• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 231
  • 171
  • 79
  • 42
  • 23
  • 17
  • 14
  • 12
  • 6
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • Tagged with
  • 715
  • 398
  • 176
  • 155
  • 142
  • 114
  • 98
  • 74
  • 73
  • 72
  • 72
  • 68
  • 63
  • 58
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
281

Betonghållfasthet vs. normhållfasthet för cement : Underlag för framtida hantering av variationer i cementens normhållfasthet / Concrete Strength Vs. Strength of Cement : Support for future handling of variations in the cement standard strength

Tynhage, Ellinor, Lif, Emil January 2021 (has links)
Betong är ett material som används dagligen och finns i allt från skyskrapor och tunnlar till skulpturer och möbler. Tryckhållfastheten är en av betongens viktigaste egenskaper och med en konstant utvecklande bransch där det byggs mer och mer är det avgörande att betongen som används håller. Normhållfastheten hos cement kontrolleras regelbundet och visar i vissa fall variationer utanför cementens normala spann. Cementillverkare upptäcker dessa avsteg genom att granska varje leverans som produceras samt genom egna produktkontroller på fabriken. Vid upptäckta felmarginaler finns krav på att berörda kunder i branschen måste informeras för att exempelvis få en möjlighet till att kunna korrigera recept inför betongblandningen. Vid en lägre normhållfasthet i cement skapas generellt en lägre hållfasthet i betong och för att justera avvikelsen ökar betongtillverkare mängden cement i recepten för att kunna leverera en produkt med utlovad hållfasthet till kund. Slutresultatet kommer att hjälpa betongtillverkare att förutse hur betongen kan påverkas av en variation i cementens hållfasthet och vara ett hjälpmedel för hur receptet ska hanteras för att täcka upp eventuella variationer så att kunderna inte påverkas i lika stor grad. Arbetet innefattar tre betongrecept med separata vct som testas med cementen Anläggningscement Slite i en grov-, mellan- och finmald version. Gjutningen sker i Cementa Research laboratorium i Liljeholmen och sammanlagt utförs 18 gjutningar med 22 liter betong per gjutning. Totalt gjuts 216 kuber som sedan trycktestas vid 7 respektive 28 dygn i samma lokal. Data har sedan sammanställts för att kunna jämföras mot cementens normhållfasthet som har testats i Cementas lab i Slite. Arbetet har utförts åt Cementa AB och Thomas Concrete Group AB för att kontrollera sambandet mellan normhållfastheten i cement och den färdiga betongens hållfasthet. Sambandet är av stor vikt i den dagliga produktionen och är något som efterfrågats under lång tid. Resultatet från gjutningarna visar att det finns ett samband till en viss grad men på grund av komplikationer under gjutningarna har vissa värden inte blivit som förväntat. / Concrete is one of the world's most important building materials and is used in everything from skyscrapers, tunnels to sculptures and furniture. The strength of concrete is important and with a constantly developing industry where more and more is being built, it is vital that the concrete that is used holds. The work is performed on behalf of Cementa AB and Thomas Concrete Group AB to investigate the relation between the strength of cement and the strength of the concrete. The relation is of great importance in daily production and is something that has been requested for a long time. The standard strength of cement is checked regularly and shows in some cases deviations outside the normal range of the cement. Cementa detects these deviations by controlling shipped cement and by the product controls at the factory. If margins of error are discovered, there are requirements for those involved in the industry that they must inform the customers in order for them to correct their concrete mixes accordingly. At a lower standard strength in cement, a lower strength in concrete is generally created and to correct the deviation, the affected amount of cement in the recipe increases in order to be able to deliver a promised product to the customer. The end result will help concrete manufacturers predict how the concrete can be affected by a deviation of the strength of the cement and be a tool for how the recipe should be handled to cover any deviations so that customers are not affected to the same extent. The work includes three concrete recipes with separate w/c-ratios that were tested with the cement CEM I 42,5 N SR3 MH/LA in a coarse, medium and finely milled version. The casting took place in Cementa Research's laboratory in Liljeholmen and in summary, 18 castings were performed with 22 liters of concrete per casting. A total of 216 cubes were cast and then pressure tested at 7 and 28 days. The data has then been compiled to be able to be compared with the cement's standard strength that has been tested in Cementa's lab in Slite.
282

Multilevel Method for Turbulence Energy Spectrum Estimation by Compressive Sampling

Adalsteinsson, Gudmundur F. 04 1900 (has links)
<p>Recent developments in signal processing called Compressive Sampling (CS) show that the measurement and reconstruction of sparse signals often requires fewer samples than is estimated by the sampling theorem. CS is a combination of a linear sampling scheme and a reconstruction method and, typically, the signal is assumed to be sparse, compressible, or having a prior distribution, with the reconstruction error measured in the \ell^2 norm. This thesis investigates the application of CS to turbulence signals, particularly for estimating some statistics or nonlinear functions of the signals. The main original research result of the thesis is a proposed method, Spectrum Estimation by Sparse Optimization (SpESO), which uses a priori information about isotropic homogeneous turbulent flows and the multilevel structure of wavelet transforms to reconstruct energy spectra from compressive measurements, with errors measured on a logarithmic scale. The method is tested numerically on a variety of 1D and 2D turbulence signals, and is able to approximate energy spectra with an order of magnitude fewer samples than with traditional fixed rate sampling. The results demonstrate that SpESO performs much better than Lumped Orthogonal Matching Pursuit (LOMP), and as well or better than wavelet-based best M-term methods in many cases, even though these methods require complete sampling of the signal before compression.</p> / Master of Science (MSc)
283

Pre-hydration as a technique for the retardation of Roman cement mortars

Starinieri, V., Hughes, David C., Gosselin, C., Wilk, D., Bayer, K. 10 January 2013 (has links)
No / The setting of Roman cement is so rapid as to make the use of retardation essential in most practical mortars. This work reports an approach to retardation of Roman cement mortars by means of a pre-hydration process in which pre-determined amounts of water (de-activation water) are added to the cement prior to subsequent mortar formation. It is shown that this process yields both monocarboaluminate and a carbonated AF(m) phase, the balance of which is modified by storage time; the belite phases are not affected. Increases in both de-activation water and pre-hydrated mix storage time yield a longer workable life and slightly lower strength of the mortar. An increase in de-activation water also yields an increase in shrinkage whilst an increase in storage time results in a reduction in shrinkage. Other parameters such as mixing protocol and re-mixing affect workable life without compromising the strength. (C) 2013 Elsevier Ltd. All rights reserved.
284

Characterization and life cycle assessment of geopolymer mortars with masonry units and recycled concrete aggregates assorted from construction and demolition waste

Kul, A., Ozel, B.F., Ozcelikci, E., Gunal, M.F., Ulugol, H., Yildirim, Gurkan, Sahmaran, M. 24 August 2023 (has links)
Yes / Developing a fast, cost-effective, eco-friendly solution to recycle large amounts of construction and demolition waste (CDW) generated from construction industry-related activities and natural disasters is crucial. The present investigation aims to offer a solution for repurposing CDW into building materials suitable for accelerated construction and housing in developing countries and disaster-prone areas. Feasibility of recycled concrete aggregate (RCA) inclusion in geopolymer mortars constituted entirely from CDW (masonry elements) was investigated via an environmental impact-oriented approach by addressing the composition related key parameters. Mechanical performance was evaluated through compressive strength tests, and scanning electron microscope (SEM) imaging with line mapping analyses were carried out to monitor the interfacial transition zone (ITZ) properties. To investigate the environmental impacts of the geopolymer mortars and highlight the advantages over Portland cement-based mortars, a cradle-to-gate life cycle assessment (LCA) was performed. Findings revealed that roof tile (RT)-based geopolymer mortars mainly exhibited better strength performance due to their finer particle size. Mixtures activated with 15 M NaOH solution and cured at 105 °C achieved an average compressive strength above 55 MPa. RCA size was the most influential parameter on compressive strength, and a smaller maximum RCA size significantly increased the compressive strength. Microstructural analyses showed that the ITZ around smaller RCAs was relatively thinner, resulting in better compressive strength results. LCA proved that CDW-based geopolymer mortars provide the same compressive strength with around 60% less CO2 emissions and similar energy consumption compared to Portland cement-based mortars. / This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 894100. The authors also wish to acknowledge the support of the Scientific and Technical Research Council of Turkey (TUBITAK) provided under project: 117M447
285

Thermo-Mechanical Behavior of Polymer Composites Exposed to Fire

Zhang, Zhenyu 22 July 2010 (has links)
One of the most critical issues for Polymer Matrix Composites (PMCs) in naval applications is the structural performance of composites at high temperature such as that experienced in a fire. A three-dimensional model including the effect of orthotropic viscoelasticity and decomposition is developed to predict the thermo-mechanical behavior and compressive failure of polymer matrix composites (PMCs) subjected to heat and compressive load. An overlaid element technique is proposed for incorporating the model into commercial finite element software ABAQUS. The technique is employed with the user subroutines to provide practicing engineers a convenient tool to perform analysis and design studies on composite materials subjected to combined fire exposure and mechanical loading. The resulting code is verified and validated by comparing its results with other numerical results and experimentally measured data from the one-sided heating of composites at small (coupon) scale and intermediate scale. The good agreement obtained indicates the capability of the model to predict material behavior for different composite material systems with different fiber stacking sequences, different sample sizes, and different combined thermo-mechanical loadings. In addition, an experimental technique utilizing Vacuum Assisted Resin Transfer Molding (VARTM) is developed to manufacture PMCs with a hypodermic needle inserted for internal pressure measurement. One-sided heating tests are conducted on the glass/vinyl ester composites to measure the pressure at different locations through thickness during the decomposition process. The model is employed to simulate the heating process and predict the internal pressure due to the matrix decomposition. Both predicted and measured results indicate that the range of the internal pressure peak in the designed test is around 1.1-1.3 atmosphere pressure. / Ph. D.
286

Compressive Creep of Prestressed Concrete Mixtures With and Without Mineral Admixtures

Meyerson, Richard 29 March 2001 (has links)
Concrete experiences volume changes throughout its service life. When loaded, concrete experiences an instantaneous recoverable elastic deformation and a slow inelastic deformation called creep. Creep of concrete is composed of two components, basic creep, or deformation under load without moisture loss and drying creep, or deformation under drying conditions only. Deformation of concrete in the absence of applied load is often called shrinkage. The deformation due to creep is attributed to the movement of water between the different phases of the concrete. When an external load is applied, it changes the attraction forces between the cement gel particles. This change in the forces causes an imbalance in the attractive and disjoining forces. However, the imbalance is gradually eliminated by the transfer of moisture into the pores in cases of compression, and away from the pores in cases of tension. Designs typically use one of the two code models to estimate creep and shrinkage strain in concrete, ACI 209 model recommended by the American Concrete Institute or the CEB 90 Eurocode 2 model recommended by the Euro-International Committee. The ASSHTO LRFD is based on the ACI 209 model. Three other models are the B3 model, developed by Bazant; the GZ model, developed by Gardner; and the SAK model developed by Sakata. The development of concrete performance specifications that limit the amount of compressive creep of concrete mixtures used by the Virginia Department of Transportation, specifically concrete mixtures used for prestressed members (A-5 Concrete) were assessed, along with determining the accuracy and precision of the creep models presented in the literature. The CEB 90 Eurocode 2 model for creep and shrinkage is the most precise and accurate predictor. The total strain for the VDOT portland cement concrete mixtures discussed in this study were found to be between 1200 ± 110 microstrain at 28 days, and 1600 ± 110 microstrain at 97 days, at a five percent significant level. / Master of Science
287

Predicting Compression Failure of Fiber-reinforced Polymer Laminates during Fire

Summers, Patrick T. 23 May 2010 (has links)
A thermo-structural model was developed to predict the failure of compressively loaded fiber-reinforced polymer (FRP) laminates during fire. The thermal model was developed as a one-dimensional heat and mass transfer model to predict the thermal response of a decomposing material. The thermal properties were defined as functions of temperature and material decomposition state. The thermal response was used to calculate mechanical properties. The structural model was developed with thermally induced bending caused by one-sided heating. The structural model predicts out-of-plane deflections and compressive failure of laminates in fire conditions. Laminate failure was determined using a local failure criterion comparing the maximum combined compressive stress with the compressive strength. Intermediate-scale one-sided heating tests were performed on compressively loaded FRP laminates. The tests were designed to investigate the effect of varying the applied stress, applied heat, and laminate dimensions on the structural response. Three failure modes were observed in testing: kinking, localized kinking, and forced-response deflection, and were dependent on the applied stress level and independent of applied heating. The times-to-failure of the laminates followed an inverse relationship with the applied stress and heating levels. The test results were used to develop a relationship which relates a non-dimensionalized applied stress with a non-dimensionalized slenderness ratio. This relationship relates the applied stress, slenderness ratio, and temperature of the laminate at failure and can be used to determine failure in design of FRP laminate structures. The intermediate-scale tests were also used to validate the thermo-structural model with good agreement. / Master of Science
288

Tests on elliptical concrete filled steel tubular (CFST) beams and columns

Ren, Q-X., Han, L-H., Lam, Dennis, Li, W. 04 May 2014 (has links)
No / This paper presents a series of test results of elliptical concrete filled steel tubular (CFST) beams and columns to explore their performance under bending and compression. A total of twenty-six specimens were tested, including eight beams under pure bending and eighteen columns under the combination of bending and compression. The main parameters were the shear span to depth ratio for beams, the slenderness ratio and the load eccentricity for columns. The test results showed that the CFST beams and columns with elliptical sections behaved in ductile manners and were similar to the CFST members with circular sections. Finally, simplified models for predicting the bending strength, the initial and serviceability-level section bending stiffness of the elliptical CFST beams, as well as the axial and eccentric compressive strength of the composite columns were discussed.
289

Compressive properties and underlying mechanisms of nickel coated carbon nanotubes modified concrete

Wang, D., Wang, X., Ashour, Ashraf, Qiu, L., Han, B. 02 November 2023 (has links)
No / Nickel coated multi-walled carbon nanotubes (Ni-MWCNTs) having exceptional mechanical properties, thermal conductivity and dispersibility can effectively overlap in cementitious matrix, thus forming an enhanced and thermal conductive network. They are therefore a promising nanofiller for modifying cement and concrete materials. This paper studies the compressive properties of reactive powder concrete (RPC) filled with different aspect ratios of Ni-MWCNTs, including strength, toughness, Young's modulus and Poisson's ratio. It is concluded that the incorporation of 0.06 vol.% Ni-MWCNTs with an aspect ratio of 1500 maximally increases the compressive strength and toughness of RPC by 20.24%/20.39 MPa and 43.89%/56.35 (N·m), respectively. However, Young's modulus and Poisson's ratio of Ni-MWCNTs modified composites do not significantly be improved. Besides, a constitutive model of Ni-MWCNTs reinforced RPC under uniaxial compression is established based on the continuum damage mechanics theory, reasonably predicting the relationship between compressive strength and deformation of composites. The modification mechanism of Ni-MWCNTs is also investigated through the temperature distribution monitoring inside composites, Scanning Electron Microscope (SEM) observation and energy dispersive x-ray spectrometry (EDS) analysis of Ni-MWCNTs reinforced RPC. The thermal conductive network formed by Ni-MWCNTs in matrix reduces the temperature difference and improves the temperature uniformity inside composites, thereby decreasing thermal stresses, primary cracks and defects of composites. Furthermore, the incorporation of Ni-MWCNTs makes the RPC microstructures dense, decreases the average CaO to SiO2 ratio, and inhibits the development of cracks inside RPC, thus achieving effective enhancement to RPC. / National Science Foundation of China (52178188, 51978127 and 51908103), and the Fundamental Research Funds for the Central Universities (DUT21RC(3)039).
290

Tests of self-compacting concrete filled elliptical steel tube columns

Mahgub, Munir, Ashour, Ashraf, Lam, Dennis, Dai, Xianghe 24 October 2016 (has links)
Yes / This paper presents an experimental study into the axial compressive behaviour of self-compacting concrete filled elliptical steel tube columns. In total, ten specimens, including two empty columns, with various lengths, section sizes and concrete strengths were tested to failure. The experimental results indicated that the failure modes of the self-compacting concrete filled elliptical steel tube columns with large slenderness ratio were dominated by global buckling. Furthermore, the composite columns possessed higher critical axial compressive capacities compared with their hollow section companions due to the composite interaction. However, due to the large slenderness ratio of the test specimens, the change of compressive strength of concrete core did not show significant effect on the critical axial compressive capacity of concrete filled columns although the axial compressive capacity increased with the concrete grade increase. The comparison between the axial compressive load capacities obtained from experimental study and prediction using simple methods provided in Eurocode 4 for concrete-filled steel circular tube columns showed a reasonable agreement. The experimental results, analysis and comparison presented in this paper clearly support the application of self-compacting concrete filled elliptical steel tube columns in construction engineering practice.

Page generated in 0.863 seconds