 / Let G and Gj be isomorphic groups. We study the group V (G) which is an extension of the non-abelian tensor square of a group G, G G. Looking for V (G) as an operator in the class of groups, we observe that this operator preserves some properties of the group G such as finiteness, nilpotency and solubility. For a p-group finite G we find an upper bound for the order of G G. Finally, we verified computationally, for some groups, and that the results and also the bounds for the orders of the groups shown here are actually respected. / Sejam G e Gj grupos isomorfos. Estudaremos o grupo V (G) que é uma extensão de grupo do quadrado tensorial não-abeliano de um grupo G, G G. Olhando para V (G) como um operador na classe de grupos, observamos que este operador preserva algumas propriedades do grupo G, tais como finitude, solubilidade e nilpotência. Ainda para um p-grupo finito G encontramos um limitante para ordem de G G: Por fim, verificamos computacionalmente, para alguns grupos, que os resultados e também os limitantes para as ordens dos grupos aqui apresentados são de fato respeitados.
27

Flots quasi-invariants associés aux champs de vecteur non réguliers / Quasi-invariant flows associated with irregular vector fields

Lee, Huaiqian 28 April 2011 (has links)
La thèse est composée de deux parties.Dans la première partie, nous allons étudier le flot quasi-invariant défini par une équation différentielle stochastique de Stratanovich avec le dérive ayant seulement la BV-régularitésur un espace euclidien, en généralisant des résultats de L. Ambrosio sur l'existence,unicité et stabilité des flots lagrangiens associés aux équations différentielles ordinaires[Invent. Math. 158 (2004), 227{260]. Comme une application d'un résultat de stabilité,nous allons construire une solution explicite à l'equation de transport stochastique enterme de flot stochastique. La différentiabilité approximative du flot sera aussi investie,lorsque le dérive possµede une régularité de Sobolev.Dans la deuxième partie, nous allons généraliser la théorie de DiPerna-Lions aux cas desvariétés riemanniennes complètes. Nous allons utiliser le semi-groupe de la chaleur pourrégulariser des fonctions et des champs de vecteur. L'estimation sur le commutateur seraobtenue par la méthode probabiliste. Une application de cette estimation est de prouverl'unicité des solutions à l'équation de transport à l'aide du concept des solutions renormal-isables. L'équation différentielle ordinaire associée à un champ de vecteur de régularité deSobolev sera enfin résolue en adoptant une méhode due à L. Ambrosio. La fin de cett par-tie consacre à la construction des processus de diffusion, par la méthode de la variation deconstante, sur une variété riemannienne complète, ayant comme générateur, un opérateurelliptique contenant le dérive non-régulier. Pour cela, nous allons donner des conditionssur la courbure pour que le flot horizontal canonique soit un flot de difféomorphismes / The thesis mainly consists of two parts.In the first part, we study the quasi-invariant flow generated by the Stratonovich stochas-tic differential equation with BV drift coefficients in the Euclidean space. We generalizethe results of Ambrosio [Invent. Math. 158 (2004), 227{260] on the existence, uniquenessand stability of regular Lagrangian flows of ordinary differential equations to Stratonovichstochastic differential equations with BV drift coefficients. As an application of the sta-bility result, we construct an explicit solution to the corresponding stochastic transportequation in terms of the stochastic flow. The approximate differentiability of the flow isalso studied when the drift coefficient has some Sobolev regularity.In the second part, we generalize the DiPerna-Lions theory in the Euclidean space to thecomplete Riemannian manifold. We define the commutator on the complete Riemannianmanifold which is a probabilistic version of the one in the DiPerna-Lions theory, andestablish the commutator estimate by the probabilistic method. As a direct applicationof the commutator estimate, we investigate the uniqueness of solutions to the transportequation by the method of the renormalized solution. Following Ambrosio's method, weconstruct the DiPerna-Lions flow on the Riemannian manifold. In order to construct thediffusion process associated to an elliptic operator with irregular drift on the completeRiemannian manifold, we give some conditions which guarantee the strong completenessof the horizontal flow. Finally, we construct the diffusion process with the drift coefficienthaving only Sobolev regularity.Besides, we present a brief introduction of the classical theory on the ordinary differentialequation in the smooth case and the quasi-invariant flow of homeomorphisms under theOsgood condition before the first part; and we recall some basic tools and results whichare widely used throughout the whole thesis after the second part.
28

Analýza a inovace elektrických motorků pro automobily / Automotive Electric Motors Analysis and Innovation

Špaček, Ladislav January 2011 (has links)
Direct current motors and stepping motors are very often used for electric drives in cars. The most frequent representatives of direct current motors are electric starter and wind- screen wiper motor. Stepping motors are very often used for electric regulating of outsides driving mirrors and seats. This study is focused on innovation and DC permanent magnet motor. The disadvanage of direct current motors is so called „sliding contact“. A possible compensation of direct current motor are EC (electronically commutator) motors that do not need sliding contact for their work.
29

Využití mikroskopu k diagnostice struktury materiálu a poruch u el. zařízení / Using the Microscope for diagnostics of Structure of Materials and Fault El. Equipment

Cvak, Jan January 2015 (has links)
The goal of this thesis is to describe the possibility of using a microscope for documentation defects and innovation of electrical machines. I used an electron microscope to document carbon brushes and nanomaterials for possible upgrade of the sliding contact. Use microscopes gives us detailed information about the structure of materials, at the largest stress of the electrical machine. Based on the collected data can be further analyzed and innovation of the carbon brush.
30

Magnus-based geometric integrators for dynamical systems with time-dependent potentials

Kopylov, Nikita 27 March 2019 (has links)
[ES] Esta tesis trata sobre la integración numérica de sistemas hamiltonianos con potenciales explícitamente dependientes del tiempo. Los problemas de este tipo son comunes en la física matemática, porque provienen de la mecánica cuántica, clásica y celestial. La meta de la tesis es construir integradores para unos problemas relevantes no autónomos: la ecuación de Schrödinger, que es el fundamento de la mecánica cuántica; las ecuaciones de Hill y de onda, que describen sistemas oscilatorios; el problema de Kepler con la masa variante en el tiempo. El Capítulo 1 describe la motivación y los objetivos de la obra en el contexto histórico de la integración numérica. En el Capítulo 2 se introducen los conceptos esenciales y unas herramientas fundamentales utilizadas a lo largo de la tesis. El diseño de los integradores propuestos se basa en los métodos de composición y escisión y en el desarrollo de Magnus. En el Capítulo 3 se describe el primero. Su idea principal consta de una recombinación de unos integradores sencillos para obtener la solución del problema. El concepto importante de las condiciones de orden se describe en ese capítulo. En el Capítulo 4 se hace un resumen de las álgebras de Lie y del desarrollo de Magnus que son las herramientas algebraicas que permiten expresar la solución de ecuaciones diferenciales dependientes del tiempo. La ecuación lineal de Schrödinger con potencial dependiente del tiempo está examinada en el Capítulo 5. Dado su estructura particular, nuevos métodos casi sin conmutadores, basados en el desarrollo de Magnus, son construidos. Su eficiencia es demostrada en unos experimentos numéricos con el modelo de Walker-Preston de una molécula dentro de un campo electromagnético. En el Capítulo 6, se diseñan los métodos de Magnus-escisión para las ecuaciones de onda y de Hill. Su eficiencia está demostrada en los experimentos numéricos con varios sistemas oscilatorios: con la ecuación de Mathieu, la ec. de Hill matricial, las ecuaciones de onda y de Klein-Gordon-Fock. El Capítulo 7 explica cómo el enfoque algebraico y el desarrollo de Magnus pueden generalizarse a los problemas no lineales. El ejemplo utilizado es el problema de Kepler con masa decreciente. El Capítulo 8 concluye la tesis, reseña los resultados y traza las posibles direcciones de la investigación futura. / [CA] Aquesta tesi tracta de la integració numèrica de sistemes hamiltonians amb potencials explícitament dependents del temps. Els problemes d'aquest tipus són comuns en la física matemàtica, perquè provenen de la mecànica quàntica, clàssica i celest. L'objectiu de la tesi és construir integradors per a uns problemes rellevants no autònoms: l'equació de Schrödinger, que és el fonament de la mecànica quàntica; les equacions de Hill i d'ona, que descriuen sistemes oscil·latoris; el problema de Kepler amb la massa variant en el temps. El Capítol 1 descriu la motivació i els objectius de l'obra en el context històric de la integració numèrica. En Capítol 2 s'introdueixen els conceptes essencials i unes ferramentes fonamentals utilitzades al llarg de la tesi. El disseny dels integradors proposats es basa en els mètodes de composició i escissió i en el desenvolupament de Magnus. En el Capítol 3, es descriu el primer. La seua idea principal consta d'una recombinació d'uns integradors senzills per a obtenir la solució del problema. El concepte important de les condicions d'orde es descriu en eixe capítol. El Capítol 4 fa un resum de les àlgebres de Lie i del desenvolupament de Magnus que són les ferramentes algebraiques que permeten expressar la solució d'equacions diferencials dependents del temps. L'equació lineal de Schrödinger amb potencial dependent del temps està examinada en el Capítol 5. Donat la seua estructura particular, nous mètodes quasi sense commutadors, basats en el desenvolupament de Magnus, són construïts. La seua eficiència és demostrada en uns experiments numèrics amb el model de Walker-Preston d'una molècula dins d'un camp electromagnètic. En el Capítol 6 es dissenyen els mètodes de Magnus-escissió per a les equacions d'onda i de Hill. El seu rendiment està demostrat en els experiments numèrics amb diversos sistemes oscil·latoris: amb l'equació de Mathieu, l'ec. de Hill matricial, les equacions d'onda i de Klein-Gordon-Fock. El Capítol 7 explica com l'enfocament algebraic i el desenvolupament de Magnus poden generalitzar-se als problemes no lineals. L'exemple utilitzat és el problema de Kepler amb massa decreixent. El Capítol 8 conclou la tesi, ressenya els resultats i traça les possibles direccions de la investigació futura. / [EN] The present thesis addresses the numerical integration of Hamiltonian systems with explicitly time-dependent potentials. These problems are common in mathematical physics because they come from quantum, classical and celestial mechanics. The goal of the thesis is to construct integrators for several import ant non-autonomous problems: the Schrödinger equation, which is the cornerstone of quantum mechanics; the Hill and the wave equations, that describe oscillating systems; the Kepler problem with time-variant mass. Chapter 1 describes the motivation and the aims of the work in the historical context of numerical integration. In Chapter 2 essential concepts and some fundamental tools used throughout the thesis are introduced. The design of the proposed integrators is based on the composition and splitting methods and the Magnus expansion. In Chapter 3, the former is described. Their main idea is to recombine some simpler integrators to obtain the solution. The salient concept of order conditions is described in that chapter. Chapter 4 summarises Lie algebras and the Magnus expansion ¿ algebraic tools that help to express the solution of time-dependent differential equations. The linear Schrödinger equation with time-dependent potential is considered in Chapter 5. Given its particular structure, new, Magnus-based quasi-commutator-free integrators are build. Their efficiency is shown in numerical experiments with the Walker-Preston model of a molecule in an electromagnetic field. In Chapter 6, Magnus-splitting methods for the wave and the Hill equations are designed. Their performance is demonstrated in numerical experiments with various oscillatory systems: the Mathieu equation, the matrix Hill eq., the wave and the Klein-Gordon-Fock eq. Chapter 7 shows how the algebraic approach and the Magnus expansion can be generalised to non-linear problems. The example used is the Kepler problem with decreasing mass. The thesis is concluded by Chapter 8, in which the results are reviewed and possible directions of future work are outlined. / Kopylov, N. (2019). Magnus-based geometric integrators for dynamical systems with time-dependent potentials [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/118798

Page generated in 0.0518 seconds