Spelling suggestions: "subject:"complexe dde por nucléaire"" "subject:"complexe dde pose nucléaire""
1 |
Rôle de la protéine adaptatrice hématopoïétique SLP-76 dans la biologie et le métabolisme des cellules TCabald, Auryane Laure 08 1900 (has links)
Le système immunitaire est divisé en deux réponses : innée et adaptative. Dans la réponse adaptative, les principaux acteurs sont les cellules T CD8 et CD4, dont l'activation est médiée par le complexe antigène-récepteur (TCR) et la génération de signaux intracellulaires. L'intensité du signal est contrôlée par l'affinité du ligand impliquant la kinase p56lck et la protéine adaptatrice SLP-76. Les souris dépourvues de SLP-76 sont bloquées dans leur développement thymique, ce qui rend difficile l'évaluation de l'importance de l'adaptateur, dans la fonction des cellules T périphériques. Récemment, le laboratoire Rudd a généré une souris knock-in (KI) avec une forme de SLP-76 mutée au niveau d'un seul résidu, K56, ayant des cellules T périphériques normales. Cette mutation empêche SLP-76 de se lier au complexe de pore nucléaire (CPN). L'objectif de ce mémoire est de comprendre le rôle de SLP-76, plus particulièrement du mutant K56E dans le contrôle de certains aspects de la fonction des cellules T périphériques. K56E sur un fond transgénique OT1, a montré une déficience partielle de la fonction et du métabolisme des cellules T en réponse à des ligands peptidiques d'ovalbumine de poulet, de différentes affinités. Plus précisément, les voies de la glycolyse et de la phosphorylation oxydative en ont été altérées. Dans l'ensemble, l'altération des fonctions et du métabolisme des lymphocytes T chez le mutant K56E confirme l'existence d'un lien entre le SLP-76 et le métabolisme des lymphocytes T, ce qui pourrait avoir des implications importantes dans le développement de thérapies ciblant la fonction des lymphocytes T. / The immune system is divided into two responses: innate and adaptive. In the adaptive
response, the main players are CD8 and CD4 T-cells whose activation is mediated by
ligation of the antigen-receptor complex (TCR) and its generation of intracellular signals.
The strength of signal is controlled by the affinity of the ligand in a process that involves
upstream kinases such as p56lck and downstream targets such as the adaptor protein
SLP-76. Mice lacking SLP-76 are blocked in thymic development, making it difficult to
assess the importance of the adaptor in peripheral T-cell function. Recently, the Rudd lab
generated a knock-in (KI) mouse with a form of SLP-76 mutated at a single residue K56
which shows a normal peripheral T-cell compartment. The mutant prevents SLP-76
binding to the nuclear pore complex (NPC). The object of this dissertation is to understand
role of SLP-76 and specifically the K56E mutant in the control of aspects of peripheral Tcell function. The K56E mutant on an OT1 TCR transgenic background showed a partial
impairment of T-cell function and metabolism in response to chicken ovalbumin peptide
ligands of different affinities. Specifically, both glycolysis and oxidative phosphorylation
pathways were impaired in response to peptide ligand activation. Overall, the impairment
of T-cell function and metabolism in the K56E mutant supports a link between SLP-76 and
T-cell metabolism which may have important implications in the development of
therapies targeting T-cell function.
|
2 |
Investigation des fonctions de la protéine du pore nucléaire TPR en utilisant la microscopie à molécule uniqueBop, Bineta 08 1900 (has links)
Le complexe de pores nucléaires est le seul point d'entrée et de sortie du transport nucléocytoplasmique. Le panier nucléaire, l'un de ses principaux composants, s'est avéré impliqué dans la régulation des gènes et pourrait jouer un rôle majeur dans le contrôle de la qualité de l'export d'ARNm. Cependant, on sait peu de choses sur le fonctionnement du panier dans l'export nucléaire et la régulation des gènes. La principale composante structurelle du panier, la TPR (Translocated Promoter Region), est considérée comme l'acteur principal de la fonction de contrôle de la qualité du panier. Il reste à établir par quel mécanisme cette protéine assure la sélection des mRNP compétentes pour l'exportation. Malgré son implication connue dans le contrôle de la qualité des mRNP, l'exportation et la maturation, des questions demeurent: que fait vraiment le panier, qu'est-ce qui définit le contrôle qualité, comment le panier nucléaire est-il capable d'identifier l'ARN qui n'est pas compétent pour l'exportation et quels sont les rôles de différentes protéines composant le panier nucléaire.
Récemment, il a été montré que la protéine TPR est présente dans deux populations, l'une dans le nucléoplasme et l'autre liée au NPC. Nos études préliminaires utilisant FRAP (Fluorescence Recorvery After Photobleaching) et la microscopie à molécule unique montrent que les molécules nucléoplasmiques de TPR ne sont pas impliquées dans un échange rapide avec les molécules assemblant avec les paniers ancrés au NPC et présentent différentes sous-populations basées sur la diffusion. L'analyse de études protéomiques préliminaires de notre laboratoire a révélé que l’interactome de TPR présente un enrichissement inattendu en protéines impliquées dans la maturation de l'ARNm, notamment l'épissage et les facteurs de traitement de l'extrémité 3'. Ces résultats pourraient suggérer des interactions complexes des nouvelles fractions nucléoplasmiques de TPR avec la machinerie de maturation des ARNms et nous amènent à poser les questions suivantes : Quelle est la fonction de la protéine du panier TPR lorsqu'elle n'est pas associée au NPC, et la TPR nucléoplasmique participe-t-elle au métabolisme de l'ARN nucléaire, reliant potentiellement les processus nucléaires au contrôle de la qualité au NPC?
Mon projet s'est concentré sur l'étude des fonctions et de la dynamique de la protéine du panier nucléaire TPR à l'aide de techniques d'imagerie fluorescente en cellule vivante et de suivi de protéine unique. Nous avons pu identifier la dynamique et la localisation des différentes populations de TPR à partir des profils de diffusion de leurs trajectoires, qui peuvent être réparties en 5 catégories : Dirigée, Brownienne, Restreinte, Confinée et Butterfly. Nos données suggèrent que les trajectoires confinées pourraient être liée à l’association de TPR à la chromatine tandis que les browniennes représenteraient les molécules de TPR diffusant librement dans le noyau. De plus, nous avons constaté que les trajectoires dirigées et restreintes pourraient être liées à la maturation de l'ARN vu que ces deux sous-populations de TPR sont les plus affectées lorsque la transcription est inhibée. Également, en absence de la transcription par l’ARN polymérase II, TPR forme des granules dans le nucléoplasme, suggérant son implication durant la transcription active. Ainsi, notre étude montre que la fraction nucléoplasmique du TPR est subdivisée en fractions non associées aux pores hétérogènes qui pourraient jouer plusieurs rôles dans le métabolisme de l'ARN et la qualité de l'export. / The nuclear pore complex is the only entry and exit point for the nucleocytoplasmic transport. The nuclear basket, one of its main components, was shown to be involved in gene regulation and could play a major role in quality control of mRNA export. However, little is known on how the basket functions in nuclear export and gene regulation. The main structural component of the basket, TPR (Translocated Promoter Region), is thought to be the main actor in the quality control function of the basket. It is yet to be establish by which mechanism this protein ensures the selection of competent mRNPs for export. With all these involvement of the basket in quality control, export, and maturation, one question remains: What is the basket really doing, what defines quality control, how the nuclear basket can identify RNAs that aren’t competent for export, and what are the roles of the different proteins that make up the basket.
Recently it was shown that TPR is present in two populations, one in the nucleoplasm and another bound at the NPC. Our preliminary studies using FRAP (Fluorescence Recovery After Photobleaching) and single molecule microscopy shows that the nucleoplasmic TPR molecules aren’t exchanging with the baskets anchored at the NPC and present different subpopulations based on diffusion. Analysis of preliminary proteomics studies from our laboratory revealed an interactome with an unexpected enrichment of proteins involved in mRNA maturation notably splicing and 3’ end processing factors. These results imply complex interactions of the new fractions of TPR and lead us to ask these following questions: What is the function of the basket protein TPR when it is not associated with the NPC, and does nucleoplasmic TPR participate in nuclear RNA metabolism, potentially linking nuclear processes to quality control at the NPC?
My project focused on investigating the functions and dynamics of the nuclear basket protein TPR using fluorescent live-cell and single-protein imaging techniques. We were able to identify the dynamics and localization of the different populations of TPR based on the diffusion profiles of their trajectories, which can be divided in 5 categories: Directed, Brownian, Restricted, Confined and Butterfly. Our data suggest that the confined population might be linked to chromatin association of TPR, whereas the Brownian would represent the free diffusing TPR molecules in the nucleus. We further found that the Directed and Restricted trajectories could be linked to RNA maturation as these two subpopulations of TPR are most affected when transcription is inhibited. Moreover, in absence of transcription, TPR forms granules in the nucleus, suggesting its implication during active transcription. Altogether, our study shows that the nucleoplasmic fraction of TPR is subdivided in heterogenous diffusive fractions that could play several roles in the metabolism of RNA and quality of export
|
3 |
The nuclear pore complex and its transporters : from virus-host interactors to subverting the innate antiviral immunityGagné, Bridget 05 1900 (has links)
Les virus ont besoin d’interagir avec des facteurs cellulaires pour se répliquer et se propager dans les cellules d’hôtes. Une étude de l'interactome des protéines du virus d'hépatite C (VHC) par Germain et al. (2014) a permis d'élucider de nouvelles interactions virus-hôte. L'étude a également démontré que la majorité des facteurs de l'hôte n'avaient pas d'effet sur la réplication du virus. Ces travaux suggèrent que la majorité des protéines ont un rôle dans d'autres processus cellulaires tel que la réponse innée antivirale et ciblées pas le virus dans des mécanismes d'évasion immune.
Pour tester cette hypothèse, 132 interactant virus-hôtes ont été sélectionnés et évalués par silençage génique dans un criblage d'ARNi sur la production interferon-beta (IFNB1). Nous avons ainsi observé que les réductions de l'expression de 53 interactants virus-hôte modulent la réponse antivirale innée. Une étude dans les termes de gène d'ontologie (GO) démontre un enrichissement de ces protéines au transport nucléocytoplasmique et au complexe du pore nucléaire. De plus, les gènes associés avec ces termes (CSE1L, KPNB1, RAN, TNPO1 et XPO1) ont été caractérisé comme des interactant de la protéine NS3/4A par Germain et al. (2014), et comme des régulateurs positives de la réponse innée antivirale. Comme le VHC se réplique dans le cytoplasme, nous proposons que ces interactions à des protéines associées avec le noyau confèrent un avantage de réplication et bénéficient au virus en interférant avec des processus cellulaire tel que la réponse innée.
Cette réponse innée antivirale requiert la translocation nucléaire des facteurs transcriptionnelles IRF3 et NF-κB p65 pour la production des IFNs de type I. Un essai de microscopie a été développé afin d'évaluer l’effet du silençage de 60 gènes exprimant des protéines associés au complexe du pore nucléaire et au transport nucléocytoplasmique sur la translocation d’IRF3 et NF-κB p65 par un criblage ARNi lors d’une cinétique d'infection virale.
En conclusion, l’étude démontre qu’il y a plusieurs protéines qui sont impliqués dans le transport de ces facteurs transcriptionnelles pendant une infection virale et peut affecter la production IFNB1 à différents niveaux de la réponse d'immunité antivirale. L'étude aussi suggère que l'effet de ces facteurs de transport sur la réponse innée est peut être un mécanisme d'évasion par des virus comme VHC. / Viruses interact with cellular factors in order to successfully replicate and propagate in host cells. Germain et al. (2014) performed a proteomics analysis to elucidate viral-host interactors of hepatitis C virus (HCV). They found that the majority of host factors did not have an effect on viral replication, suggesting that these host proteins may be beneficial to the virus by affecting other cellular processes such as evading the innate antiviral immunity.
To test that hypothesis, 132 virus-host interactors were selected and silenced by RNAi for their effect on inteferon-beta (IFNB1) production as a readout of the innate antiviral response. 53 were found to modulate the response with enrichment in the gene ontology (GO) terms related to nucleocytoplasmic transport and the nuclear pore complex. An interesting point is that the genes associated with these terms (CSE1L, KPNB1, RAN, TNPO1, and XPO1) were previously elucidated as HCV NS3/4A interactors by Germain et al. (2014), as well as positive regulators of the innate antiviral response. Although it is surprising that a cytoplasmic-replicating virus like HCV would interact with proteins associated with the nucleus, we proposed that viruses interact with these proteins for their benefit to interfere with the innate immune response.
The innate antiviral response requires the nuclear translocation of IRF3 and NF-κB p65 for the production of type I interferons. As it is unclear which transporters or nucleoporins are involved, 60 genes associated with the nuclear pore complex and nucleocytoplasmic transport were studied for their effect on the nuclear translocation of IRF3 and NF-κB p65 via a microscopy-based RNAi screen during a 10-hour viral infection time course.
Overall, the study revealed that many of these proteins are involved in the trafficking of these transcription factors during a viral infection, and can affect the production of IFNB1 at different levels of the innate antiviral response. The study also suggests that the effect of these transport factors on the immune response may be an evasion mechanism for viruses such as HCV.
|
Page generated in 0.0788 seconds