Spelling suggestions: "subject:"conjectura"" "subject:"conjectural""
41 |
Condições de solubilidade p-ádica de pares de formas diagonais e alguns casos especiais / Conditions of p-adic solubility of pars of diagonal forms and some special casesFerreira, Alaídes Inácio Stival January 2009 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-06T13:53:45Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5) / Made available in DSpace on 2014-08-06T13:53:45Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
Dissertacao_Alaides_Ferreira.pdf: 363902 bytes, checksum: 97bfa5be0bee9a9b8c283a12f0c24a18 (MD5)
Previous issue date: 2009 / This text is above solvability in systems of two forms additive over p-adics fields: with
of degree k and variables n > 4k at lesat p > 3k4
; with of degree an k odd integer at least n > 6k+1 variables; and with of degree 5 and p > 101 for n ≥ 31 variables, and for all p
with n ≥ 36 variables, with the possible exceptions of p = 5 and p = 11. / Este texto é sobre solubilidade no corpo dos p-ádicos de sistemas de duas formas aditivas:
com grau k e variáveis n > 4k apartir de p > 3k4
; com grau k ímpar apartir de n > 6k +1
variáveis; e de grau 5 com p > 101 para n ≥ 31 variáveis, e para todo p com n ≥ 36
variáveis, com exceções de p = 5 e p = 11.
|
42 |
Estimativas para entropia, extensões simbólicas e hiperbolicidade para difeomorfismos simpléticos e conservativos / Lower bounds for entropy, symbolic extensions and hyperbolicity in the symplectic and volume preserving scenarioCatalan, Thiago Aparecido 14 February 2011 (has links)
Provamos que \'C POT. 1\' genericamente difeomorfismos simpléticos ou são Anosov ou possuem entropia topológica limitada por baixo pelo supremo sobre o menor expoente de Lyapunov positivo dos pontos periódicos hiperbólicos. Usando isto exibimos exemplos de difeomorfismos conservativos sobre superfícies que não são pontos de semicontinuidade superior para a entropia topológica. Provamos também que \'C POT. 1\' genericamente difeomorfismos simpléticos não Anosov não admitem extensões simbólicas. Mudando de assunto, Hayashi estendeu um resultado de Mañé, provando que todo difeomorfismo f que possui uma \'C POT. 1\' vizinhança U, onde todos os pontos periódicos de qualquer g \'PERTENCE A\' U são hiperbólicos, é de fato um difeomorfismo Axioma A. Aqui, provamos o resultado análogo a este no caso conservativo, e a partir deste é possível exibir uma demonstração de um fato \"folclore\", a conjectura de Palis no caso conservativo / We prove that a \'C POT.1\' generic symplectic diffeomorphism is either Anosov or the topological entropy is bounded from below by the supremum over the smallest positive Lyapunov exponent of the periodic points. By means of that we give examples of area preserving diffeomorphisms which are not point of upper semicontinuity of entropy function in \'C POT. 1\' topology. We also prove that \'C POT. 1\'- generic symplectic diffeomorphisms outside the Anosov ones do not admit symbolic extension. Changing of subject, Hayashi has extended a result of Mañé, proving that every diffeomorphism f which has a \'C POT. 1\'-neighborhood U, where all periodic points of any g \'IT BELONGS\' U are hyperbolic, it is an Axiom A diffeomorphism. Here, we prove the analogous result in the volume preserving scenario, and using it we prove a \"folklore\" fact, the Palis conjecture in this context
|
43 |
Sobre b-coloração de grafos com cintura pelo menos 6 / About b-coloring of graphs with waist at least 6Lima, Carlos Vinicius Gomes Costa January 2013 (has links)
LIMA, Carlos Vinicius Gomes Costa. Sobre b-coloração de grafos com cintura pelo menos 6. 2013. 60 f. Dissertação (Mestrado em ciência da computação)- Universidade Federal do Ceará, Fortaleza-CE, 2013. / Submitted by Elineudson Ribeiro (elineudsonr@gmail.com) on 2016-07-11T12:13:18Z
No. of bitstreams: 1
2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2016-07-14T15:33:44Z (GMT) No. of bitstreams: 1
2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5) / Made available in DSpace on 2016-07-14T15:33:44Z (GMT). No. of bitstreams: 1
2013_dis_cvgclima.pdf: 3781619 bytes, checksum: 164aea3629d83f1d6d8ba3efcf3ec056 (MD5)
Previous issue date: 2013 / The coloring problem is among the most studied in the Graph Theory due to its great theoretical and practical importance. Since the problem of coloring the vertices of a graph G either with the smallest amount of colors is NP-hard, various coloring heuristics are examined to obtain a proper colouring with a reasonably small number of colors. Given a graph G, the b heuristic of colouring comes down to decrease the amount of colors in a proper colouring c, so that, if all vertices of a color class fail to see any color in your neighborhood, then we can change the color to any color these vertices nonexistent in your neighborhood. Thus, we obtain a coloring c ′ with a color unless c. Irving and Molove defined the b-coloring of a graph G as a coloring where every color class has a vertex that is adjacent the other color classes. These vertices are called b-vertices. Irving and Molove also defined the b-chromatic number as the largest integer k, such that G admits a b-coloring by k colors. They showed that determine the value of the b-chromatic number of any graph is NP-hard, but polynomial for trees. Irving and Molove also defined the m-degree of a graph, which is the largest integer m(G) such that there are m(G) vertices with degree at least m(G) − 1. Irving and Molove showed that the m-degree is an upper limit to the b-chromatic number and showed that it is m(T) or m(T)−1 to every tree T, where its value is m(T) if, and only if, T has a good set. In this dissertation, we analyze the relationship between the girth, which is the size of the smallest cycle, and the b-chromatic number of a graph G. More specifically, we try to find the smallest integer g ∗ such that if the girth of G is at least g ∗ , then the b-chromatic number equals m(G) or m(G)−1. Show that the value of g ∗ is at most 6 could be an important step in demonstrating the famous conjecture of Erd˝os-Faber-Lov´asz, but the best known upper limit to g ∗ is 9. We characterize the graphs whose girth is at least 6 and not have a good set and show how b-color them optimally. Furthermore, we show how b-color, also optimally, graphs whose girth is at least 7 and not have good set. / O problema de coloração está entre os mais estudados dentro da Teoria dos Grafos devido a sua grande importância teorica e prática. Dado que o problema de colorir os vértices de um grafo G qualquer com a menor quantidade de cores é NP-difícil, várias heurísticas de coloração são estudadas a fim de obter uma coloração própria com um número de cores razoavelmente pequeno. Dado um grafo G, a heurística b de coloração se resume a diminuir a quantidade de cores utilizadas em uma coloração própria c, de modo que, se todos os vértices de uma classe de cor deixam de ver alguma cor em sua vizinhança, então podemos modificar a cor desses vértices para qualquer cor inexistente em sua vizinhança. Dessa forma, obtemos uma coloração c′ com uma cor a menos que c. Irving e Molove definiram a b-coloração de um grafo G como uma coloração onde toda classe de cor possui um vértice que é adjacente as demais classes de cor. Esses vértices são chamados b-vértices. Irving e Molove também definiram o número b-cromático como o maior inteiro k tal que G admite uma b-coloração por k cores. Eles mostraram que determinar o número b-cromático de um grafo qualquer é um problema NP-difícil, mas polinomial para árvores. Irving e Molove também definiram o m-grau de um grafo, que é o maior inteiro m(G) tal que existem m(G) vértices com grau pelo menos m(G)−1. Irving e Molove mostraram que o m-grau é um limite superior para número b-cromático e mostraram que o mesmo é igual a m(T) ou a m(T)−1, para toda árvore T, onde o número b-cromático é igual a m(T) se, e somente se, T possui um conjunto bom. Nesta dissertação, verificamos a relação entre a cintura, que é o tamanho do menor ciclo, e o número b-cromático de um grafo G. Mais especificamente, tentamos encontrar o menor inteiro g∗ tal que, se a cintura de G é pelo menos g∗, então o número b-cromático é igual a m(G) ou m(G)−1. Mostrar que o valor de g∗ é no máximo 6 poderia ser um passo importante para demonstrar a famosa Conjectura de Erdós-Faber-Lovasz, mas o melhor limite superior conhecido para g∗ é 9. Caracterizamos os grafos cuja cintura é pelo menos 6 e não possuem um conjunto bom e mostramos como b-colori-los de forma ótima. Além disso, mostramos como bicolorir, também de forma ótima, os grafos cuja cintura é pelo menos 7 e não possuem conjunto bom.
|
44 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
45 |
Condensação do táquion na Teoria de Campos de Cordas BosônicasSilva, Armando Fernandes da January 2015 (has links)
Orientador: Prof. Dr. Ever Aldo Arroyo Montero / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Física, 2015. / Nesta dissertação vamos utilizar da teoria de campos de cordas abertas para estudar
a conjectura de Sen a partir do cálculo do potencial do táquion, que será obtido
através do método numérico Level Truncation. Para isso, será feita uma introdução
sobre teoria de cordas, passando por teoria de campos conforme em duas dimensões,
a quantização BRST, as interações entre cordas abertas, e por fim estudar o formalismo
da teoria de Witten de campos de cordas, desde a construção da ação cubica,
até sua aplicação ao calcular o potencial do táquion "off-shell"para testar a conjectura
de Sen e encontrar a relação entre o vácuo instável e o estável, a chamada
condensação do táquion. / In this dissertation, it will be used the open string eld theory to study Sen's
conjecture. We will calculate the tachyon potential through the numerical method
known as the Level Truncation. To this purpose, we will study the following topics:
an introduction to string theory through two dimensional conformal eld theory,
BRST quantization, interactions between open strings and nally Witten's open cubic
string eld theory together with its application which includes the calculation of
the tachyon potential and the numerical test of Sen's conjecture. We are also going
to analyze the relation between unstable and stable vacuum, namely, the tachyon
condensation.
|
46 |
Conjectura de De Giorgi em dimensões 2 e 3Sousa, Ivaldo Tributino de 08 March 2012 (has links)
Made available in DSpace on 2015-05-15T11:46:13Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 572294 bytes, checksum: 1c46e916c7cc2e4689880e2687dbee0b (MD5)
Previous issue date: 2012-03-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This word is concerned with the study of bounded solutions of semilinear elliptic
equations u − F0(u) = 0 in the whole space Rn, under the assumption that u
is monotone in one direction, say, @u/@xn > 0 em Rn. The goal is to establish
the one-dimensional character or symmetry of u, namely, that u only depends on
one variable or, equivalently, that the level sets of u are hyperplanos. This type of
symmetry question was raised by de Giorgi in 1978 (see [6]), who made the folowing
conjecture:
Conjecture Suppose that u 2 C2(Rn) is solution of the equation
u + u − u3 = 0
satisfying
|u(x)| 1 and @u
@xn
> 0 in the whole Rn.
Then the level sets of u must be hyperplanes.
We show a stronger version of De Giorgi s conjecture is indeed true in dimension 2
and 3 using some techniques in the linear theory developed by Berestychi, Caffarelli
and Nirenberg [5] in one of their papers on qualitative properties of solutions of
semilinear elliptic equations. / Este trabalho se preocupa com o estudo de soluções limitadas de equações elípticas
semilineares u − F0(u) = 0 em todo espaço Rn, sob o pressuposto que u é
monótona em uma direção, digamos @u/@xn > 0 em Rn. O objetivo é estabelecer
o caráter unidimensional ou simetria de u, ou seja, que u depende apenas de uma
variável ou equivalentemente, que os conjuntos de nível de u são hiperplanos. Este
tipo de questão da simetria foi levantada por De Giorgi em 1978 (ver [6]), que fez a
seguinte conjectura:
Conjectura Suponha que u 2 C2(Rn) é solução da equação
u + u − u3 = 0
satisfazendo
|u(x)| 1 e @u
@xn
> 0 em todo Rn.
Então os conjuntos de nível de u são hiperplanos.
Mostraremos que uma versão forte da conjectura de De Giorgi é de fato verdade
em dimensão 2 e 3 usando somente técnicas da teoria linear desenvolvida por
Berestychi, Caffarelli e Nirenberg [5] em um dos seus artigos sobre as propriedades
qualitativas de equações elípticas semilineares.
|
47 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
48 |
Sobre b-coloraÃÃo de grafos com cintura pelo menos 6 / About b-coloring of graphs with waist at least 6Carlos Vinicius Gomes Costa Lima 25 February 2013 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / The coloring problem is among the most studied in the Graph Theory due to its great theoretical and practical importance. Since the problem of coloring the vertices of a graph G either
with the smallest amount of colors is NP-hard, various coloring heuristics are examined to obtain a proper colouring with a reasonably small number of colors.
Given a graph G, the b heuristic of colouring comes down to decrease the amount of colors
in a proper colouring c, so that, if all vertices of a color class fail to see any color in your
neighborhood, then we can change the color to any color these vertices nonexistent in your
neighborhood. Thus, we obtain a coloring c
′ with a color unless c.
Irving and Molove defined the b-coloring of a graph G as a coloring where every color class
has a vertex that is adjacent the other color classes. These vertices are called b-vertices. Irving
and Molove also defined the b-chromatic number as the largest integer k, such that G admits a
b-coloring by k colors. They showed that determine the value of the b-chromatic number of any
graph is NP-hard, but polynomial for trees.
Irving and Molove also defined the m-degree of a graph, which is the largest integer m(G)
such that there are m(G) vertices with degree at least m(G) − 1. Irving and Molove showed
that the m-degree is an upper limit to the b-chromatic number and showed that it is m(T) or
m(T)−1 to every tree T, where its value is m(T) if, and only if, T has a good set.
In this dissertation, we analyze the relationship between the girth, which is the size of the
smallest cycle, and the b-chromatic number of a graph G. More specifically, we try to find
the smallest integer g
∗
such that if the girth of G is at least g
∗
, then the b-chromatic number
equals m(G) or m(G)−1. Show that the value of g
∗
is at most 6 could be an important step in
demonstrating the famous conjecture of Erd˝os-Faber-LovÂasz, but the best known upper limit to
g
∗
is 9. We characterize the graphs whose girth is at least 6 and not have a good set and show
how b-color them optimally. Furthermore, we show how b-color, also optimally, graphs whose
girth is at least 7 and not have good set. / O problema de coloraÃÃo està entre os mais estudados dentro da Teoria dos Grafos devido
a sua grande importÃncia teorica e prÃtica. Dado que o problema de colorir os vÃrtices de um
grafo G qualquer com a menor quantidade de cores à NP-difÃcil, vÃrias heurÃsticas de coloraÃÃo
sÃo estudadas a fim de obter uma coloraÃÃo prÃpria com um nÃmero de cores razoavelmente
pequeno.
Dado um grafo G, a heurÃstica b de coloraÃÃo se resume a diminuir a quantidade de cores
utilizadas em uma coloraÃÃo prÃpria c, de modo que, se todos os vÃrtices de uma classe de cor
deixam de ver alguma cor em sua vizinhanÃa, entÃo podemos modificar a cor desses vÃrtices
para qualquer cor inexistente em sua vizinhanÃa. Dessa forma, obtemos uma coloraÃÃo c′ com
uma cor a menos que c.
Irving e Molove definiram a b-coloraÃÃo de um grafo G como uma coloraÃÃo onde toda
classe de cor possui um vÃrtice que à adjacente as demais classes de cor. Esses vÃrtices sÃo
chamados b-vÃrtices. Irving e Molove tambÃm definiram o nÃmero b-cromÃtico como o maior
inteiro k tal que G admite uma b-coloraÃÃo por k cores. Eles mostraram que determinar o
nÃmero b-cromÃtico de um grafo qualquer à um problema NP-difÃcil, mas polinomial para Ãrvores. Irving e Molove tambÃm definiram o m-grau de um grafo, que à o maior inteiro m(G) tal
que existem m(G) vÃrtices com grau pelo menos m(G)−1. Irving e Molove mostraram que o m-grau à um limite superior para nÃmero b-cromÃtico e mostraram que o mesmo à igual a m(T)
ou a m(T)−1, para toda Ãrvore T, onde o nÃmero b-cromÃtico à igual a m(T) se, e somente se,
T possui um conjunto bom.
Nesta dissertaÃÃo, verificamos a relaÃÃo entre a cintura, que à o tamanho do menor ciclo,
e o nÃmero b-cromÃtico de um grafo G. Mais especificamente, tentamos encontrar o menor
inteiro g∗ tal que, se a cintura de G à pelo menos g∗, entÃo o nÃmero b-cromÃtico à igual a
m(G) ou m(G)−1. Mostrar que o valor de g∗ Ã no mÃximo 6 poderia ser um passo importante
para demonstrar a famosa Conjectura de ErdÃs-Faber-Lovasz, mas o melhor limite superior
conhecido para g∗ à 9. Caracterizamos os grafos cuja cintura à pelo menos 6 e nÃo possuem um
conjunto bom e mostramos como b-colori-los de forma Ãtima. AlÃm disso, mostramos como bicolorir,
tambÃm de forma Ãtima, os grafos cuja cintura à pelo menos 7 e nÃo possuem conjunto
bom.
|
49 |
Estimativas para entropia, extensões simbólicas e hiperbolicidade para difeomorfismos simpléticos e conservativos / Lower bounds for entropy, symbolic extensions and hyperbolicity in the symplectic and volume preserving scenarioThiago Aparecido Catalan 14 February 2011 (has links)
Provamos que \'C POT. 1\' genericamente difeomorfismos simpléticos ou são Anosov ou possuem entropia topológica limitada por baixo pelo supremo sobre o menor expoente de Lyapunov positivo dos pontos periódicos hiperbólicos. Usando isto exibimos exemplos de difeomorfismos conservativos sobre superfícies que não são pontos de semicontinuidade superior para a entropia topológica. Provamos também que \'C POT. 1\' genericamente difeomorfismos simpléticos não Anosov não admitem extensões simbólicas. Mudando de assunto, Hayashi estendeu um resultado de Mañé, provando que todo difeomorfismo f que possui uma \'C POT. 1\' vizinhança U, onde todos os pontos periódicos de qualquer g \'PERTENCE A\' U são hiperbólicos, é de fato um difeomorfismo Axioma A. Aqui, provamos o resultado análogo a este no caso conservativo, e a partir deste é possível exibir uma demonstração de um fato \"folclore\", a conjectura de Palis no caso conservativo / We prove that a \'C POT.1\' generic symplectic diffeomorphism is either Anosov or the topological entropy is bounded from below by the supremum over the smallest positive Lyapunov exponent of the periodic points. By means of that we give examples of area preserving diffeomorphisms which are not point of upper semicontinuity of entropy function in \'C POT. 1\' topology. We also prove that \'C POT. 1\'- generic symplectic diffeomorphisms outside the Anosov ones do not admit symbolic extension. Changing of subject, Hayashi has extended a result of Mañé, proving that every diffeomorphism f which has a \'C POT. 1\'-neighborhood U, where all periodic points of any g \'IT BELONGS\' U are hyperbolic, it is an Axiom A diffeomorphism. Here, we prove the analogous result in the volume preserving scenario, and using it we prove a \"folklore\" fact, the Palis conjecture in this context
|
50 |
O conjunto excepcional do problema de GoldbachDalpizol, Luiz Gustavo January 2018 (has links)
Seja E(X) a cardinalidade dos números pares menores ou iguais a X que não podem ser escritos como soma de dois primos. O objetivo central desta dissertação é apresentar uma demonstração de uma estimativa para E(X) dada por Hugh L. Montgomery e Robert C. Vaughan em [22]. Mais precisamente, estabeleceremos a existência de uma constante positiva (efetivamente computável) tal que E(X) X1 ; para todo X su cientemente grande. / Let E(X) the cardinality of even numbers not exceeding X which cannot be written as a sum of two primes. The main goal of this dissertation is to present a proof of an estimate for E(X) given by Hugh L. Montgomery e Robert C. Vaughan in [22]. More precisely, we will establish the existence of a positive constant (e ectively computable) such that E(X) X1 for all su ciently large X:
|
Page generated in 0.3177 seconds