Spelling suggestions: "subject:"convergence rates"" "subject:"convergence dates""
11 |
Generalized Tikhonov regularizationFlemming, Jens 01 November 2011 (has links) (PDF)
The dissertation suggests a generalized version of Tikhonov regularization and analyzes its properties. The focus is on convergence rates theory and an extensive example for regularization with Poisson distributed data is given.
|
12 |
Contributions à la statistique bayésienne non-paramétrique / Contributions to Bayesian nonparametric statisticArbel, Julyan 24 September 2013 (has links)
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches bayésiennes non-paramétriques. Dans la première partie, nous nous intéressons aux propriétés fréquentistes (asymptotiques) de lois a posteriori pour des paramètres appartenant à l'ensemble des suites réelles de carré sommable. Dans la deuxième partie, nous nous intéressons à des approches non-paramétriques modélisant des données d'espèces et leur diversité en fonction de certaines variables explicatives, à partir de modèles qui utilisent des mesures de probabilité aléatoires. / This thesis is divided in two parts on rather different aspects of Bayesian statistics. In the first part, we deal with frequentist (asymptotic) properties of posterior distributions for parameters which belong to the space of real square sommable sequences. In the second part, we deal with nonparametric approaches modelling species data and the diversity of these data with respect to covariates. To that purpose, we use models based on random probability measures.
|
13 |
Convergence rates for variational regularization of statistical inverse problemsSprung, Benjamin 04 October 2019 (has links)
No description available.
|
14 |
Optimal rates for Lavrentiev regularization with adjoint source conditionsPlato, Robert, Mathé, Peter, Hofmann, Bernd January 2016 (has links)
There are various ways to regularize ill-posed operator equations in Hilbert space. If the underlying operator is accretive then Lavrentiev regularization (singular perturbation) is an immediate choice. The corresponding convergence rates for the regularization error depend on the given smoothness assumptions, and for general accretive operators these may be both with respect to the operator or its adjoint. Previous analysis revealed different convergence rates, and their optimality was unclear, specifically for adjoint source conditions. Based on the fundamental study by T. Kato, Fractional powers of dissipative operators. J. Math. Soc. Japan, 13(3):247--274, 1961, we establish power type convergence rates for this case. By measuring the optimality of such rates in terms on limit orders we exhibit optimality properties of the convergence rates, for general accretive operators under direct and adjoint source conditions, but also for the subclass of nonnegative selfadjoint operators.
|
15 |
Generalized Tikhonov regularization: Basic theory and comprehensive results on convergence ratesFlemming, Jens 27 October 2011 (has links)
The dissertation suggests a generalized version of Tikhonov regularization and analyzes its properties. The focus is on convergence rates theory and an extensive example for regularization with Poisson distributed data is given.
|
16 |
Parameter choice in Banach space regularization under variational inequalitiesHofmann, Bernd, Mathé, Peter January 2012 (has links)
The authors study parameter choice strategies for Tikhonov regularization of nonlinear ill-posed problems in Banach spaces. The effectiveness of any parameter choice for obtaining convergence rates depend on the interplay of the solution smoothness and the nonlinearity structure, and it can be expressed concisely in terms of variational inequalities. Such inequalities are link conditions between the penalty term, the norm misfit and the corresponding error measure. The parameter choices under consideration include an a priori choice, the discrepancy principle as well as the Lepskii principle. For the convenience of the reader the authors review in an appendix a few instances where the validity of a variational inequality can be established.
|
17 |
Tikhonov regularization with oversmoothing penaltiesGerth, Daniel 21 December 2016 (has links)
In the last decade l1-regularization became a powerful and popular tool for the regularization of Inverse Problems. While in the early years sparse solution were in the focus of research, recently also the case that the coefficients of the exact solution decay sufficiently fast was under consideration. In this paper we seek to show that l1-regularization is applicable and leads to optimal convergence rates even when the exact solution does not belong to l1 but only to l2. This is a particular example of over-smoothing regularization, i.e., the penalty implies smoothness properties the exact solution does not fulfill. We will make some statements on convergence also in this general context.
|
18 |
Convergence rates for variational regularization of inverse problems in exponential familiesYusufu, Simayi 12 September 2019 (has links)
No description available.
|
19 |
Adaptive and efficient quantile estimationTrabs, Mathias 07 July 2014 (has links)
Die Schätzung von Quantilen und verwandten Funktionalen wird in zwei inversen Problemen behandelt: dem klassischen Dekonvolutionsmodell sowie dem Lévy-Modell in dem ein Lévy-Prozess beobachtet wird und Funktionale des Sprungmaßes geschätzt werden. Im einem abstrakteren Rahmen wird semiparametrische Effizienz im Sinne von Hájek-Le Cam für Funktionalschätzung in regulären, inversen Modellen untersucht. Ein allgemeiner Faltungssatz wird bewiesen, der auf eine große Klasse von statistischen inversen Problem anwendbar ist. Im Dekonvolutionsmodell beweisen wir, dass die Plugin-Schätzer der Verteilungsfunktion und der Quantile effizient sind. Auf der Grundlage von niederfrequenten diskreten Beobachtungen des Lévy-Prozesses wird im nichtlinearen Lévy-Modell eine Informationsschranke für die Schätzung von Funktionalen des Sprungmaßes hergeleitet. Die enge Verbindung zwischen dem Dekonvolutionsmodell und dem Lévy-Modell wird präzise beschrieben. Quantilschätzung für Dekonvolutionsprobleme wird umfassend untersucht. Insbesondere wird der realistischere Fall von unbekannten Fehlerverteilungen behandelt. Wir zeigen unter minimalen und natürlichen Bedingungen, dass die Plugin-Methode minimax optimal ist. Eine datengetriebene Bandweitenwahl erlaubt eine optimale adaptive Schätzung. Quantile werden auf den Fall von Lévy-Maßen, die nicht notwendiger Weise endlich sind, verallgemeinert. Mittels äquidistanten, diskreten Beobachtungen des Prozesses werden nichtparametrische Schätzer der verallgemeinerten Quantile konstruiert und minimax optimale Konvergenzraten hergeleitet. Als motivierendes Beispiel von inversen Problemen untersuchen wir ein Finanzmodell empirisch, in dem ein Anlagengegenstand durch einen exponentiellen Lévy-Prozess dargestellt wird. Die Quantilschätzer werden auf dieses Modell übertragen und eine optimale adaptive Bandweitenwahl wird konstruiert. Die Schätzmethode wird schließlich auf reale Daten von DAX-Optionen angewendet. / The estimation of quantiles and realated functionals is studied in two inverse problems: the classical deconvolution model and the Lévy model, where a Lévy process is observed and where we aim for the estimation of functionals of the jump measure. From a more abstract perspective we study semiparametric efficiency in the sense of Hájek-Le Cam for functional estimation in regular indirect models. A general convolution theorem is proved which applies to a large class of statistical inverse problems. In particular, we consider the deconvolution model, where we prove that our plug-in estimators of the distribution function and of the quantiles are efficient. In the nonlinear Lévy model based on low-frequent discrete observations of the Lévy process, we deduce an information bound for the estimation of functionals of the jump measure. The strong relationship between the Lévy model and the deconvolution model is given a precise meaning. Quantile estimation in deconvolution problems is studied comprehensively. In particular, the more realistic setup of unknown error distributions is covered. Under minimal and natural conditions we show that the plug-in method is minimax optimal. A data-driven bandwidth choice yields optimal adaptive estimation. The concept of quantiles is generalized to the possibly infinite Lévy measures by considering left and right tail integrals. Based on equidistant discrete observations of the process, we construct a nonparametric estimator of the generalized quantiles and derive minimax convergence rates. As a motivating financial example for inverse problems, we empirically study the calibration of an exponential Lévy model for asset prices. The estimators of the generalized quantiles are adapted to this model. We construct an optimal adaptive quantile estimator and apply the procedure to real data of DAX-options.
|
20 |
The impact of a curious type of smoothness conditions on convergence rates in l1-regularizationBot, Radu Ioan, Hofmann, Bernd 31 January 2013 (has links) (PDF)
Tikhonov-type regularization of linear and nonlinear ill-posed problems in abstract spaces under sparsity constraints gained relevant attention in the past years. Since under some weak assumptions all regularized solutions are sparse if the l1-norm is used as penalty term, the l1-regularization was studied by numerous authors although the non-reflexivity of the Banach space l1 and the fact that such penalty functional is not strictly convex lead to serious difficulties. We consider the case that the sparsity assumption is narrowly missed. This means that the solutions may have an infinite number of nonzero but fast decaying components. For that case we formulate and prove convergence rates results for the l1-regularization of nonlinear operator equations. In this context, we outline the situations of Hölder rates and of an exponential decay of the solution components.
|
Page generated in 0.0638 seconds