Spelling suggestions: "subject:"conditional value at risk (CVaR)"" "subject:"conditional value at disk (CVaR)""
11 |
[pt] ANÁLISE ESTOCÁSTICA DA CONTRATAÇÃO DE ENERGIA ELÉTRICA DE GRANDES CONSUMIDORES NO AMBIENTE DE CONTRATAÇÃO LIVRE CONSIDERANDO CENÁRIOS CORRELACIONADOS DE PREÇOS DE CURTO PRAZO, ENERGIA E DEMANDA / [en] STOCHASTIC ANALYSIS OF ENERGY CONTRACTING IN THE FREE CONTRACT ENVIRONMENT FOR BIG CONSUMERS CONSIDERING CORRELATED SCENARIOS OF SPOT PRICES, ENERGY AND POWER DEMANDDANIEL NIEMEYER TEIXEIRA PAULA 27 October 2020 (has links)
[pt] No Brasil, grandes consumidores podem estabelecer seus contratos de energia elétrica em dois ambientes: Ambiente de Contratação Regulado e Ambiente de Contratação Livre. Grandes consumidores são aqueles que possuem carga igual ou superior a 2 MW e podem ser atendidos sob contratos firmados em quaisquer um desses ambientes. Já os consumidores com demanda contratada inferior a 2 MW e superior a 500 kW podem ter seu contrato de energia estabelecido no Ambiente de Contratação Livre proveniente de geração de energia renovável ou no Ambiente de Contratação Regulada através das distribuidoras de energia. A principal vantagem do Ambiente de Contratação Livre é a possibilidade de negociar contratos com diferentes parâmetros, como, por exemplo, preço, quantidade de energia e prazo. Eventuais diferenças entre a energia contratada e a consumida, são liquidadas ao preço de energia de curto prazo, que pode ser bastante volátil.Neste caso o desafio é estabelecer uma estratégia de contratação que minimize os riscos associados a este ambiente. Esta dissertação propõe uma metodologia que envolve a simulação estatística de cenários correlacionados de energia, demanda máxima e preço de curto prazo (também chamado de PLD – Preço de Liquidação das Diferenças) para serem inseridos em um modelo matemático de otimização estocástica, que define os parâmetros ótimos da contratação de energia e demanda. Na parte estatística, um modelo Box e Jenkins é usado para estimar os parâmetros das séries históricas de energia e demanda máxima com o objetivo de simular cenários correlacionados com o PLD. Na parte de otimização, emprega-se uma combinação convexa entre Valor Esperado (VE) e Conditional Value-at-Risk (CVaR) como medidas de risco para encontrar os valores ótimos dos parâmetros contratuais, como a demanda máxima contratada, o volume mensal de energia a ser contratado, além das flexibilidades inferior e superior da energia contratada. Para ilustrar a abordagem proposta, essa metodologia é aplicada a um estudo de caso real para um grande consumidor no Ambiente de Contratação Livre. Os resultados indicaram que a metodologia proposta pode ser uma ferramenta eficiente para consumidores no Ambiente de Contratação Livre e, dado à natureza do modelo, pode ser generalizado para diferentes contratos e mercados de energia. / [en] In Brazil, big consumers can choose their energy contract between two different energy environments: Regulated Contract Environment and Free Contract Environment. Big consumers are characterized by installed load capacity equal or greater than 2 MW and can firm an energy contract under any of these environments. For those consumers with installed load lower than 2 MW and higher than 500 kW, their energy contracts can be firmed in the Free Contract Environment using renewable energy generation or in the Regulated Contract Environment by local distribution companies. The main advantage of the Free Market Environment is the possibility of negotiating contracts with different parameters such as, for example, price, energy quantity and deadlines. Possible differences between contracted energy and consumed energy are settled by the spot price, which can be rather volatile.
In this case, the challenge is to establish a contracting strategy that minimize the associated risks with this environment. This thesis proposes a methodology that involves statistical simulation of correlated energy, peak demand and Spot Price scenarios to be used in a stochastic optimization model that defines the optimal energy and demand contract parameters. In the statistical part, a Box and Jenkins model is used to estimate parameters for energy and peak demand in order to simulate scenarios correlated with Spot Price. In the optimization part, a convex combination of Expected Value (EV) and Conditional Value-at-Risk (CVaR) is used as risk measures to find the optimal contract parameters, such as the contracted peak demand, the seasonal energy contracted volumes, in addition to the upper and lower energy contracted bound. To illustrate this approach, this methodology is
applied in a real case study for a big consumer with an active Free Market Environment contract. The results indicate that the proposed methodology can be a efficient tool for consumers in the Free Contract Environment and, due to the nature of the model, it can be generalized for different energy contracts and markets.
|
12 |
Analyzing value at risk and expected shortfall methods: the use of parametric, non-parametric, and semi-parametric modelsHuang, Xinxin 25 August 2014 (has links)
Value at Risk (VaR) and Expected Shortfall (ES) are methods often used to measure market risk. Inaccurate and unreliable Value at Risk and Expected Shortfall models can lead to underestimation of the market risk that a firm or financial institution is exposed to, and therefore may jeopardize the well-being or survival of the firm or financial institution during adverse markets. The objective of this study is therefore to examine various Value at Risk and Expected Shortfall models, including fatter tail models, in order to analyze the accuracy and reliability of these models.
Thirteen VaR and ES models under three main approaches (Parametric, Non-Parametric and Semi-Parametric) are examined in this study. The results of this study show that the proposed model (ARMA(1,1)-GJR-GARCH(1,1)-SGED) gives the most balanced Value at Risk results. The semi-parametric model (Extreme Value Theory, EVT) is the most accurate Value at Risk model in this study for S&P 500. / October 2014
|
13 |
Composição de fundo de fundos multimercado: otimização de carteira pelo método de média-cvarAraujo, Lucas Machado Braga de 03 February 2009 (has links)
Made available in DSpace on 2010-04-20T21:00:12Z (GMT). No. of bitstreams: 4
Lucas Machado Braga de Araujo.pdf.jpg: 18740 bytes, checksum: e39415b36953ced37a6d87a19c381b38 (MD5)
Lucas Machado Braga de Araujo.pdf.txt: 95713 bytes, checksum: a95ad7b44ec22b2f5ba2dbfe4f6798bb (MD5)
Lucas Machado Braga de Araujo.pdf: 758972 bytes, checksum: c20d926964cc37d2ee7bdfc1bdf6aafc (MD5)
license.txt: 4886 bytes, checksum: f5ef202e66d94f51fd6c9a09505731a6 (MD5)
Previous issue date: 2009-02-03T00:00:00Z / The aim of this work is to show that the optimization of a portfolio composed of Brazilian hedge funds presents better results when the risk measure considered is Conditional Value-at-Risk. Portfolio optimization models aim to select assets that maximize the investor‘s return for a given level of risk. Therefore the definition of an appropriate measure of risk is of fundamental importance to the allocation process. The traditional methodology of portfolio optimization, developed by Markowitz, uses the variance of assets returns as risk measure. However variance is a measure appropriate only for cases where the returns are normally distributed or that the investor utility function is quadratic. Nevertheless it will be shown that the returns of Brazilian hedge funds usually do not have a Normal distribution. Consequently, to perform the optimization of a portfolio composed by Brazilian hedge funds is necessary to use an alternative risk measure. / O objetivo do trabalho é demonstrar que a otimização de uma carteira composta por fundos multimercados brasileiros gera melhores resultados quando a medida de risco utilizada é o Conditional Value-at-Risk. Modelos de otimização de carteira têm como objetivo selecionar ativos que maximizem o retorno do investidor para um determinado nível de risco. Assim, a definição de uma medida apropriada de risco é de fundamental importância para o processo de alocação. A metodologia tradicional de otimização de carteiras, desenvolvida por Markowitz, utiliza como medida de risco a variância dos retornos. Entretanto, a variância é uma medida apenas apropriada para casos em que os retornos são normalmente distribuídos ou em que os investidores possuem funções de utilidade quadrática. Porém, o trabalho mostra que os retornos dos fundos multimercados brasileiros tendem a não apresentar distribuição normal. Logo, para efetuar a otimização de uma carteira composta por fundos multimercados brasileiros é necessário utilizar uma medida de risco alternativa.
|
14 |
Medidas de risco e seleção de portfolios / Risk measures and portfolio selectionMagro, Rogerio Correa 15 February 2008 (has links)
Orientador: Roberto Andreani / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-10T15:35:32Z (GMT). No. of bitstreams: 1
Magro_RogerioCorrea_M.pdf: 1309841 bytes, checksum: 3935050b45cf1bf5bbba46ac64603d72 (MD5)
Previous issue date: 2008 / Resumo: Dado um capital C e n opções de investimento (ativos), o problema de seleção de portfolio consiste em aplicar C da melhor forma possivel para um determinado perfil de investidor. Visto que, em geral, os valores futuros destes ativos não são conhecidos, a questão fundamental a ser respondida e: Como mensurar a incerteza? No presente trabalho são apresentadas tres medidas de risco: O modelo de Markowitz, o Value-at-Risk (VaR) e o Conditional Value-At-Risk (CVaR). Defendemos que, sob o ponto de vista teorico, o Valor em Risco (VaR) e a melhor dentre as tres medidas. O motivo de tal escolha deve-se ao fato de que, para o VaR, podemos controlar a influencia que os cenários catastroficos possuem sobre nossas decisões. Em contrapartida, o processo computacional envolvido na escolha de um portfolio ótimo sob a metodologia VaR apresenta-se notadamente mais custoso do que aqueles envolvidos nos calculos das demais medidas consideradas. Dessa forma, nosso objetivo e tentar explorar essa vantagem computacional do Modelo de Markowitz e do CVaR no sentido de tentar aproximar suas decisões aquelas apontadas pela medida eleita. Para tal, consideraremos soluções VaR em seu sentido original (utilizando apenas o parametro de confiabilidade ao buscar portfolios otimos) e soluções com controle de perda (impondo uma cota superior para a perda esperada) / Abstract: Given a capital C and n investment options (assets), the problem of portfolio selection consists of applying C in the best possible way for a certain investor profile. Because, in general, the future values of these assets are unknown, the fundamental question to be answered is: How to measure the uncertainty? In the present work three risk measures are presented: The Markowitz¿s model, the Value-at-Risk (VaR) and the Conditional Value-at-Risk (CVaR). We defended that, under the theoretical point of view, the Value in Risk (VaR) is the best amongst the three measures. The reason of such a choice is due to the fact that, for VaR, we can control the influence that the catastrophic sceneries possess about our decisions. In the other hand, the computational process involved in the choice of a optimal portfolio under the VaR methodology comes notedly more expensive than those involved in the calculations of the other considered measures. In that way, our objective is to try to explore that computational advantage of the Markowitz¿s Model and of CVaR in the sense of trying to approach its decisions the those pointed by the elect measure. For such, we will consider VaR solutions in its original sense (just using the confidence level parameter when looking for optimal portfolios) and solutions with loss control (imposing a superior quota for the expected loss) / Mestrado / Otimização / Mestre em Matemática Aplicada
|
15 |
Portfolio selection and hedge funds : linearity, heteroscedasticity, autocorrelation and tail-riskBianchi, Robert John January 2007 (has links)
Portfolio selection has a long tradition in financial economics and plays an integral role in investment management. Portfolio selection provides the framework to determine optimal portfolio choice from a universe of available investments. However, the asset weightings from portfolio selection are optimal only if the empirical characteristics of asset returns do not violate the portfolio selection model assumptions. This thesis explores the empirical characteristics of traditional assets and hedge fund returns and examines their effects on the assumptions of linearity-in-the-mean testing and portfolio selection. The encompassing theme of this thesis is the empirical interplay between traditional assets and hedge fund returns. Despite the paucity of hedge fund research, pension funds continue to increase their portfolio allocations to global hedge funds in an effort to pursue higher risk-adjusted returns. This thesis presents three empirical studies which provide positive insights into the relationships between traditional assets and hedge fund returns. The first two empirical studies examine an emerging body of literature which suggests that the relationship between traditional assets and hedge fund returns is non-linear. For mean-variance investors, non-linear asset returns are problematic as they do not satisfy the assumption of linearity required for the covariance matrix in portfolio selection. To examine the linearity assumption as it relates to a mean-variance investor, a hypothesis test approach is employed which investigates the linearity-in-the-mean of traditional assets and hedge funds. The findings from the first two empirical studies reveal that conventional linearity-in-the-mean tests incorrectly conclude that asset returns are nonlinear. We demonstrate that the empirical characteristics of heteroscedasticity and autocorrelation in asset returns are the primary sources of test mis-specification in these linearity-in-the-mean hypothesis tests. To address this problem, an innovative approach is proposed to control heteroscedasticity and autocorrelation in the underlying tests and it is shown that traditional assets and hedge funds are indeed linear-in-the-mean. The third and final study of this thesis explores traditional assets and hedge funds in a portfolio selection framework. Following the theme of the previous two studies, the effects of heteroscedasticity and autocorrelation are examined in the portfolio selection context. The characteristics of serial correlation in bond and hedge fund returns are shown to cause a downward bias in the second sample moment. This thesis proposes two methods to control for this effect and it is shown that autocorrelation induces an overallocation to bonds and hedge funds. Whilst heteroscedasticity cannot be directly examined in portfolio selection, empirical evidence suggests that heteroscedastic events (such as those that occurred in August 1998) translate into the empirical feature known as tail-risk. The effects of tail-risk are examined by comparing the portfolio decisions of mean-variance analysis (MVA) versus mean-conditional value at risk (M-CVaR) investors. The findings reveal that the volatility of returns in a MVA portfolio decreases when hedge funds are included in the investment opportunity set. However, the reduction in the volatility of portfolio returns comes at a cost of undesirable third and fourth moments. Furthermore, it is shown that investors with M-CVaR preferences exhibit a decreasing demand for hedge funds as their aversion for tail-risk increases. The results of the thesis highlight the sensitivities of linearity tests and portfolio selection to the empirical features of heteroscedasticity, autocorrelation and tail-risk. This thesis contributes to the literature by providing refinements to these frameworks which allow improved inferences to be made when hedge funds are examined in linearity and portfolio selection settings.
|
Page generated in 0.117 seconds