• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 640
  • 84
  • 37
  • 26
  • 15
  • 12
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 994
  • 855
  • 587
  • 495
  • 456
  • 417
  • 403
  • 299
  • 203
  • 186
  • 184
  • 174
  • 162
  • 158
  • 154
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Towards Explainable Decision-making Strategies of Deep Convolutional Neural Networks : An exploration into explainable AI and potential applications within cancer detection

Hammarström, Tobias January 2020 (has links)
The influence of Artificial Intelligence (AI) on society is increasing, with applications in highly sensitive and complicated areas. Examples include using Deep Convolutional Neural Networks within healthcare for diagnosing cancer. However, the inner workings of such models are often unknown, limiting the much-needed trust in the models. To combat this, Explainable AI (XAI) methods aim to provide explanations of the models' decision-making. Two such methods, Spectral Relevance Analysis (SpRAy) and Testing with Concept Activation Methods (TCAV), were evaluated on a deep learning model classifying cat and dog images that contained introduced artificial noise. The task was to assess the methods' capabilities to explain the importance of the introduced noise for the learnt model. The task was constructed as an exploratory step, with the future aim of using the methods on models diagnosing oral cancer. In addition to using the TCAV method as introduced by its authors, this study also utilizes the CAV-sensitivity to introduce and perform a sensitivity magnitude analysis. Both methods proved useful in discerning between the model’s two decision-making strategies based on either the animal or the noise. However, greater insight into the intricacies of said strategies is desired. Additionally, the methods provided a deeper understanding of the model’s learning, as the model did not seem to properly distinguish between the noise and the animal conceptually. The methods thus accentuated the limitations of the model, thereby increasing our trust in its abilities. In conclusion, the methods show promise regarding the task of detecting visually distinctive noise in images, which could extend to other distinctive features present in more complex problems. Consequently, more research should be conducted on applying these methods on more complex areas with specialized models and tasks, e.g. oral cancer.
82

Deep Learning för klassificering av kundsupport-ärenden

Jonsson, Max January 2020 (has links)
Företag och organisationer som tillhandahåller kundsupport via e-post kommer över tid att samla på sig stora mängder textuella data. Tack vare kontinuerliga framsteg inom Machine Learning ökar ständigt möjligheterna att dra nytta av tidigare insamlat data för att effektivisera organisationens framtida supporthantering. Syftet med denna studie är att analysera och utvärdera hur Deep Learning kan användas för att automatisera processen att klassificera supportärenden. Studien baseras på ett svenskt företags domän där klassificeringarna sker inom företagets fördefinierade kategorier. För att bygga upp ett dataset extraherades supportärenden inkomna via e-post (par av rubrik och meddelande) från företagets supportdatabas, där samtliga ärenden tillhörde en av nio distinkta kategorier. Utvärderingen gjordes genom att analysera skillnaderna i systemets uppmätta precision då olika metoder för datastädning användes, samt då de neurala nätverken byggdes upp med olika arkitekturer. En avgränsning gjordes att endast undersöka olika typer av Convolutional Neural Networks (CNN) samt Recurrent Neural Networks (RNN) i form av både enkel- och dubbelriktade Long Short Time Memory (LSTM) celler. Resultaten från denna studie visar ingen ökning i precision för någon av de undersökta datastädningsmetoderna. Dock visar resultaten att en begränsning av den använda ordlistan heller inte genererar någon negativ effekt. En begränsning av ordlistan kan fortfarande vara användbar för att minimera andra effekter så som exempelvis träningstiden, och eventuellt även minska risken för överanpassning. Av de undersökta nätverksarkitekturerna presterade CNN bättre än RNN på det använda datasetet. Den mest gynnsamma nätverksarkitekturen var ett nätverk med en konvolution per pipeline som för två olika test-set genererade precisioner på 79,3 respektive 75,4 procent. Resultaten visar också att några kategorier är svårare för nätverket att klassificera än andra, eftersom dessa inte är tillräckligt distinkta från resterande kategorier i datasetet. / Companies and organizations providing customer support via email will over time grow a big corpus of text documents. With advances made in Machine Learning the possibilities to use this data to improve the customer support efficiency is steadily increasing. The aim of this study is to analyze and evaluate the use of Deep Learning methods for automizing the process of classifying support errands. This study is based on a Swedish company’s domain where the classification was made within the company’s predefined categories. A dataset was built by obtaining email support errands (subject and body pairs) from the company’s support database. The dataset consisted of data belonging to one of nine separate categories. The evaluation was done by analyzing the alteration in classification accuracy when using different methods for data cleaning and by using different network architectures. A delimitation was set to only examine the effects by using different combinations of Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) in the shape of both unidirectional and bidirectional Long Short Time Memory (LSTM) cells. The results of this study show no increase in classification accuracy by any of the examined data cleaning methods. However, a feature reduction of the used vocabulary is proven to neither have any negative impact on the accuracy. A feature reduction might still be beneficial to minimize other side effects such as the time required to train a network, and possibly to help prevent overfitting. Among the examined network architectures CNN were proven to outperform RNN on the used dataset. The most accurate network architecture was a single convolutional network which on two different test sets reached classification rates of 79,3 and 75,4 percent respectively. The results also show some categories to be harder to classify than others, due to them not being distinct enough towards the rest of the categories in the dataset.
83

Multi-Task Convolutional Learning for Flame Characterization

Ur Rehman, Obaid January 2020 (has links)
This thesis explores multi-task learning for combustion flame characterization i.e to learn different characteristics of the combustion flame. We propose a multi-task convolutional neural network for two tasks i.e. PFR (Pilot fuel ratio) and fuel type classification based on the images of stable combustion. We utilize transfer learning and adopt VGG16 to develop a multi-task convolutional neural network to jointly learn the aforementioned tasks. We also compare the performance of the individual CNN model for two tasks with multi-task CNN which learns these two tasks jointly by sharing visual knowledge among the tasks. We share the effectiveness of our proposed approach to a private company’s dataset. To the best of our knowledge, this is the first work being done for jointly learning different characteristics of the combustion flame. / <p>This wrok as done with Siemens, and we have applied for a patent which is still pending.</p>
84

Efficient Edge Intelligence In the Era of Big Data

Jun Hua Wong (11013474) 05 August 2021 (has links)
Smart wearables, known as emerging paradigms for vital big data capturing, have been attracting intensive attentions. However, one crucial problem is their power-hungriness, i.e., the continuous data streaming consumes energy dramatically and requires devices to be frequently charged. Targeting this obstacle, we propose to investigate the biodynamic patterns in the data and design a data-driven approach for intelligent data compression. We leverage Deep Learning (DL), more specifically, Convolutional Autoencoder (CAE), to learn a sparse representation of the vital big data. The minimized energy need, even taking into consideration the CAE-induced overhead, is tremendously lower than the original energy need. Further, compared with state-of-the-art wavelet compression-based method, our method can compress the data with a dramatically lower error for a similar energy budget. Our experiments and the validated approach are expected to boost the energy efficiency of wearables, and thus greatly advance ubiquitous big data applications in era of smart health.<br><div>In recent years, there has also been a growing interest in edge intelligence for emerging instantaneous big data inference. However, the inference algorithms, especially deep learning, usually require heavy computation requirements, thereby greatly limiting their deployment on the edge. We take special interest in the smart health wearable big data mining and inference. <br></div><div><br></div><div>Targeting the deep learning’s high computational complexity and large memory and energy requirements, new approaches are urged to make the deep learning algorithms ultra-efficient for wearable big data analysis. We propose to leverage knowledge distillation to achieve an ultra-efficient edge-deployable deep learning model. More specifically, through transferring the knowledge from a teacher model to the on-edge student model, the soft target distribution of the teacher model can be effectively learned by the student model. Besides, we propose to further introduce adversarial robustness to the student model, by stimulating the student model to correctly identify inputs that have adversarial perturbation. Experiments demonstrate that the knowledge distillation student model has comparable performance to the heavy teacher model but owns a substantially smaller model size. With adversarial learning, the student model has effectively preserved its robustness. In such a way, we have demonstrated the framework with knowledge distillation and adversarial learning can, not only advance ultra-efficient edge inference, but also preserve the robustness facing the perturbed input.</div>
85

Klassificering av kvitton med hjälp av maskininlärning

Enerstrand, Simon January 2019 (has links)
Maskininlärning nyttjas inom fler och fler områden. Det har potential att ersätta många repetitiva arbetsuppgifter, eller åtminstone förenkla dem. Dokumenthantering inom ekonomisystem är ett område maskininlärning kan hjälpa till med. Det behövs ofta mycket manuell input i olika fält genom att avläsa fakturor eller kvitton. Målet med projektet är att skapa en applikation som nyttjar maskininlärning åt företaget Centsoft AB. Applikationen ska ta emot OCR-tolkad textmassa från en bild på ett kvitto och sedan, med hög säkerhet, kunna avgöra vilken kategori kvittot tillhör. Den här rapporten syftar till att visa utvecklingen av maskininlärningsmodellen i applikationen. Rapporten svarar på frågeställningen: ”Hur kan kvitton klassificeras med hjälp av maskininlärning?”.Undersökningsmetoden fallstudie och projektmetoden MoSCoW tillämpas i projektet. Projektet tar även hänsyn till åtagandetriangeln. Maskininlärningsramverk används för att utvärdera den upptränade modellen. Den tränade modellen klarar av att, med hög säkerhet, tolka kvitton den inte stött på tidigare. För att få en meningsfull tolkning måste kvitton ha i avsikt att tillhöra någon av de åtta tränade kategorierna.Valet av metoder passade bra till projektet för att besvara frågeställningen. Applikationen kan utvecklas vidare och implementeras i fakturahanteringssystemet. Genomförandet av projektet ger kunskap att arbeta med maskininlärningslösningar. Tekniken kan i framtiden appliceras på flera områden. / Machine learning is used in more and more areas. It has the potential to replace many repetitive tasks, or at least simplify them. Document management within financial systems is an area machine learning can help with. A lot of manual input is often needed in different fields by reading invoices or receipts. The goal of the project is to create an application that uses machine learning for the company Centsoft AB. The application should receive OCR-interpreted texts from an image of a receipt and then, with high certainty, be able to determine which category the receipt belongs to. This report aims to show the development of the machine learning model in the application. The report answers the question: "How can receipts be classified using machine learning?".The methodology case study and the research method MoSCoW will be applied during the project. The project also considers the triangle method described by Eklund. Machine learning frameworks are used to evaluate the trained model. The trained model can, with high certainty, interpret receipts it has not encountered before. In order to get a meaningful interpretation, receipts must have the intention of belonging to one of the eight trained categories.The choice of methods suited the project well to answer the question. The application can be further developed and be implemented in the invoice management system. The implementation of the project gives knowledge about how to work with machine learning solutions. In the future, the technology can be applied in several areas.
86

Interiörs påverkan på lägenheters pris och värdering / The effects of interior condition on price and evaluation of real estate

Hemmingsson, Jesper, Häusler Redhe, Adrian January 2021 (has links)
Fastighetsvärderingar har historiskt sett utförts av mäklare eller experter på området. Med den växande mängden verktyg på internet för värderingar uppstår frågan hur väl verktygen presterar och vad som kan göras för att förbättra dem. Moderna metoder utgår ifrån försäljningsstatistik av liknande objekt när en värdering görs med tekniska verktyg. Detta med hjälp av olika former av metadata, bland annat storlek, läge och byggnations år. Den här studien utforskar möjligheten att använda interiört skick som variabel i värderingar av lägenheter genom att träna Convolutional Neural Networks för att klassificera for lägenheter i Stockholm, samt undersöka sambandet mellan det interiöra skicket och den felterms om Boolis varderingsalgoritm ger upphov till. Klassificeringsmodellerna tränades på insamlad data för skick av lägenhetsägare samt tillhörande visningsbilder 200 stycken bilder som erhållits av Booli. Studien visar ett statistiskt signifikant samband mellan interiört skick och feltermen från värderingar. Värderingar på lägenheter av högt skick tenderar i genomsnitt att vara 3% för låga, och 3% för höga för lägenheter av lågt skick. Resultaten indikerar att interiör som variabel kan användas för att reducera felet i Boolis varderingsalgoritm. Dock lyckades ej experimentet med att reducera feltermen i någon större utsträckning i detta arbete. / Housing evaluations has historically been made in person by real estate agents or other experts. With growing online tools for evaluations, the question arises how well they perform, and what can be done to improve them. Modern approaches use sales data for similar housing when evaluating a certain house or apartment, with variables mainly being different forms of metadata such as living area, location and year or construction. This study explores the possibility to use the interior condition as a variable in housing evaluations by training Convolutional Neural Networks to classify the condition of kitchens and bathrooms for apartments in Stockholm, Sweden and testing the relationship between said conditions and the error of Booli’s evaluation algorithm. The classification models were trained on crowd sourced data of the condition and the advertisement images for 200 images provided by Booli. The study finds that a statistically significant relationship exists between interior condition and the evaluation error, and the evaluations of apartments tends to be 3% too small on high condition apartments, while being on average 3% too large for low condition apartments. The results of the study indicates that including interior as a variable might reduce the error of Booli’s evaluation algorithm. However, the experiment for doing so in this study failed to do so in any sizeable manner.
87

Pre-planning of Individualized Ankle Implants Based on Computed Tomography - Automated Segmentation and Optimization of Acquisition Parameters / Operationsplanering av individuella fotledsimplantat baserat på datortomografi- Automatiserad segmentering och optimering av datortomografibilder

Engström Messén, Matilda, Moser, Elvira January 2021 (has links)
The structure of the ankle joint complex creates an ideal balance between mobility and stability, which enables gait. If a lesion emerges in the ankle joint complex, the anatomical structure is altered, which may disturb mobility and stability and cause intense pain. A lesion in the articular cartilage on the talus bone, or a lesion in the subchondral bone of the talar dome, is referred to as an Osteochondral Lesion of the Talus (OLT). Replacing the damaged cartilage or bone with an implant is one of the methods that can be applied to treat OLTs. Episurf Medical develops and produces patient-specific implants (Episealers) along with the necessary associated surgical instruments by, inter alia, creating a corresponding 3D model of the ankle (talus, tibial, and fibula bones) based on either a Magnetic Resonance Imaging (MRI) scan or a Computed Tomography (CT) scan. Presently, the3D models based on MRI scans can be created automatically, but the 3Dmodels based on CT scans must be created manually, which can be very time-demanding. In this thesis project, a U-net based Convolutional Neural Network (CNN) was trained to automatically segment 3D models of ankles based on CT images. Furthermore, in order to optimize the quality of the incoming CT images, this thesis project also consisted of an evaluation of the specified parameters in the Episurf CT talus protocol that is being sent out to the clinics. The performance of the CNN was evaluated using the Dice Coefficient (DC) with five-fold cross-validation. The CNN achieved a mean DC of 0.978±0.009 for the talus bone, 0.779±0.174 for the tibial bone, and 0.938±0.091 for the fibula bone. The values for the talus and fibula bones were satisfactory and comparable to results presented in previous researches; however, due to background artefacts in the images, the DC achieved by the network for the segmentation of the tibial bone was lower than the results presented in previous researches. To correct this, a noise-reducing filter will be implemented. / Fotledens komplexa anatomi ger upphov till en ideal balans mellan rörlighetoch stabilitet, vilket i sin tur möjliggör gång. Fotledens anatomi förändras när en skada uppstår, vilket kan påverka rörligheten och stabiliteten samt orsaka intensiv smärta. En skada i talusbenets ledbrosk eller i det subkondrala benet på talusdomen benämns som en Osteochondral Lesion of the Talus(OLT). En metod att behandla OLTs är att ersätta den del brosk eller bensom är skadat med ett implantat. Episurf Medical utvecklar och producerar individanpassade implantat (Episealers) och tillhörande nödvändiga kirurgiska instrument genom att, bland annat, skapa en motsvarande 3D-modell av fotleden (talus-, tibia- och fibula-benen) baserat på en skanning med antingen magnetisk resonanstomografi (MRI) eller datortomografi (CT). I dagsläget kan de 3D-modeller som baseras på MRI-skanningar skapas automatiskt, medan de 3D-modeller som baseras på CT-skanningar måste skapas manuellt - det senare ofta tidskrävande. I detta examensarbete har ett U-net-baserat Convolutional Neuralt Nätverk (CNN) tränats för att automatiskt kunna segmentera 3D-modeller av fotleder baserat på CT-bilder. Vidare har de speciferade parametrarna i Episurfs CT-protokoll för fotleden som skickas ut till klinikerna utvärderats, detta för att optimera bildkvaliteten på de CT-bilder som används för implantatspositionering och design. Det tränade nätverkets prestanda utvärderades med hjälp av Dicekoefficienten (DC) med en fem-delad korsvalidering. Nätverket åstadkom engenomsnittlig DC på 0.978±0.009 för talusbenet, 0.779±0.174 för tibiabenet, och 0.938±0.091 för fibulabenet. Värdena för talus och fibula var adekvata och jämförbara med resultaten presenterade i tidigare forskning. På grund av bakgrundsartefakter i bilderna blev den DC som nätverket åstadkom för sin segmentering av tibiabenet lägre än tidigiare forskningsresultat. För att korrigera för bakgrundsartefakterna kommer ett brusreduceringsfilter implementeras
88

Bayesian Optimization for Neural Architecture Search using Graph Kernels

Krishnaswami Sreedhar, Bharathwaj January 2020 (has links)
Neural architecture search is a popular method for automating architecture design. Bayesian optimization is a widely used approach for hyper-parameter optimization and can estimate a function with limited samples. However, Bayesian optimization methods are not preferred for architecture search as it expects vector inputs while graphs are high dimensional data. This thesis presents a Bayesian approach with Gaussian priors that use graph kernels specifically targeted to work in the higherdimensional graph space. We implemented three different graph kernels and show that on the NAS-Bench-101 dataset, an untrained graph convolutional network kernel outperforms previous methods significantly in terms of the best network found and the number of samples required to find it. We follow the AutoML guidelines to make this work reproducible. / Neural arkitektur sökning är en populär metod för att automatisera arkitektur design. Bayesian-optimering är ett vanligt tillvägagångssätt för optimering av hyperparameter och kan uppskatta en funktion med begränsade prover. Bayesianska optimeringsmetoder är dock inte att föredra för arkitektonisk sökning eftersom vektoringångar förväntas medan grafer är högdimensionella data. Denna avhandling presenterar ett Bayesiansk tillvägagångssätt med gaussiska prior som använder grafkärnor som är särskilt fokuserade på att arbeta i det högre dimensionella grafutrymmet. Vi implementerade tre olika grafkärnor och visar att det på NASBench- 101-data, till och med en otränad Grafkonvolutionsnätverk-kärna, överträffar tidigare metoder när det gäller det bästa nätverket som hittats och antalet prover som krävs för att hitta det. Vi följer AutoML-riktlinjerna för att göra detta arbete reproducerbart.
89

Monitoring Bicycle Safety through GPS data and Deep Learning Anomaly Detection

Yaqoob, Shumayla, Cafiso, Salvatore, Morabito, Giacomo, Pappalardo, Giuseppina 02 January 2023 (has links)
Cycling has always been considered a sustainable and healthy mode of transport. Moreover, during Covid-19 period, cycling was further appreciated. by citizens as an individual opportunity of mobility. As a counterpart of the growth in the num.ber ofbicyclists and of riding k:ilometres, bicyclist safety has become a challenge as the unique road transport mode with an increasing trend of crash fatalities in EU (Figure 1). When compared to the traditional road safety network screening. availability of suitable data for crashes involving bicyclists is more difficult because of underreporting and traffic flow issues. In such framework, new technologies and digital transformation in smart cities and communities is offering new opportunities of data availability which requires also different approaches for collection and analysis. An experimental test was carried out to collect data ftom different users with an instrumented bicycle equipped with Global Navigation Satellite Systems (GNSS) and cameras. A panel of experts was asked to review the collected data to identify and score the severity of the safety critical events (CSE) reaching a good consensus. Anyway, manual observation and classi.fication of CSE is a time consu.ming and unpractical approach when large amount of data must be analysed. Moreover, due to the complex correlation between precrash driving behaviour and due to high dimensionality of the data, traditional statistical methods might not be appropriate in t.bis context. Deep learning-based model have recently gained significant attention in the lit.erature for time series data analysis and for anomaly detection, but generally applied to vehicles' mobility and not to micro-mobility. We present and discuss data requirements and treatment to get suitable infonnation from the GNSS devices, the development of an experimental :framework: where convolutional neural networks (CNN) is applied to integrate multiple GPS data streams of bicycle kinematics to detect the occurrence of a CSE.
90

[pt] DESENVOLVIMENTO DE PIV ULTRA PRECISO PARA BAIXOS GRADIENTES USANDO ABORDAGEM HÍBRIDA DE CORRELAÇÃO CRUZADA E CASCATA DE REDE NEURAIS CONVOLUCIONAIS / [en] DEVELOPMENT OF ULTRA PRECISE PIV FOR LOW GRADIENTS USING HYBRID CROSS-CORRELATION AND CASCADING NEURAL NETWORK CONVOLUTIONAL APPROACH

CARLOS EDUARDO RODRIGUES CORREIA 31 January 2022 (has links)
[pt] Ao longo da história a engenharia de fluidos vem se mostrado como uma das áreas mais importantes da engenharia devido ao seu impacto nas áreas de transporte, energia e militar. A medição de campos de velocidade, por sua vez, é muito importante para estudos nas áreas de aerodinâmica e hidrodinâmica. As técnicas de medição de campo de velocidade em sua maioria são técnicas ópticas, se destacando a técnica de Particle Image Velocimetry (PIV). Por outro lado, nos últimos anos importantes avanços na área de visão computacional, baseados em redes neurais convolucionais, se mostram promissores para a melhoria do processamento das técnicas ópticas. Nesta dissertação, foi utilizada uma abordagem híbrida entre correlação cruzada e cascata de redes neurais convolucionais, para desenvolver uma nova técnica de PIV. O projeto se baseou nos últimos trabalhos de PIV com redes neurais artificiais para desenvolver a arquitetura das redes e sua forma de treinamento. Diversos formatos de cascata de redes neurais foram testados até se chegar a um formato que permitiu reduzir o erro em uma ordem de grandeza para escoamento uniforme. Além do desenvolvimento da cascata para escoamento uniforme, gerou-se conhecimento para fazer cascatas para outros tipos de escoamentos. / [en] Throughout history, fluid engineering is one of the most important areas of engineering due to its impact in the areas of transportation, energy and the military. The measurement of velocity fields is important for studies in aerodynamics and hydrodynamics. The techniques for measuring the velocity field are mostly optical techniques, with emphasis on the PIV technique. On the other hand, in recent years, important advances in computer vision, based on convolutional neural networks, have shown promise for improving the processing of optical techniques. In this work, a hybrid approach between cross-correlation and cascade of convolutional neural networks was used to develop a new PIV technique. The project was based on the latest work of PIV with an artificial neural network to develop the architecture of the networks and their form of training. Several cascade formats of neural networks were tested until they reached a format that allowed the error to be reduced by an order of magnitude for uniform flow. In addition to the development of the cascade for uniform flow, knowledge was generated to make cascades for other types of flows.

Page generated in 0.0598 seconds