• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 8
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 80
  • 80
  • 43
  • 38
  • 36
  • 23
  • 23
  • 16
  • 15
  • 14
  • 14
  • 12
  • 10
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Etude de la perfusion médullaire après lésion traumatique de la moelle épinière à dure-mère intacte / Study of spinal cord blood flow after spinal cord injury with intact dura mater

Soubeyrand, Marc 10 October 2012 (has links)
Après un traumatisme de la moelle épinière (TM), l’ischémieest un facteur d’aggravation des lésions. Cette ischémie peut être aggravée par l’augmentation depression du liquide cérébro-spinal (LCS) par le biais d’un effet tamponnade. Or chez l’homme,après un TM avec préservation de l’intégrité de la dure-mère, la pression de LCS augmentesignificativement. On suppose donc que le maintien d’une pression de LCS à des valeursphysiologique pourrait être une méthode de limitation de l’ischémie post-traumatique et doncd’amélioration du pronostic fonctionnel. Afin de pouvoir réaliser une étude expérimentale de cesphénomènes, nous avons consacré la première partie expérimentale de cette thèse à la mise au pointd’un modèle de TM à dure-mère intacte chez le rat permettant la mesure simultanée de la pressionde LCS et de la perfusion médullaire. Nous avons confirmé expérimentalement que la pression deLCS augmente après TM. Dans la seconde partie expérimentale, nous avons mis au point unetechnique expérimentale de quantification spatiale et temporelle de la perfusion médullaire grâce àl’échographie de contraste. Cette technique permettait aussi un suivi en temps réel de l’évolution dusaignement intra-parenchymateux induit par le TM. Dans la troisième partie expérimentale, nousavons utilisé notre modèle couplé avec l’échographie de contraste et le laser Doppler pour évaluerles effets de la noradrénaline injectée à la phase aigüe d’un TM sur la perfusion médullaire et lesaignement intra-parenchymateux. Nous avons montré que la noradrénaline augmentait trèslégèrement le flux sanguin superficiel mais pas le flux sanguin profond et qu’elle augmentait lataille du saignement. / After spinal cord injury (SCI), ischaemia aggravates lesions.Increase in cerebrospinal fluid (CSF) pressure can worsens ischaemia through a tamponnade effect.In humans, it has been shown that after SCI with intact dura mater, CSF pressure significantlyincreases. Therefore, preserving CSF pressure within a physiological range may limit post-traumaischaemia and improve neurological outcome. In order to experimentally study these phenomenon,we have dedicated the first part of that work to create a model of SCI in rats preserving dura’sintegrity and allowing simultaneous measurement of spinal cord blood flow (SCBF) and CSFpressure. We have confirmed that CSF pressure increases after SCI with intact dura. In the secondexperimental part, we have developed a technique allowing to perform spatial and temporalmeasurement of SCBF thanks to contrast enhanced ultrasonography (CEU). Moreover, thistechnique allows real-time measurement of the size of the parenchymal hemorrhage. In the thirdexperimental part, we have used our experimental model in association with CEU and LaserDoppler to assess the effects of early injection of norepinephrine on SCBF and parenchymalhemorrhage. We found that norepinephrine induces a slight increase in superficial SCBF while itdoesn’t modify deep SCBF and significantly increases the size of parenchymal hemorrhage.
72

Imagerie fonctionnelle du placenta en IRM / Functional Magnetic Resonance Imaging of the placenta

Alison, Marianne 17 December 2012 (has links)
L’insuffisance placentaire par défaut de vascularisation est une pathologie fréquente de la grossesse, de diagnostic difficile, avec des complications potentiellement graves (retard de croissance intra utérin, prééclampsie). L’objectif de ce travail de Thèse a été de développer l’IRM fonctionnelle multiparamétrique pour l’exploration du placenta à 4.7 T chez la rate gestante. Matériel et méthode : L’IRM de diffusion (SE- EPI DWI) avec analyse IVIM et l’IRM dynamique avec injection de gadolinium (DCE) et haute résolution temporelle (< 1s) ont été développées puis étudiées sur un modèle murin contrôlé d’hypoperfusion placentaire par ligature du pédicule vasculaire utérin gauche au 17ème jour de gestation. Les paramètres obtenus sur les placentas hypoperfusés de la corne gauche ligaturée étaient comparés à ceux des placentas normaux de la corne droite. L’effet de l’hyperoxygénation maternelle était étudié en diffusion. Résultats : Ont été étudiés 73 placentas, dont 23 pathologiques (n= 10 rates) en diffusion et 53 placentas, dont 11 pathologiques (n=12 rates) en DCE. Les paramètres significativement diminués du côté hypoperfusé étaient le coefficient apparent de diffusion (ADC), la fraction de perfusion (f) en diffusion et le flux sanguin maternel (F) en DCE. Sous hyperoxygénation maternelle, l’ADC et le coefficient de diffusion (D) augmentaient et f diminuait. Les paramètres obtenus en diffusion et en DCE n’étaient pas nettement corrélés entre eux. Conclusion : Un outil d’IRM fonctionnelle placentaire multiparamétrique a été développé à 4.7 T chez la rate gestante. La DWI comme la DCE apparaissent complémentaires pour le diagnostic d’hypoperfusion placentaire. / Placental insufficiency caused by deficient vascularization is common during pregnancy, difficult to diagnose and can lead to severe materno-fetal complications (intrauterine growth restriction, preeclampsia). The aim of this work was to develop multi-parametric functional magnetic resonance imaging (MRI) to assess the placenta at 4.7 T on a murine model. Materials and methods : Diffusion-weighted imaging (SE-EPI-DWI) with the intravoxel incoherent motion (IVIM) analysis and dynamic contrast enhanced MRI (DCE) with a high-time resolution (<1 s) were developed and evaluated on a controlled rat model of reduced placental perfusion, achieved by ligation of the left uterine vascular pedicle on the 17th embryonic day. Parameters from the placentas in the left ligated horn were compared to those from the normal placentas in the non ligated horn. The effect of maternal hyperoxygenation on placental microvascularization was studied with DWI.Results: For DWI, 73 placentas were examined, 23 from the ligated side (n=10 rats). For DCE, 53 placentas were analysed, 11 from the ligated side (n=12 rats). In the uterine horn with reduced perfusion, the apparent diffusion coefficient (ADC), the perfusion fraction (f) obtained with DWI and the placental blood flow (F) obtained with DCE were significantly decreased. Under maternal hyperoxygenation, ADC and the diffusion coefficient (D) increased whereas f decreased. DWI and DCE parameters were not significantly correlated with each other. Conclusion: Multi-parametric MRI has been developed for murine placental analysis at 4.7T. DWI and DCE are complementary tools for the diagnosis of reduced placental perfusion.
73

Etude de l’influence de l’entrée artérielle tumorale par modélisation numérique et in vitro en imagerie de contraste ultrasonore. : application clinique pour l’évaluation des thérapies ciblées en cancérologie / In vitro assessment of the arterial input function influence on dynamic contrast-enhanced ultrasonography microvascularization parameter measurements using numerical modeling. : clinical impact on treatment evaluations in oncology

Gauthier, Marianne 05 December 2011 (has links)
L’échographie dynamique de contraste (DCE-US) est actuellement proposée comme technique d’imagerie fonctionnelle permettant d’évaluer les nouvelles thérapies anti-angiogéniques. Dans ce contexte, L'UPRES EA 4040, Université Paris-Sud 11, et le service d'Echographie de l'Institut Gustave Roussy ont développé une méthodologie permettant de calculer automatiquement, à partir de la courbe de prise de contraste moyenne obtenue dans la tumeur après injection en bolus d’un agent de contraste, un ensemble de paramètres semi-quantitatifs. Actuellement, l’état hémodynamique du patient ou encore les conditions d’injection du produit de contraste ne sont pas pris en compte dans le calcul de ces paramètres à l’inverse d’autres modalités (imagerie par résonance magnétique dynamique de contraste ou scanner de perfusion). L’objectif de cette thèse était donc d’étendre la méthode de déconvolution utilisée en routine dans les autres modalités d’imagerie à l’échographie de contraste. Celle-ci permet de s’affranchir des conditions citées précédemment en déconvoluant la courbe de prise de contraste issue de la tumeur par la fonction d’entrée artérielle, donnant ainsi accès aux paramètres quantitatifs flux sanguin, volume sanguin et temps de transit moyen. Mon travail de recherche s’est alors articulé autour de trois axes. Le premier visait à développer la méthode de quantification par déconvolution dédiée à l’échographie de contraste, avec l’élaboration d’un outil méthodologique suivie de l’évaluation de son apport sur la variabilité des paramètres de la microvascularisation. Des évaluations comparatives de variabilité intra-opérateur ont alors mis en évidence une diminution drastique des coefficients de variation des paramètres de la microvascularisation de 30% à 13% avec la méthode de déconvolution. Le deuxième axe était centré sur l’étude des sources de variabilité influençant les paramètres de la microvascularisation portant à la fois sur les conditions expérimentales et sur les conditions physiologiques de la tumeur. Enfin, le dernier axe a reposé sur une étude rétrospective menée sur 12 patients pour lesquels nous avons évalué l’intérêt de la déconvolution en comparant l’évolution des paramètres quantitatifs et semi-quantitatifs de la microvascularisation en fonction des réponses des tumeurs obtenues par les critères RECIST à partir d’un scan effectué à 2 mois. Cette méthodologie est prometteuse et peut permettre à terme une évaluation plus robuste et précoce des thérapies anti-angiogéniques que les méthodologies actuellement utilisées en routine dans le cadre des examens DCE-US. / Dynamic contrast-enhanced ultrasonography (DCE-US) is currently used as a functional imaging technique for evaluating anti-angiogenic therapies. A mathematical model has been developed by the UPRES EA 4040, Paris-Sud university and the Gustave Roussy Institute to evaluate semi-quantitative microvascularization parameters directly from time-intensity curves. But DCE-US evaluation of such parameters does not yet take into account physiological variations of the patient or even the way the contrast agent is injected as opposed to other functional modalities (dynamic magnetic resonance imaging or perfusion scintigraphy). The aim of my PhD was to develop a deconvolution process dedicated to the DCE-US imaging, which is currently used as a routine method in other imaging modalities. Such a process would allow access to quantitatively-defined microvascularization parameters since it would provide absolute evaluation of the tumor blood flow, the tumor blood volume and the mean transit time. This PhD has been led according to three main goals. First, we developed a deconvolution method involving the creation of a quantification tool and validation through studies of the microvascularization parameter variability. Evaluation and comparison of intra-operator variabilities demonstrated a decrease in the coefficients of variation from 30% to 13% when microvascularization parameters were extracted using the deconvolution process. Secondly, we evaluated sources of variation that influence microvascularization parameters concerning both the experimental conditions and the physiological conditions of the tumor. Finally, we performed a retrospective study involving 12 patients for whom we evaluated the benefit of the deconvolution process: we compared the evolution of the quantitative and semi-quantitative microvascularization parameters based on tumor responses evaluated by the RECIST criteria obtained through a scan performed after 2 months. Deconvolution is a promising process that may allow an earlier, more robust evaluation of anti-angiogenic treatments than the DCE-US method in current clinical use.
74

Imagerie fonctionelle corps entier dans les hémopathies lymphoïdes

Lin, Chieh 11 December 2009 (has links)
Trois aspects principaux de l'imagerie fonctionnelle corps entier dans les hémopathies lymphoïdes ont été étudiés dans ma thèse. Nous avons d'abord démontré en étudiant 92 patients avec un lymphome B à grandes cellules que 14 patients (15%) considérés positifs sur l'analyse visuelle du FDG-TEP après deux cycles de chimiothérapie, auraient pu être reclassés comme des bons répondeurs si le pourcentage de réduction du SUVmax avait été mesuré. Dans un sous groupe de 80 patients, une deuxième étude a permis de montrer qu'après 4 cycles, l'analyse visuelle et l'analyse semi-quantitative SUV étaient équivalentes. Nous avons ensuite développé un protocole d'IRM fonctionnelle corps entier, utilisant une injection dynamique de Gadolinium et 5 stations d'acquisition. Cela a permis de mesurer les courbes signal-temps du rehaussement de la moelle osseuse et des lésions focales. Notre étude a permis d'optimiser un protocole d'imagerie dynamique corps entier après injection de Gadolinium, et de montrer que nous avions pu explorer avec succès 21 patients présentant un myélome multiple sous traitement, nous avons montré que cette nouvelle méthode d'IRM fonctionnelle corps entier avec injection de Gadolinium pouvait être utilisée pour évaluer la réponse du traitement. De plus, cette technique a aidé à détecter les lésions résiduelles actives de myélome après traitement alors qu'aucun signe clinique ou une immunoglobine monoclonale minime n'était présent. Le troisième aspect a été d'optimiser un protocole d'IRM fonctionnelle corps entier utilisant l'imagerie de diffusion avec asservissement respiratoire. Le but est de pouvoir mesurer le coefficient de diffusion apprent des lésions disséminées. L'étude pilote a été réalisée chez 15 patients avec un lymphome B à grandes cellules avant traitement. Nous avons aussi pu montrer les changements d'ADC après 4 cycles de chimiothérapie en considérant l'imagerie FDG-TEP/scanner comme imagerie de référence / Three components regarding whole-body functional imaging in lymphoid malignancies have been studies in this thesis. We first demonstrated retrospectively in a series of 92 patients with diffuse large B-cell lymphoma (DLBCL) that 14 patients (15%) considered as positive on visual analysis on FDG-PET after only 2 cycles of chemotherapy could have been correctly re-classified as good responders by measuring the percentage reduction of maximum standardized uptake value (SUVmax); in a subgroup of 80 patients, SUV-based assessment was equivalent to visual analysis at 4 cycles for patient outcome prediction. We secondly developed a whole-body 5-station dynamic contrast- enhanced MR protocol and time-signal intensity curves for the bone marrow and the focal lesions were successfully obtaines in 21 patients with plasma cell disorders included in the feasibility study; later in a pilot prospective study with 30 patients with multiple myeloma who received systemic therapy, we showed that this novel whole-body functional MR technique can be used to assess treatment response and helps to delect residual active disease after completion of therapy when clinically no or only minimum monoclonal protein can be identified. We thirdly optimized a whole-body diffusion-weighted MR protocol with respiratory gating in order to determine apparent diffusion coefficient (ADC) value on a whole-body scale. Pilot study was performed in 15 patients with DLBCL for both staging and response assessment at 4 cycles of chemotherapy, with FDG PET/CT as the standard of reference
75

Assessing the effects of water exchange on quantitative dynamic contrast enhanced MRI

Bains, Lauren Jean January 2011 (has links)
Applying mathematical models to dynamic contrast enhanced MRI (DCE MRI) data to perform quantitative tracer kinetic analysis enables the estimation of tissue characteristics such as vascular permeability and the fractional volume of plasma in a tissue. However, it is unclear to what extent modeling assumptions, particularly regarding water exchange between tissue compartments, impacts parameter estimates derived from clinical DCE MRI data. In this work, a new model is developed which includes water exchange effects, termed the water exchange modified two compartment exchange model (WX-2CXM). Two boundaries of this model (the fast and no exchange limits) were used to analyse a clinical DCE MRI bladder cancer dataset. Comparisons with DCE CT, which is not affected by water exchange, suggested that water exchange may have affected estimates of vp, the fractional volume of plasma. Further investigation and simulations led to the development of a DCE MRI protocol which was sensitised to water exchange, in order to further evaluate the water exchange effects found in the bladder cancer dataset. This protocol was tested by imaging the parotid glands in eight healthy volunteers, and confirmed evidence of water exchange effects on vp, as well as flow Fp and the fractional volume of extravascular extracellular space ve. This protocol also enabled preliminary estimates of the water residence times in parotid tissue, however, these estimates had a large variability and require further validation. The work presented in this thesis suggests that, although water exchange effects do not have a large effect on clinical data, the effect is measurable, and may lead to the ability to estimate of tissue water residence times. Results do not support a change in the current practise of neglecting water exchange effects in clinical DCEMRI acquisitions.
76

Škálování arteriální vstupní funkce v DCE-MRI / Scaling of arterial input function in DCE-MRI

Holeček, Tomáš January 2015 (has links)
Perfusion magnetic resonance imaging is modern diagnostic method used mainly in oncology. In this method, contrast agent is injected to the subject and then is continuously monitored the progress of its concentration in the affected area in time. Correct determination of the arterial input function (AIF) is very important for perfusion analysis. One possibility is to model AIF by multichannel blind deconvolution but the estimated AIF is necessary to be scaled. This master´s thesis is focused on description of scaling methods and their influence on perfussion parameters in dependence on used model of AIF in different tissues.
77

Robustness Analysis of Perfusion Parameter Calculations / Robusthetsanalys av perfusionsparameterberäkningar

Palmér, Alicia January 2024 (has links)
Cancer is one of the most common causes of death worldwide. When given optimal treatment, however, the risk of severe illness may greatly be reduced. Determining optimal treatment in turn requires evaluation of disease progression and response to potential, previous treatment. Analysis of perfusion, a physiological property that describes how well different tissues are supplied with blood, has been shown useful for revealing important tumor characteristics. By performing a contrast agent-enhanced, non-invasive medical imaging procedure, quantitative parameters of perfusion can be obtained by fitting the image data to mathematical models. These parameters may then provide valuable insights into tumor properties, useful for purposes such as diagnostics and treatment response evaluation. Varieties of parameter calculation frameworks and perfusion models may however lead to a wide range of possible parameter values, which negatively impacts reproducibility and confidence in results. The aim of this thesis project was to explore how different implementation choices in a perfusion parameter calculations framework, as well as image data noise and filtering, affected the parameter estimations. Image data of nine brain-tumor patients and a physical phantom was used for calculating perfusion parameters after systematically applying changes to the default calculations framework. The results showed that the choice of optimization method for parameter estimations could provide a significant difference in parameter estimations. A semi-automated method for obtaining a venous input function was evaluated and shown to be robust with respect to simulated user inputs. Generation of a T1 map, used when performing the parameter calculations, was explored for the variable flip-angle method and from this investigation it was concluded that a few combinations of flip-angles generated unrealistic T1 maps. Finally, a Gaussian image filter applied in the x- and ydimensions of the image data was found to provide a noticeable reduction of applied noise. The outcome of the experiments exemplified how calculation framework setup affected parameter estimations, which was discussed to be of importance for other areas of research as well. Future work could encompass exploration of other, more complex perfusion models, and performing similar analysis for tumors in other body-parts. / Cancer är en av de vanligaste dödsorsakerna i världen. Risken för svår sjukdom kan dock minimeras om optimal behandling ges, vilket kräver utvärdering av sjukdomstillstånd och svar på eventuell tidigare behandling för att åstadkommas. Mätningar av perfusion, en fysiologisk egenskap som direkt relaterar till vävnadernas blodtillförsel, har visat sig vara användbar för att avslöja viktiga tumöregenskaper. Genom att utföra en icke-invasiv medicinsk bildtagningsprocedur med kontrastvätska kan kvantitativa perfusionsparametrar erhållas genom att anpassa bilddatat till matematiska modeller. Dessa parametrar kan sedan ge värdefulla insikter om tumörers egenskaper, användbara för ändamål som diagnostik och utvärdering av behandling. Variationer av ramverk för parameterberäkningar och perfusionsmodeller kan dock leda till många olika, möjliga parametervärden, vilket negativt påverkar reproducerbarhet och förtroende för korrekthet hos de beräknade parametrarna. Syftet med detta examensarbete var att utforska hur implementeringen av ett ramverk för perfusionsparameterberäkningar, samt bilddatabrus och filtrering, påverkade parameterberäkningarna. Bilddata från nio hjärntumörpatienter samt en fysisk fantom användes för att beräkna perfusionsparametrar efter att systematiskt ändrat delar av ett ursprungligt beräkningsramverk. Resultaten visade att valet av optimeringsmetod för modelanpassning kunde ge en signifikant skillnad i parameteruppskattningar. En semi-automatiserad metod designad för att erhålla en venös inflödesfunktion utvärderades och påvisades vara robust med avseende på simulerad användarinteraktion. Generering av en T1-karta, som kan användas för parameterberäkningarna, undersöktes för variable flip-angle metoden, och från denna undersökning drogs slutsatsen att ett antal kombinationer av vinklar genererade orealistiska T1-kartor. Slutligen visade sig ett Gaussiskt bildfilter applicerat i x- och y-dimensionerna av bilddata ge en märkbar reducering av applicerat brus. Arbetet gav exempel på hur val av beräkningsramverk kan påverka parameteruppskattningar, vilket vidare diskuterades kan ha betydelse inom andra forskningsområden. Framtida undersökningar kan innefatta att utforska andra, mer komplexa perfusionsmodeller, samt att utföra liknande analyser för tumörer i andra kroppsdelar.
78

A Quantitative Manganese-Enhanced MRI Method For In Vivo Assessment Of L-Type Calcium Channel Activity In Heart

Li, Wen 15 April 2011 (has links)
No description available.
79

Model dynamických kontrastních CT dat pro hodnocení lícovacích algoritmů / Model of dynamic contrast CT data for verification of registration algorithms

Kupková, Karolína January 2013 (has links)
This work is focused on the description of the dynamic contrast-enhanced CT examination and its contribution in the pneumooncology. It includes a program for creating a two-dimensional model of the scan from the thorax and for the perfuse examination simulation using the time-density curve. Real CT data are simulated more authentic using rigid geometric transformations and noise. The model will be used for the validation of registration algorithms that is used to suppress the spatial deformation generated by patient motions during the long time examination.
80

Étude de la tomodensitométrie spectrale quantitative et ses applications en radiothérapie

Simard, Mikaël 02 1900 (has links)
La tomodensitométrie par rayons-X (CT) est une modalité d’imagerie produisant une carte tridimensionnelle du coefficient d’atténuation des rayons-X d’un objet. En radiothérapie, le CT fournit de l’information anatomique et quantitative sur le patient afin de permettre la planification du traitement et le calcul de la dose de radiation à livrer. Le CT a plusieurs problèmes, notamment (1) une limitation au niveau de l’exactitude des paramètres physiques quantitatifs extraits du patient, et (2) une sensibilité aux biais causés par des artéfacts de durcissement du faisceau. Enfin, (3) dans le cas où le CT est fait en présence d’un agent de contraste pour améliorer la planification du traitement, il est nécessaire d’effectuer un deuxième CT sans agent de contraste à des fins de calcul de dose, ce qui augmente la dose au patient. Ces trois problèmes limitent l’efficacité du CT pour certaines modalités de traitement qui sont plus sensibles aux incertitudes comme la protonthérapie. Le CT spectral regroupe un ensemble de méthodes pour produire plusieurs cartes d’atténuation des rayons-X moyennées sur différentes plages énergétiques. L’information supplémentaire, pondérée en énergie qui est obtenue permet une meilleure caractérisation des matériaux analysés. Le potentiel de l’une de ces modalités spectrales, le CT bi-énergie (DECT), est déjà bien démontré en radiothérapie, alors qu’une approche en plein essor, le CT spectral à comptage de photons (SPCCT), promet davantage d’information spectrale à l’aide de détecteurs discriminateurs en énergie. Par contre, le SPCCT souffre d’un bruit plus important et d’un conditionnement réduit. Cette thèse investigue la question suivante : y a-t-il un bénéfice à utiliser plus d’information résolue en énergie, mais de qualité réduite pour la radiothérapie ? La question est étudiée dans le contexte des trois problèmes ci-haut. Tout d’abord, un estimateur maximum a posteriori (MAP) est introduit au niveau de la caractérisation des tissus post-reconstruction afin de débruiter les données du CT spectral. L’approche est validée expérimentalement sur un DECT. Le niveau de bruit du pouvoir d’arrêt des protons diminue en moyenne d’un facteur 3.2 à l’aide de l’estimateur MAP. Celui-ci permet également de conserver généralement le caractère quantitatif des paramètres physiques estimés, le pouvoir d’arrêt variant en moyenne de 0.9% par rapport à l’approche conventionnelle. Ensuite, l’estimateur MAP est adapté au contexte de l’imagerie avec agent de contraste. Les résultats numériques démontrent un bénéfice clair à utiliser le SPCCT pour l’imagerie virtuellement sans contraste par rapport au DECT, avec une réduction de l’erreur RMS sur le pouvoir d’arrêt des protons de 2.7 à 1.4%. Troisièmement, les outils développés ci-haut sont validés expérimentalement sur un micro-SPCCT de la compagnie MARS Bioimaging, dont le détecteur à comptage de photons est le Medipix 3, qui est utilisé pour le suivi de particules au CERN. De légers bénéfices au niveau de l’estimation des propriétés physiques à l’aide du SPCCT par rapport au DECT sont obtenus pour des matériaux substituts à des tissus humains. Finalement, une nouvelle paramétrisation du coefficient d’atténuation pour l’imagerie pré-reconstruction est proposée, dans le but ultime de corriger les artéfacts de durcissement du faisceau. La paramétrisation proposée élimine les biais au niveau de l’exactitude de la caractérisation des tissus humains par rapport aux paramétrisations existantes. Cependant, aucun avantage n’a été obtenu à l’aide du SPCCT par rapport au DECT, ce qui suggère qu’il est nécessaire d’incorporer l’estimation MAP dans l’imagerie pré-reconstruction via une approche de reconstruction itérative. / X-ray computed tomography (CT) is an imaging modality that produces a tridimensional map of the attenuation of X-rays by the scanned object. In radiation therapy, CT provides anatomical and quantitative information on the patient that is required for treatment planning. However, CT has some issues, notably (1) a limited accuracy in the estimation of quantitative physical parameters of the patient, and (2) a sensitivity to biases caused by beam hardening artifacts. Finally, (3) in the case where contrast-enhanced CT is performed to help treatment planning, a second scan with no contrast agent is required for dose calculation purposes, which increases the overall dose to the patient. Those 3 problems limit the efficiency of CT for some treatment modalities more sensitive to uncertainties, such as proton therapy. Spectral CT regroups a set of methods that allows the production of multiple X-ray attenuation maps evaluated over various energy windows. The additional energy-weighted information that is obtained allows better material characterization. The potential of one spectral CT modality, dual-energy CT (DECT), is already well demonstrated for radiation therapy, while an upcoming method, spectral photon counting CT (SPCCT), promises more spectral information with the help of energy discriminating detectors. Unfortunately, SPCCT suffers from increased noise and poor conditioning. This thesis thus investigates the following question: is there a benefit to using more, but lower quality energy-resolved information for radiotherapy? The question is studied in the context of the three problems discussed earlier. First, a maximum a posteriori (MAP) estimator is introduced for post-reconstruction tissue characterization for denoising purposes in spectral CT. The estimator is validated experimentally using a commercial DECT. The noise level on the proton stopping power is reduced, on average, by a factor of 3.2 with the MAP estimator. The estimator also generally con- serves the quantitative accuracy of estimated physical parameters. For instance, the stopping power varies on average by 0.9% with respect to the conventional approach. Then, the MAP estimation framework is adapted to the context of contrast-enhanced imaging. Numerical results show clear benefits when using SPCCT for virtual non-contrast imaging compared to DECT, with a reduction of the RMS error on the proton stopping power from 2.7 to 1.4%. Third, the developed tools are validated experimentally on a micro-SPCCT from MARS Bioimaging, which uses the Medipix 3 chip as a photon counting detector. Small benefits in the accuracy of physical parameters of tissue substitutes materials are obtained. Finally, a new parametrization of the attenuation coefficient for pre-reconstruction imaging is pro- posed, whose ultimate aim is to correct beam hardening artifacts. In a simulation study, the proposed parametrization eliminates all biases in the estimated physical parameters of human tissues, which is an improvement upon existing parametrizations. However, no ad- vantage has been obtained with SPCCT compared to DECT, which suggests the need to incorporate MAP estimation in the pre-reconstruction framework using an iterative reconstruction approach.

Page generated in 0.0589 seconds