Spelling suggestions: "subject:"continued 3fractions"" "subject:"continued 5fractions""
51 |
On Sturmian and Episturmian words, and related topicsGlen, Amy Louise January 2006 (has links)
In recent years, combinatorial properties of finite and infinite words have become increasingly important in fields of physics, biology, mathematics, and computer science. In particular, the fascinating family of Sturmian words has become an extremely active subject of research. These infinite binary sequences have numerous applications in various fields of mathematics, such as symbolic dynamics, the study of continued fraction expansion, and also in some domains of physics ( quasicrystal modelling ) and computer science ( pattern recognition, digital straightness ). There has also been a recent surge of interest in a natural generalization of Sturmian words to more than two letters - the so - called episturmian words, which include the well - known Arnoux - Rauzy sequences. This thesis represents a significant contribution to the study of Sturmian and episturmian words, and related objects such as generalized Thue - Morse words and substitutions on a finite alphabet. Specifically, we prove some new properties of certain palindromic factors of the infinite Fibonacci word; establish generalized ' singular ' decompositions of suffixes of certain morphic Sturmian words; completely describe where palindromes occur in characteristic Sturmian words; explicitly determine all integer powers occurring in a certain class of k-strict episturmian words ( including the k-bonacci word ) ; and prove that certain episturmian and generalized Thue - Morse continued fractions are transcendental. Lastly, we begin working towards a proof of a characterization of invertible substitutions on a finite alphabet, which generalizes the fact that invertible substitutions on two letters are exactly the Sturmian morphisms. / Thesis (Ph.D.)--School of Mathematical Sciences, 2006.
|
52 |
O número de ouro no Ensino FundamentalJacques, Rodrigo da Costa January 2016 (has links)
Orientador: Prof. Dr. Jeferson Cassiano / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016. / Neste trabalho de dissertação, apresentamos uma linha de pesquisa envolvendo a incomensurabilidade com um estudo de caso do número de ouro; sua definição, suas aplicações, sua relação com o pentagrama e com a sequência de Fibonacci e também suas curiosidades que o relacionamos com a arte e a natureza. O objetivo é mostrar como este tema pode vir a ser abordado entre os alunos do Ensino Fundamental e Medio de forma prática e interativa. / In this dissertation, we present a line of research involving incommensurable with a case study of the number of gold, its defnition, its applications, its relationship with the pentagram and the Fibonacci sequence and its curiosities that relate to art and nature. The goal is to show how this theme might be broached among students of middle school and high school in a practical and interactive way.
|
53 |
Desvendando a crise da incomensurabilidade. Uma proposta para a educação básica utilizando frações contínuasSilva, Anderson Adelmo da January 2016 (has links)
Orientador: Prof. Dr. Maurício Firmino Silva Lima / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Mestrado Profissional em Matemática em Rede Nacional, 2016. / Esta dissertação apresenta as Frações Contínuas como facilitador para a compreensão do conjunto dos números racionais e o conjunto dos números irracionais. Busco retomar aspectos históricos sobre os segmentos comensuráveis e incomensuráveis, utilizando os convergentes das frações contínuas finitas e infinitas para compreensão da importância de uma boa aproximação. Assim, apresento como sugestão que esse tema seja incluído na Educação Básica, não como um tema curricular, mas como uma rica ferramenta para aplicação em diversos conteúdos já previstos nos anos finais do Ensino Fundamental e no Ensino Médio. / This dissertation presents the continued fractions as a facilitator to understanding the set of rational numbers and the set of irrational numbers. I have been looking for ways to resume historical aspects of the commensurable and incommensurable segments, using the convergent finite continued fractions and infinite to understanding the importance of a good approach. So, I offer a suggestion that this issue be included in basic education, not as a curriculum subject, but as a rich tool for application on content already provided for in the final years of elementary school and in high school.
|
54 |
Funções de Fibonacci: um estudo sobre a razão áurea e a sequência de FibonacciSantos, Fabio Honorato dos 08 February 2018 (has links)
Due to the system does not recognize equations and formulas the resumo and abstract can be found in the PDF file. / Devido ao sistema não reconhecer equações e fórmulas o resumo e abstract encontra-se no arquivo em PDF.
|
55 |
Some Continued Fraction Expansions of Laplace Transforms of Elliptic FunctionsConrad, Eric van Fossen 11 September 2002 (has links)
No description available.
|
56 |
Interpolation-based modelling of microwave ring resonatorsSchoeman, Marlize 12 1900 (has links)
Thesis (PhD (Electical and Electronic Engineering))--University of Stellenbosch, 2006. / Resonant frequencies and Q-factors of microwave ring resonators are predicted using interpolation-
based modelling.
A robust and efficient multivariate adaptive rational-multinomial combination interpolant is
presented. The algorithm models multiple resonance frequencies of a microwave ring resonator
simultaneously by solving an eigenmode problem. To ensure a feasible solution when using the
Method of Moments, a frequency dependent scaling constant is applied to the output model.
This, however, also induces a discontinuous solution space across the specific geometry and
requires that the frequency dependence be addressed separately from other physical parameters.
One-dimensional adaptive rational Vector Fitting is used to identify and classify resonance
frequencies into modes. The geometrical parameter space then models the different mode frequencies
using multivariate adaptive multinomial interpolation.
The technique is illustrated and evaluated on both two- and three-dimensional input models.
Statistical analysis results suggest that models are of a high accuracy even when some resonance
frequencies are lost during the frequency identification procedure.
A three-point rational interpolant function in the region of resonance is presented for the calculation
of loaded quality factors. The technique utilises the already known interpolant coefficients
of a Thiele-type continued fraction interpolant, modelling the S-parameter response of a resonator.
By using only three of the interpolant coefficients at a time, the technique provides a direct
fit and solution to the Q-factors without any additional computational electromagnetic effort.
The modelling algorithm is tested and verified for both high- and low-Q resonators. The model
is experimentally verified and comparative results to measurement predictions are shown. A
disadvantage of the method is that the technique cannot be applied to noisy measurement data
and that results become unreliable under low coupling conditions.
|
57 |
Propriétés analytiques et diophantiennes de certaines séries de Fourier arithmétiques / Analytic and Diophantine properties of certain arithmetic Fourier seriesPetrykiewicz, Izabela 29 September 2014 (has links)
Nous considérons certaines séries de Fourier liées à la théorie des formes modulaires. Nous étudions leurs propriétés analytiques : la dérivabilité, le module de continuité et l'exposant de Hölder. Nous utilisons deux méthodes différentes. La première revient à trouver et itérer une équation fonctionnelle de la fonction étudiée (méthode d'Itatsu) et la deuxième provient de l'analyse en ondelettes (méthode de Jaffard). L'étape essentielle de chacune dépend de la modularité sous-jacente. Nous trouvons que les propriétés analytiques de ces séries aux points irrationnels sont liées aux propriétés diophantiennes de ces points. Ce travail a été motivé par l'étude de la fonction de Riemann. / We consider certain Fourier series which arise from modular or automorphicforms. We study their analytic properties: differentiability, modulus of continuity and theH¨older regularity exponent. We use two different methods. One is based on finding anditerating a functional equation for the function studied (Itatsu’s method), the second onecomes from wavelet analysis (Jaffard’s method). The crucial steps in both of them arebased on the underlined modularity. We find that the analytic properties of these seriesat an irrational x are related to the fine diophantine properties of x, in a very precise way.The work was motivated by the study of the Riemann series.
|
58 |
Probabilistic studies in number theory and word combinatorics : instances of dynamical analysis / Études probabilistes en théorie des nombres et combinatoire des mots : exemples d’analyse dynamiqueRotondo, Pablo 27 September 2018 (has links)
L'analyse dynamique intègre des outils propres aux systèmes dynamiques (comme l'opérateur de transfert) au cadre de la combinatoire analytique, et permet ainsi l'analyse d'un grand nombre d'algorithmes et objets qu'on peut associer naturellement à un système dynamique. Dans ce manuscrit de thèse, nous présentons, dans la perspective de l'analyse dynamique, l'étude probabiliste de plusieurs problèmes qui semblent à priori bien différents : l'analyse probabiliste de la fonction de récurrence des mots de Sturm, et l'étude probabiliste de l'algorithme du “logarithme continu”. Les mots de Sturm constituent une famille omniprésente en combinatoire des mots. Ce sont, dans un sens précis, les mots les plus simples qui ne sont pas ultimement périodiques. Les mots de Sturm ont déjà été beaucoup étudiés, notamment par Morse et Hedlund (1940) qui en ont exhibé une caractérisation fondamentale comme des codages discrets de droites à pente irrationnelle. Ce résultat relie ainsi les mots de Sturm au système dynamique d'Euclide. Les mots de Sturm n'avaient jamais été étudiés d'un point de vue probabiliste. Ici nous introduisons deux modèles probabilistes naturels (et bien complémentaires) et y analysons le comportement probabiliste (et asymptotique) de la “fonction de récurrence” ; nous quantifions sa valeur moyenne et décrivons sa distribution sous chacun de ces deux modèles : l'un est naturel du point de vue algorithmique (mais original du point de vue de l'analyse dynamique), et l'autre permet naturellement de quantifier des classes de plus mauvais cas. Nous discutons la relation entre ces deux modèles et leurs méthodes respectives, en exhibant un lien potentiel qui utilise la transformée de Mellin. Nous avons aussi considéré (et c'est un travail en cours qui vise à unifier les approches) les mots associés à deux familles particulières de pentes : les pentes irrationnelles quadratiques, et les pentes rationnelles (qui donnent lieu aux mots de Christoffel). L'algorithme du logarithme continu est introduit par Gosper dans Hakmem (1978) comme une mutation de l'algorithme classique des fractions continues. Il calcule le plus grand commun diviseur de deux nombres naturels en utilisant uniquement des shifts binaires et des soustractions. Le pire des cas a été étudié récemment par Shallit (2016), qui a donné des bornes précises pour le nombre d'étapes et a exhibé une famille d'entrées sur laquelle l'algorithme atteint cette borne. Dans cette thèse, nous étudions le nombre moyen d'étapes, tout comme d'autres paramètres importants de l'algorithme. Grâce à des méthodes d'analyse dynamique, nous exhibons des constantes mathématiques précises. Le système dynamique ressemble à première vue à celui d'Euclide, et a été étudié d'abord par Chan (2005) avec des méthodes ergodiques. Cependant, la présence des puissances de 2 dans les quotients change la nature de l'algorithme et donne une nature dyadique aux principaux paramètres de l'algorithme, qui ne peuvent donc pas être simplement caractérisés dans le monde réel.C'est pourquoi nous introduisons un nouveau système dynamique, avec une nouvelle composante dyadique, et travaillons dans ce système à deux composantes, l'une réelle, et l'autre dyadique. Grâce à ce nouveau système mixte, nous obtenons l'analyse en moyenne de l'algorithme. / Dynamical Analysis incorporates tools from dynamical systems, namely theTransfer Operator, into the framework of Analytic Combinatorics, permitting the analysis of numerous algorithms and objects naturally associated with an underlying dynamical system.This dissertation presents, in the integrated framework of Dynamical Analysis, the probabilistic analysis of seemingly distinct problems in a unified way: the probabilistic study of the recurrence function of Sturmian words, and the probabilistic study of the Continued Logarithm algorithm.Sturmian words are a fundamental family of words in Word Combinatorics. They are in a precise sense the simplest infinite words that are not eventually periodic. Sturmian words have been well studied over the years, notably by Morse and Hedlund (1940) who demonstrated that they present a notable number theoretical characterization as discrete codings of lines with irrationalslope, relating them naturally to dynamical systems, in particular the Euclidean dynamical system. These words have never been studied from a probabilistic perspective. Here, we quantify the recurrence properties of a ``random'' Sturmian word, which are dictated by the so-called ``recurrence function''; we perform a complete asymptotic probabilistic study of this function, quantifying its mean and describing its distribution under two different probabilistic models, which present different virtues: one is a naturaly choice from an algorithmic point of view (but is innovative from the point of view of dynamical analysis), while the other allows a natural quantification of the worst-case growth of the recurrence function. We discuss the relation between these two distinct models and their respective techniques, explaining also how the two seemingly different techniques employed could be linked through the use of the Mellin transform. In this dissertation we also discuss our ongoing work regarding two special families of Sturmian words: those associated with a quadratic irrational slope, and those with a rational slope (not properly Sturmian). Our work seems to show the possibility of a unified study.The Continued Logarithm Algorithm, introduced by Gosper in Hakmem (1978) as a mutation of classical continued fractions, computes the greatest common divisor of two natural numbers by performing division-like steps involving only binary shifts and substractions. Its worst-case performance was studied recently by Shallit (2016), who showed a precise upper-bound for the number of steps and gave a family of inputs attaining this bound. In this dissertation we employ dynamical analysis to study the average running time of the algorithm, giving precise mathematical constants for the asymptotics, as well as other parameters of interest. The underlying dynamical system is akin to the Euclidean one, and was first studied by Chan (around 2005) from an ergodic, but the presence of powers of 2 in the quotients ingrains into the central parameters a dyadic flavour that cannot be grasped solely by studying this system. We thus introduce a dyadic component and deal with a two-component system. With this new mixed system at hand, we then provide a complete average-case analysis of the algorithm by Dynamical Analysis.
|
59 |
Sur la répartition des unités dans les corps quadratiques réelsLacasse, Marc-André 12 1900 (has links)
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.) / This memoir aims to study real quadratic fields and a particular element of such real quadratic fields : the fundamental unit. To achieve this, the memoir begins by presenting as clearly as possible the state of knowledge on different subjects that are essential to understand the computations and results of my research. We first introduce quadratic fields and their rings of algebraic integers, and we describe their units. We then talk about continued fractions because they are present in an algorithm to compute the fundamental unit. Afterwards, we proceed with binary quadratic forms and Dirichlet's class number formula, which involves the fundamental unit as a function of other variables. Once the above tasks are done, we present our calculations and results. Our research concerns the distribution of fundamental units in real quadratic fields, the disbribution of units in real quadratic fields and the moments of the logarithm of the fundamental unit. (The logarithm of the fundamental unit is called the regulator.)
|
60 |
Sur la répartition des unités dans les corps quadratiques réelsLacasse, Marc-André 12 1900 (has links)
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.) / This memoir aims to study real quadratic fields and a particular element of such real quadratic fields : the fundamental unit. To achieve this, the memoir begins by presenting as clearly as possible the state of knowledge on different subjects that are essential to understand the computations and results of my research. We first introduce quadratic fields and their rings of algebraic integers, and we describe their units. We then talk about continued fractions because they are present in an algorithm to compute the fundamental unit. Afterwards, we proceed with binary quadratic forms and Dirichlet's class number formula, which involves the fundamental unit as a function of other variables. Once the above tasks are done, we present our calculations and results. Our research concerns the distribution of fundamental units in real quadratic fields, the disbribution of units in real quadratic fields and the moments of the logarithm of the fundamental unit. (The logarithm of the fundamental unit is called the regulator.)
|
Page generated in 0.1016 seconds