• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 14
  • 5
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 84
  • 84
  • 18
  • 17
  • 17
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Contributions à l'arithmétique flottante : codages et arrondi correct de fonctions algébriques / Contributions to floating-point arithmetic : Coding and correct rounding of algebraic functions

Panhaleux, Adrien 27 June 2012 (has links)
Une arithmétique sûre et efficace est un élément clé pour exécuter des calculs rapides et sûrs. Le choix du système numérique et des algorithmes arithmétiques est important. Nous présentons une nouvelle représentation des nombres, les "RN-codes", telle que tronquer un RN-code à une précision donnée est équivalent à l'arrondir au plus près. Nous donnons des algorithmes arithmétiques pour manipuler ces RN-codes et introduisons le concept de "RN-code en virgule flottante." Lors de l'implantation d'une fonction f en arithmétique flottante, si l'on veut toujours donner le nombre flottant le plus proche de f(x), il faut déterminer si f(x) est au-dessus ou en-dessous du plus proche "midpoint", un "midpoint" étant le milieu de deux nombres flottants consécutifs. Pour ce faire, le calcul est d'abord fait avec une certaine précision, et si cela ne suffit pas, le calcul est recommencé avec une précision de plus en plus grande. Ce processus ne s'arrête pas si f(x) est un midpoint. Étant donné une fonction algébrique f, soit nous montrons qu'il n'y a pas de nombres flottants x tel que f(x) est un midpoint, soit nous les caractérisons ou les énumérons. Depuis le PowerPC d'IBM, la division en binaire a été fréquemment implantée à l'aide de variantes de l'itération de Newton-Raphson dues à Peter Markstein. Cette itération est très rapide, mais il faut y apporter beaucoup de soin si l'on veut obtenir le nombre flottant le plus proche du quotient exact. Nous étudions comment fusionner efficacement les itérations de Markstein avec les itérations de Goldschmidt, plus rapides mais moins précises. Nous examinons également si ces itérations peuvent être utilisées pour l'arithmétique flottante décimale. Nous fournissons des bornes d'erreurs sûres et précises pour ces algorithmes. / Efficient and reliable computer arithmetic is a key requirement to perform fast and reliable numerical computations. The choice of the number system and the choice of the arithmetic algorithms are important. We present a new representation of numbers, the "RN-codings", such that truncating a RN-coded number to some position is equivalent to rounding it to the nearest. We give some arithmetic algorithms for manipulating RN-codings and introduce the concept of "floating-point RN-codings". When implementing a function f in floating-point arithmetic, if we wish to always return the floating-point number nearest f(x), one must be able to determine if f(x) is above or below the closest "midpoint", where a midpoint is the middle of two consecutive floating-point numbers. This determination is first done with some given precision, and if it does not suffice, we start again with higher precision, and so on. This process may not terminate if f(x) can be a midpoint. Given an algebraic function f, we try either to show that there are no floating-point numbers x such that f(x) is a midpoint, or we try to enumerate or characterize them. Since the IBM PowerPC, binary division has frequently been implemented using variants of the Newton-Raphson iteration due to Peter Markstein. This iteration is very fast, but much care is needed if we aim at always returning the floating-point number nearest the exact quotient. We investigate a way of efficiently merging Markstein iterations with faster yet less accurate iterations called Goldschmidt iterations. We also investigate whether those iterations can be used for decimal floating-point arithmetic. We provide sure and tight error bounds for these algorithms.
72

Implementação eficiente em software de curvas elípticas e emparelhamentos bilineares / Efficient software implementation of elliptic curves and bilinear pairings

Aranha, Diego de Freitas, 1982- 19 August 2018 (has links)
Orientador: Júlio César Lopez Hernández / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Computação / Made available in DSpace on 2018-08-19T05:47:42Z (GMT). No. of bitstreams: 1 Aranha_DiegodeFreitas_D.pdf: 2545815 bytes, checksum: b630a80d0f8be161e6cb7519072882ed (MD5) Previous issue date: 2011 / Resumo: O advento da criptografia assimétrica ou de chave pública possibilitou a aplicação de criptografia em novos cenários, como assinaturas digitais e comércio eletrônico, tornando-a componente vital para o fornecimento de confidencialidade e autenticação em meios de comunicação. Dentre os métodos mais eficientes de criptografia assimétrica, a criptografia de curvas elípticas destaca-se pelos baixos requisitos de armazenamento para chaves e custo computacional para execução. A descoberta relativamente recente da criptografia baseada em emparelhamentos bilineares sobre curvas elípticas permitiu ainda sua flexibilização e a construção de sistemas criptográficos com propriedades inovadoras, como sistemas baseados em identidades e suas variantes. Porém, o custo computacional de criptossistemas baseados em emparelhamentos ainda permanece significativamente maior do que os assimétricos tradicionais, representando um obstáculo para sua adoção, especialmente em dispositivos com recursos limitados. As contribuições deste trabalho objetivam aprimorar o desempenho de criptossistemas baseados em curvas elípticas e emparelhamentos bilineares e consistem em: (i) implementação eficiente de corpos binários em arquiteturas embutidas de 8 bits (microcontroladores presentes em sensores sem fio); (ii) formulação eficiente de aritmética em corpos binários para conjuntos vetoriais de arquiteturas de 64 bits e famílias mais recentes de processadores desktop dotadas de suporte nativo à multiplicação em corpos binários; (iii) técnicas para implementação serial e paralela de curvas elípticas binárias e emparelhamentos bilineares simétricos e assimétricos definidos sobre corpos primos ou binários. Estas contribuições permitiram obter significativos ganhos de desempenho e, conseqüentemente, uma série de recordes de velocidade para o cálculo de diversos algoritmos criptográficos relevantes em arquiteturas modernas que vão de sistemas embarcados de 8 bits a processadores com 8 cores / Abstract: The development of asymmetric or public key cryptography made possible new applications of cryptography such as digital signatures and electronic commerce. Cryptography is now a vital component for providing confidentiality and authentication in communication infra-structures. Elliptic Curve Cryptography is among the most efficient public-key methods because of its low storage and computational requirements. The relatively recent advent of Pairing-Based Cryptography allowed the further construction of flexible and innovative cryptographic solutions like Identity-Based Cryptography and variants. However, the computational cost of pairing-based cryptosystems remains significantly higher than traditional public key cryptosystems and thus an important obstacle for adoption, specially in resource-constrained devices. The main contributions of this work aim to improve the performance of curve-based cryptosystems, consisting of: (i) efficient implementation of binary fields in 8-bit microcontrollers embedded in sensor network nodes; (ii) efficient formulation of binary field arithmetic in terms of vector instructions present in 64-bit architectures, and on the recently-introduced native support for binary field multiplication in the latest Intel microarchitecture families; (iii) techniques for serial and parallel implementation of binary elliptic curves and symmetric and asymmetric pairings defined over prime and binary fields. These contributions produced important performance improvements and, consequently, several speed records for computing relevant cryptographic algorithms in modern computer architectures ranging from embedded 8-bit microcontrollers to 8-core processors / Doutorado / Ciência da Computação / Doutor em Ciência da Computação
73

Étude théorique et implantation matérielle d'unités de calcul en représentation modulaire des nombres pour la cryptographie sur courbes elliptiques / Theoretical study and hardware implementation of arithmetical units in Residue Number System (RNS) for Elliptic Curve Cryptography (ECC)

Bigou, Karim 03 November 2014 (has links)
Ces travaux de thèse portent sur l'accélération de calculs de la cryptographie sur courbes elliptiques (ECC) grâce à une représentation peu habituelle des nombres, appelée représentation modulaire des nombres (ou RNS pour residue number system). Après un état de l'art de l'utilisation du RNS en cryptographie, plusieurs nouveaux algorithmes RNS, plus rapides que ceux de l'état de l'art, sont présentés. Premièrement, nous avons proposé un nouvel algorithme d'inversion modulaire en RNS. Les performances de notre algorithme ont été validées via une implantation FPGA, résultant en une inversion modulaire 5 à 12 fois plus rapide que l'état de l'art, pour les paramètres cryptographiques testés. Deuxièmement, un algorithme de multiplication modulaire RNS a été proposé. Cet algorithme décompose les valeurs en entrée et les calculs, afin de pouvoir réutiliser certaines parties lorsque c'est possible, par exemple lors du calcul d'un carré. Il permet de réduire de près de 25 % le nombre de pré-calculs à stocker et jusqu'à 10 % le nombre de multiplications élémentaires pour certaines applications cryptographiques (p. ex. le logarithme discret). Un algorithme d'exponentiation reprenant les mêmes idées est aussi présenté, réduisant le nombre de multiplications élémentaires de 15 à 22 %, contre un surcoût en pré-calculs à stocker. Troisièmement, un autre algorithme de multiplication modulaire RNS est proposé, ne nécessitant qu'une seule base RNS au lieu de 2 pour l'état de l'art, et utilisable uniquement dans le cadre ECC. Cet algorithme permet, pour certains corps bien spécifiques, de diviser par 2 le nombre de multiplications élémentaires et par 4 les pré-calculs à stocker. Les premiers résultats FPGA donnent des implantations de notre algorithme jusqu'à 2 fois plus petites que celles de l'algorithme de l'état de l'art, pour un surcoût en temps d'au plus 10 %. Finalement, une méthode permettant des tests de divisibilités multiples rapides est proposée, pouvant être utilisée en matériel pour un recodage de scalaire, accélérant certains calculs pour ECC. / The main objective of this PhD thesis is to speedup elliptic curve cryptography (ECC) computations, using the residue number system (RNS). A state-of-art of RNS for cryptographic computations is presented. Then, several new RNS algorithms, faster than state-of-art ones, are proposed. First, a new RNS modular inversion algorithm is presented. This algorithm leads to implementations from 5 to 12 times faster than state-of-art ones, for the standard cryptographic parameters evaluated. Second, a new algorithm for RNS modular multiplication is proposed. In this algorithm, computations are split into independant parts, which can be reused in some computations when operands are reused, for instance to perform a square. It reduces the number of precomputations by 25 % and the number of elementary multiplications up to 10 %, for some cryptographic applications (for example with the discrete logarithm). Using the same idea, an exponentiation algorithm is also proposed. It reduces from 15 % to 22 % the number of elementary multiplications, but requires more precomputations than state-of-art. Third, another modular multiplication algorithm is presented, requiring only one RNS base, instead of 2 for the state-of-art. This algorithm can be used for ECC and well-chosen fields, it divides by 2 the number of elementary multiplications, and by 4 the number of precomputations to store. Partial FPGA implementations of our algorithm halves the area, for a computation time overhead of, at worse, 10 %, compared to state-of-art algorithms. Finally, a method for fast multiple divisibility tests is presented, which can be used in hardware for scalar recoding to accelerate some ECC computations.
74

Towards reliable implementation of digital filters / Vers une implémentation fiable des filtres numériques

Volkova, Anastasia 25 September 2017 (has links)
Dans cette thèse nous essayons d'améliorer l'évaluation de filtres numériques en nous concentrant sur la précision de calcul nécessaire.Ce travail est réalisé dans le contexte d'un générateur de code matériel/logiciel fiable pour des filtres numériques linéaires, en particulier filtres à Réponse Impulsionnelle Infinie (IIR). Avec ce travail, nous mettons en avant les problèmes liés à l'implémentation de filtres linéaires en arithmétique Virgule Fixe tout en prenant en compte la précision finie des calculs nécessaires à la transformation de filtres vers code. Ce point est important dans le cadre de filtres utilisés dans des systèmes embarqués critique comme les véhicules autonomes. Nous fournissons une nouvelle méthodologie pour l'analyse d'erreur lors de l'étude d'algorithmes de filtres linéaires du point de vue de l'arithmétique des ordinateurs. Au cœur de cette méthodologie se trouve le calcul fiable de la mesure Worst Case Peak Gain d'un filtre qui est la norme l1 de sa réponse impulsionnelle. L'analyse d'erreur proposée est basée sur la combinaison de techniques telles que l'analyse d'erreur en Virgule Flottante, l'arithmétique d'intervalles et les implémentations multi-précisions. Cette thèse expose également la problématique de compromis entre les coûts matériel (e.g. la surface) et la précision de calcul lors de l'implémentation de filtres numériques sur FPGA. Nous fournissons des briques de bases algorithmiques pour une solution automatique de ce problème. Finalement, nous intégrons nos approches dans un générateur de code pour les filtres au code open-source afin de permettre l'implémentation automatique et fiable de tout algorithme de filtre linéaire numérique. / In this thesis we develop approaches for improvement of the numerical behavior of digital filters with focus on the impact of accuracy of the computations. This work is done in the context of a reliable hardware/software code generator for Linear Time-Invariant (LTI) digital filters, in particular with Infinite Impulse Response (IIR). With this work we consider problems related to the implementation of LTI filters in Fixed-Point arithmetic while taking into account finite precision of the computations necessary for the transformation from filter to code. This point is important in the context of filters used in embedded critical systems such as autonomous vehicles. We provide a new methodology for the error analysis when linear filter algorithms are investigated from a computer arithmetic aspect. In the heart of this methodology lies the reliable evaluation of the Worst-Case Peak Gain measure of a filter, which is the l1 norm of its impulse response. The proposed error analysis is based on a combination of techniques such as rigorous Floating-Point error analysis, interval arithmetic and multiple precision implementations. This thesis also investigates the problematic of compromise between hardware cost (e.g. area) and the precision of computations during the implementation on FPGA. We provide basic brick algorithms for an automatic solution of this problem. Finally, we integrate our approaches into an open-source unifying framework to enable automatic and reliable implementation of any LTI digital filter algorithm.
75

Contribution à la conception de systèmes en virgule fixe

Ménard, Daniel 29 November 2011 (has links) (PDF)
Mes activités de recherche se situent dans le domaine de l'implantation efficace d'applications de traitement du signal et de l'image (TDSI) au sein de systèmes embarqués. Face à la complexité grandissante des applications implantées au sein des systèmes embarqués, et face à la nécessité de réduire les temps de mise sur le marché, des méthodes et les outils associés sont nécessaires pour automatiser le processus d'implantation de ces applications sur des plateformes embarquées. A l'interface entre les phases de conception des algorithmes de TDSI et d'implantation au sein des systèmes embarqués, la conversion en virgule fixe reste une tache longue, fastidieuse et source d'erreurs. L'objectif de nos travaux de recherche est de proposer une méthodologie efficace de conversion automatique en virgule fixe et de développer les outils associés. De plus, la mise en œuvre de techniques permettant d'optimiser l'implantation d'applications au sein de systèmes embarqués a été étudiée. Plus particulièrement, les applications de communication numérique, les aspects énergétiques et la représentation optimisée des données en virgule fixe ont été considérés. Dans le processus de conversion en virgule fixe, l'évaluation des effets de la précision finie sur les performances de l'application est l'un des problèmes majeurs. Différents travaux de recherche ont permis de définir une approche analytique d'évaluation de la précision basée sur la théorie de la perturbation. Cette approche détermine l'expression de la puissance du bruit de quantification pour les systèmes composés d'opérations dont le modèle de bruit peut être linéarisé. Pour traiter les systèmes intégrant des opérations dont le modèle de bruit n'est pas linéaire, une approche mixte combinant simulation et méthodes analytiques a été proposée. Différentes contributions pour l'automatisation du processus de conversion en virgule fixe ont été proposées. Elles concernent l'évaluation de la dynamique à travers des approches stochastiques, l'optimisation de la largeur des données dans le cas de la synthèse d'architectures et la définition d'une approche hiérarchique pour traiter des systèmes complexes. Une infrastructure logicielle a été développée pour réaliser la conversion en virgule fixe et évaluer efficacement la précision des calculs. Différents travaux ont été conduits sur l'implantation d'applications de communication numérique au sein de systèmes embarqués et sur la génération de blocs matériels dédiés. De plus, le concept d'adaptation dynamique de la précision a été proposé et une architecture reconfigurable et flexible, supportant l'ADP, a été développée.
76

Opérateurs arithmétiques sur GF(2^m): étude de compromis performances - consommation - sécurité

Pamula, Danuta 17 December 2012 (has links) (PDF)
Dans la cryptographie à clé privée l'arithmétique joue un rôle important. En particulier, l'arithmétique des corps finis doit être très rapide étant donnée la quantité de calculs effectués en nécessitant des ressources limitées (surface de circuit, taille mémoire, consommation d'énergie) mais aussi tout en offrant un bon niveau de robustesse vis à vis des attaques physiques. L'objectif de cette thèse etait d'étudier, comparer, concevoir en matériel et enfin de valider expérimentalement et théoriquement des opérateurs arithmétiques matériels pour la cryptographie sur courbes elliptiques (ECC) sur des extensions du corps fini binaire (GF(2m)) à la fois performants, peu gourmands en énergie et robustes d'un point de sécurité contre les attaques physiques par canaux cachés (p.ex. mesure de la consommation d'énergie). Des travaux effectues aboutissent à la proposition d'opérateurs de multiplication performants (rapides, surface de circuit limitée) dans une architecture modulaire (pouvant être adaptée à des besoins spécifiques sans perte de performance). Les calculs requis par ces opérateurs sont complexes car les éléments du corps sont grands (160-580 bits) et la multiplication s'effectue modulo un polynôme irréductible. En plus la thèse presente des modification et l'optimisation des opérateurs pour les rendre plus robustes à certaines attaques par canaux cachés (de type mesure de consommation) sans perte de performance. Sécurisation d'opérateurs arithmétiques pour ECC au niveau des calculs sur le corps fini est particulièrement intéressant car c'est la première proposition de ce type. Ce travail complète un état de l'art en protections aux niveaux supérieurs (courbes, protocoles).
77

Simulation de haut niveau de systèmes d'exploitations distribués pour l'exploration matérielle et logicielle d'architectures multi-noeuds hétérogènes

Huck, Emmanuel 25 November 2011 (has links) (PDF)
Concevoir un système embarqué implique de trouver un compromis algorithme/architecture en fonction des contraintes temps-réel. Thèse : pour concevoir un MPSoC et plus particulièrement avec les circuits reconfigurables modifiant le support d'exécution en cours de fonctionnement, la nécessaire validation des comportements fluctuants d'un système réactif impose une évaluation préalable que l'on peut réaliser par simulation (de haut niveau) tout en permettant l'exploration de l'espace de conception architectural, matériel mais aussi logiciel, au plus tôt dans le flot de conception. Le point de vue du gestionnaire de la plateforme est adopté pour explorer à haut niveau les réactions du système aux choix de partitionnement impactés par l'algorithmique des services du système d'exploitation et leurs implémentations possibles. Pour cela un modèle modulaire de services d'OS simule fonctionnellement et conjointement en SystemC le matériel, les tâches logicielles et le système d'exploitation, répartis sur plusieurs noeuds d'exécution hétérogènes communicants. Ce modèle a permis d'évaluer l'architecture temps-réel idéale d'une application dynamique de vision robotique conjointement à l'exploration des services de gestion d'une zone reconfigurable modélisée. Ce modèle d'OS a aussi été intégré dans un simulateur de MPSoC hétérogène d'une puissance estimé à un Tera opérations par seconde.
78

Optimisations de niveau système pour les algorithmes de traitement du signal utilisant l'arithmétique virgule fixe

Parashar, Karthick 20 December 2012 (has links) (PDF)
Le problème de l'optimisation des systèmes utilisant l'arithmétique virgule fixe est un problème d'optimisation combinatoire de complexité NP-difficile. Savoir analyser et optimiser des applications complexes et de taille réelle est le thème central de cette thèse. Une technique de type diviser-pour-régner, où un système donné est décomposé en plusieurs petits sous-systèmes organisés selon une hiérarchie est au cœur de cette approche. Cette décomposition ouvre la voie à l'évaluation rapide de la précision et au problème d'optimisation hiérarchique de la largeur des données et des opérations du système. En raison de la réduction du nombre de variables, la convergence du problème d'optimisation hiérarchique vers une solution est beaucoup plus rapide que dans le cas classique. Le modèle "Single Noise Source" (SNS) est proposé pour étudier les statistiques des erreurs de quantification. Au lieu de simplement se concentrer sur la moyenne et la variance du bruit des erreurs dues à la quantification, il fournit également des formules analytiques pour dériver les paramètres statistiques des processus aléatoires produisant les erreurs de quantification équivalentes à une simulation en virgule fixe. En présence des opérations " non-lisses " (un- smooth) telles que la décision dans les modulations QAM, les fonctions Min() ou Max(), etc., il est pour l'instant inévitable d'utiliser la simulation en virgule fixe. Une technique pour l'évaluation analytique des statistiques des erreurs de quantification en présence d'opérateurs non-lisses dans les graphes ne contenant pas de rebouclage est également proposée. Afin de tenir compte également des systèmes ayant des rebouclages, une technique hybride qui utilise le modèle SNS pour accélérer les simulations en virgule fixe est de plus proposée. Un cadre d'utilisation de l'optimisation convexe est proposé comme heuristique pour résoudre le problème d'optimisation des largeurs. Cette nouvelle technique améliore non seulement la qualité de la solution, mais permet de résoudre le problème plus rapidement que les approches itératives classiques. L'application des techniques proposées permet non seulement de réduire les coûts du système mais aussi une réduction de plusieurs ordres de grandeur dans le temps nécessaire pour optimiser les systèmes utilisant l'arithmétique virgule fixe.
79

Leveraging Posits for the Conjugate Gradient Linear Solver on an Application-Level RISC-V Core

Mallasén Quintana, David January 2022 (has links)
Emerging floating-point arithmetics provide a way to optimize the execution of computationally-intensive algorithms. This is the case with scientific computational kernels such as the Conjugate Gradient (CG) linear solver. Exploring new arithmetics is of paramount importance to maximize the accuracy and timing performance of these algorithms. In this thesis, I have studied the use of the novel posit arithmetic in hardware to improve the accuracy of the CG method. In particular, on PERCIVAL, an application-level RISC-V core with support for posits and quire. The open RISC-V architecture supplies a flexible platform for the exploration of new computer architecture studies. Previous works have tackled the use of posits in the high-performance computing and machine learning fields, amongst others. However, until recently, the lack of hardware support has been a significant barrier to their scalability. The key results from this thesis show that posits are a promising alternative when solving 1D and 2D Poisson equations using the CG linear solver. Notably, this novel arithmetic can execute as fast as IEEE 754 floating-point numbers on specialized hardware, and provide up to 2 orders of magnitude higher accuracy. This accuracy improvement spans both the error of the output values of the algorithms and the value of the final residual in the CG iterative method. Furthermore, the use of the quire accumulator register in the computation of dot-products in posit arithmetic significantly boosts the accuracy of the outputs. Since 32-bit posits perform practically as fast as 32-bit floats, and thus faster than 64-bit floats, they present an intermediate solution between single- and double-precision arithmetic. This paves the way for the deployment of high-efficiency solutions that make intensive use of floating-point operations. / Ny kommande flyttalsaritmetik ger ett sätt att optimera exekveringen av beräkningsintensiva algoritmer. Detta är fallet med vetenskapliga beräkningskärnor som den Conjugate Gradient (CG) metoden kräver. Att utforska ny aritmetik är av största vikt för att minska energikostnaderna för dessa algoritmer. I detta examensarbete har jag studerat användningen av den nya positaritmetiken i hårdvara för att förbättra noggrannheten i CG-metoden. I synnerhet på PERCIVAL, en RISC-V-kärna på applikationsnivå med stöd för posits och quire. Den öppna RISC-V-arkitekturen tillhandahåller en flexibel plattform för utforskning av nya dator arkitekturstudier. Tidigare arbeten har tagit itu med användningen av positurer inom områdena högpresterande datorer och maskininlärning, bland annat. Men fram till nyligen har bristen på hårdvarustöd varit ett betydande hinder för deras skalbarhet. Nyckelresultaten från denna avhandling visar att posits är ett lovande alternativ när man löser 1D och 2D Poisson-ekvationer med den linjära CG-lösaren. Noterbart kan denna nya aritmetik köra så snabbt som IEEE 754 flyttal på specialiserad hårdvara och ge upp till två storleksordningar högre noggrannhet. Denna noggrannhetsförbättring sträcker sig över både felet i algoritmernas utvärden och värdet på den slutliga residualen i den iterativa CG-metoden. Dessutom ökar användningen av quire-ackumulatorregistret vid beräkning av punktprodukter i positaritmetik avsevärt noggrannheten hos utsignalerna. Eftersom 32-bitars posits presterar praktiskt taget lika snabbt som 32-bitars flöten, och därmed snabbare än 64-bitars flöten, presenterar de en mellanlösning mellan enkel-och dubbelprecisionsaritmetik. Detta banar väg för utbyggnaden av högeffektiva lösningar som intensivt utnyttjar flyttalsoperationer.
80

Certified numerics in function spaces : polynomial approximations meet computer algebra and formal proof / Calcul numérique certifié dans les espaces fonctionnels : Un trilogue entre approximations polynomiales rigoureuses, calcul symbolique et preuve formelle

Bréhard, Florent 12 July 2019 (has links)
Le calcul rigoureux vise à produire des représentations certifiées pour les solutions de nombreux problèmes, notamment en analyse fonctionnelle, comme des équations différentielles ou des problèmes de contrôle optimal. En effet, certains domaines particuliers comme l’ingénierie des systèmes critiques ou les preuves mathématiques assistées par ordinateur ont des exigences de fiabilité supérieures à ce qui peut résulter de l’utilisation d’algorithmes relevant de l’analyse numérique classique.Notre objectif consiste à développer des algorithmes à la fois efficaces et validés / certifiés, dans le sens où toutes les erreurs numériques (d’arrondi ou de méthode) sont prises en compte. En particulier, nous recourons aux approximations polynomiales rigoureuses combinées avec des méthodes de validation a posteriori à base de points fixes. Ces techniques sont implémentées au sein d’une bibliothèque écrite en C, ainsi que dans un développement de preuve formelle en Coq, offrant ainsi le plus haut niveau de confiance, c’est-à-dire une implémentation certifiée.Après avoir présenté les opérations élémentaires sur les approximations polynomiales rigoureuses, nous détaillons un nouvel algorithme de validation pour des approximations sous forme de séries de Tchebychev tronquées de fonctions D-finies, qui sont les solutions d’équations différentielles ordinaires linéaires à coefficients polynomiaux. Nous fournissons une analyse fine de sa complexité, ainsi qu’une extension aux équations différentielles ordinaires linéaires générales et aux systèmes couplés de telles équations. Ces méthodes dites symboliques-numériques sont ensuite utilisées dans plusieurs problèmes reliés : une nouvelle borne sur le nombre de Hilbert pour les systèmes quartiques, la validation de trajectoires de satellites lors du problème du rendez-vous linéarisé, le calcul de polynômes d’approximation optimisés pour l’erreur d’évaluation, et enfin la reconstruction du support et de la densité pour certaines mesures, grâce à des techniques algébriques. / Rigorous numerics aims at providing certified representations for solutions of various problems, notably in functional analysis, e.g., differential equations or optimal control. Indeed, specific domains like safety-critical engineering or computer-assisted proofs in mathematics have stronger reliability requirements than what can be achieved by resorting to standard numerical analysis algorithms. Our goal consists in developing efficient algorithms, which are also validated / certified in the sense that all numerical errors (method or rounding) are taken into account. Specifically, a central contribution is to combine polynomial approximations with a posteriori fixed-point validation techniques. A C code library for rigorous polynomial approximations (RPAs) is provided, together with a Coq formal proof development, offering the highest confidence at the implementation level.After providing basic operations on RPAs, we focus on a new validation algorithm for Chebyshev basis solutions of D-finite functions, i.e., solutions of linear ordinary differential equations (LODEs) with polynomial coefficients. We give an in-depth complexity analysis, as well as an extension to general LODEs, and even coupled systems of them. These symbolic-numeric methods are finally used in several related problems: a new lower bound on the Hilbert number for quartic systems; a validation of trajectories arising in the linearized spacecraft rendezvous problem; the design of evaluation error efficient polynomial approximations; and the support and density reconstruction of particular measures using algebraic techniques.

Page generated in 0.0609 seconds