Spelling suggestions: "subject:"coulomb friction"" "subject:"coulomb criction""
1 |
Single- and Dual-Plane Automatic Balancing of an Elastically-Mounted Cylindrical Rotor with Considerations of Coulomb Friction and GravityBolton, Jeffrey Neal 17 December 2010 (has links)
This work treats dual-plane automatic ball balancing of elastically-mounted cylindrical rotors. The application is primarily to systems with a vertically-oriented single-bearing support, but extension is also made to horizontally-oriented single-bearing support as typically found in a vehicle wheel. The rotor elastic mounting includes three translational degrees of freedom for the body geometric center and three rotational degrees of freedom. Damping is included for each of these six degrees of freedom. The model for the automatic ball balancer consists of up to two arbitrarily-located hollow circumferential races, each of which contains up to two sliding particles. The friction model for the particles includes both viscous and Coulomb friction forces. Of considerable complexity is the logic path for the individual particles being either in motion or stationary relative to the rotor. The exact equations of motion for the overall system are derived via a Newtonian approach. Numerical-integration results show that the balancer performance depends strongly on the friction levels as well as the operating speed of the body. Simulations conducted with a pure static imbalance show that ideal automatic balancing is possible only for vertical-axis rotors that have zero Coulomb friction levels between the balancing particles and the races. Simulations with a horizontal-axis statically-imbalanced rotor show that an automatic balancer can improve performance for certain operating speeds and non-zero Coulomb friction levels in the presence of gravitational forces. Simulations conducted with a pure dynamic imbalance show that there is no inherent mechanism to counteract rotational displacements of the rotor about its geometric center. As a result, the balancing particles exhibit several phenomena described in previous works such as synchronous motion and oscillatory behaviors within their respective races. Simulations for an arbitrarily located imbalance show that rotor performance can be improved using dual-plane balancing techniques for certain operating speeds and Coulomb friction levels. Due to the inherent complexity in eliminating an arbitrarily located mass imbalance, the system is generally unable to reach a perfectly balanced configuration, but performance can be improved for carefully-selected initial conditions. / Ph. D.
|
2 |
Existence theorems for noncoercive incremental contact problems with Coulomb frictionRietz, Andreas January 2005 (has links)
Friction is a phenomenon which is present in most mechanical devices and frequently encountered in everyday life. In particular, understanding of this phenomenon is important in the modelling of contact between an elastic object and an obstacle. Noncoercive incremental contact problems with Coulomb friction constitute an important class of such friction problems due to their frequent occurrence in mechanical engineering. They occur for example when modelling an object which is not fixed to a support. The topic of this thesis is to study this class of friction problems. This thesis considers both discrete and continuous systems. For the continuous systems we consider both problems with a nonlocal friction law where the contact force is mollified and problems with a normal compliance friction law where the body may penetrate the obstacle. For all friction problems we derive a sufficient condition for the existence of a solution. This condition is a compatibility condition on the applied force field, and if it is violated there exists a nontrivial solution to a corresponding dynamical problem.
|
3 |
Modèles et algorithmes pour la simulation du contact frottant dans les matériaux complexes : application aux milieux fibreux et granulaires / modeling and simulating complex materials subject to frictional contact : application to fibrous and granular mediaDaviet, Gilles 15 December 2016 (has links)
Cette thèse traite de la simulation numérique de systèmes composés de nombreuxobjets distincts, et dont le principal mécanisme d'interaction consiste en des contacts inélastiques avec frottement solide.On trouve de nombreuses occurrences de tels systèmes dans la nature,par exemple sous la forme de sable ou d'une chevelure humaine ;aussi la reproduction numérique de leur dynamique trouve des applications diverses, allant de considérations géotechniques à la production d'effets spéciaux réalistes pour le cinéma.Une difficulté majeure pour la simulation de tels systèmes concerne la non-régularité de leur dynamique ; à une échelle de temps macroscopique, on observe par exemple des sauts dans les vitesses des constituants lors d'impacts.La première partie de ce manuscrit est ainsi dédiée à la conception d'algorithmes efficaces permettant de prendre en compte les contacts avec frottement de Coulomblors de la simulation de systèmes mécaniques discrets. La méthode que nous proposons, basée sur un algorithme de type Gauss--Seidel avec stratégie hybride, s'avèrerobuste et perfomante sur le problème délicat de la simulation virtuelle de chevelures.La second partie de ce manuscrit est consacrée à l'étude de systèmes à une échelle beaucoup plus grande, au delà du million de grains. Puisque le calcul de toutes les forces de contacts pour chaque paire de grains s'avérerait trop coûteux, on adopte un point de vue macroscopique en utilisant le formalisme des milieux continus. On propose ainsi d'adapter les méthodes développées pour la simulation de systèmes discrets à la résolution de la rhéologie dite de Drucker--Prager, une relation entre la contrainte et le cisaillement du matériau exprimant l'influence moyennée des forces de frottement.On montre que cette approche nous permet de retrouver le comportement qualitatif de matériaux granulaires secs observé expérimentalement.Finalement, nous proposons un nouveau modèle numérique pour l'étudedes dynamiques couplées d'un matériau granulaire immergé dans un fluide Newtonien,et montrons une nouvelle fois que les algorithmes développés pour la mécanique discrètes'avèrent également pertinents dans le cas continu. / This dissertation focuses on the numerical simulation of mechanical systems consisting of a large number of discrete pieces interacting with each other through contacts and dry friction. Examples of such systems --- for instance, sand or human hair --- are common in natural environments; being able to predict their dynamics is therefore of great importance for diverse applications ranging from geotechnical considerations to engaging visual effects for feature films.A major difficulty that complicates the numerical simulation of such complex systems stems from the nonsmoothness of their dynamics. For instance, from a macroscopic viewpoint, the velocity of the individual constituents may exhibit instantaneous jumps when impacts occur.The first part of this manuscript will be dedicated to the establishment of efficient algorithms for the numerical simulation of discrete mechanical systems subject to contacts and Coulomb friction. We advocate using a Gauss--Seidel algorithm with a hybrid local solver, and show that this strategy performs robustly in the challenging context of virtual hair simulation.The second part of this dissertation will focus on much bigger systems, consisting of millions or billions of grains.As computing every force between pairs of contacting grains quickly becomes intractable, we embrace a continuum viewpoint instead. We show how the numerical methods devised for the simulation of discrete mechanical systems can be adapted to thesimulation of flows governed by the Drucker--Prager rheology --- a constitutive relationship between the material's stress and strain rate that macroscopically models the action of frictional contact forces. This approach allows us to capture qualitative features of granular flows that have been observed experimentally. Finally, we propose a new numerical model for the coupled simulation of a granular continuum with a surrounding fluid, and show that once again, we are able to leverage efficient algorithms from discrete contact mechanics to solve the resulting equations.
|
4 |
Sensitivity analysis of cam-and-follower mechanism at high speedsYang, Shyuan-Bai January 1981 (has links)
No description available.
|
5 |
Solution of Linear Elastostatic and Elastodynamic Plane Problems by the Meshless Local Petrov-Galerkin MethodChing, Hsu-Kuang 12 September 2002 (has links)
The meshless local Petrov-Galerkin (MLPG) method is used to numerically find an approximate solution of plane strain/stress linear elastostatic and elastodynamic problems. The MLPG method requires only a set of nodes both for the interpolation of the solution variables and the evaluation of various integrals appearing in the problem formulation. The monomial basis functions in the MLPG formulation have been enriched with those for the linear elastic fracture mechanics solutions near a crack tip. Also, the diffraction and the visibility criteria have been added to make the displacement field discontinuous across a crack. A computer code has been developed in Fortran and validated by comparing computed solutions of three static and one dynamic problem with their analytical solutions. The capabilities of the code have been extended to analyze contact problems in which a displacement component and the complementary traction component are prescribed at the same point of the boundary.
The code has been used to analyze stress and deformation fields near a crack tip and to find the stress intensity factors by using contour integrals, the equivalent domain integrals and the J-integral and from the intercepts with the ordinate of the plots, on a logarithmic scale, of the stress components versus the distance ahead of the crack tip. We have also computed time histories of the stress intensity factors at the tips of a central crack in a rectangular plate with plate edges parallel to the crack loaded in tension. These are found to compare favorably with those available in the literature. The code has been used to compute time histories of the stress intensity factors in a double edge-notched plate with the smooth edge between the notches loaded in compression. It is found that the deformation fields near the notch tip are mode-II dominant. The mode mixity parameter can be changed in an orthotropic plate by adjusting the ratio of the Young's moduli in the axial and the transverse direction.
The plane strain problem of compressing a linear elastic material confined in a rectangular cavity with rough horizontal walls and a smooth vertical wall has been studied with the developed code. Computed displacements and stresses are found to agree well with the analytical solution of the problem obtained by the Laplace transform technique.
The Appendix describes the analysis with the finite element code ABAQUS of the dependence of the energy release rate upon the crack length in a polymeric disk enclosed in a steel ring and having a star shaped hole at its center. A starter crack is assumed to exist in one of the leaflets of the hole. The disk is loaded either by a pressure acting on the surfaces of the hole and the crack or by a temperature rise. Computed values of the energy release rate obtained by modeling the disk material as Hookean are found to be about 30% higher than those obtained when the disk material is modeled as Mooney-Rivlin. The latter set of results accounts for both material and geometric nonlinearities. / Ph. D.
|
6 |
Nitsche method for frictional contact and self-contact : Mathematical and numerical study / Méthode de Nitsche pour le contact de frottement et auto-contact : Mathématique et étude numériqueMlika, Rabii 24 January 2018 (has links)
Dans cette thèse, nous présentons et étudions une nouvelle formulation du problème de contact frottant entre deux corps élastiques se basant sur la méthode de Nitsche. Dans cette méthode les conditions de contact sont imposées faiblement, grâce à un terme additionnel consistant et stabilisé par un paramètre gamma. En premier lieu, nous introduisons, l’étude effectuée en petites déformations pour une version non biaisée de la méthode. La non-distinction entre une surface maître et une surface esclave permettera à la méthode d’être plus générique et applicable directement au problème d’auto-contact. Le cadre restrictif des petites déformations nous permet d’obtenir des résultats théoriques sur la stabilité et la convergence de la méthode. Ces résultats sont complétés par une validation numérique. Ensuite, nous introduisons l’extension de la méthode de Nitsche au cadre des grandes déformations qui est d’avantage pertinent pour les applications industrielles et les situations d’auto-contact. La méthode de Nitsche est formulée pour un matériau hyper-élastique avec frottement de Coulomb et se décline en deux versions : biaisée ou non. La formulation est généralisée à travers un paramètre theta pour couvrir toute une famille de méthodes. Chaque variante particulière a des propriétés différentes du point de vue théorique et numérique, en termes de précision et de robustesse. La méthode est testée et validée à travers plusieurs cas tests académiques et industriels. Nous effectuons aussi une étude de l’influence de l’intégration numérique sur la précision et la convergence de la méthode. Cette étude couvre une comparaison entre plusieurs schémas d’intégration proposés dans la littérature pour d’autres méthodes intégrales. / In this thesis, we present and study a new formulation of frictional contact between two elastic bodies based on Nitsche’s method. This method aims to treat the interface conditions in a weak sense, thanks to a consistent additional term stabilized with the parameter gamma. At first, we introduce the study carried out in the small strain framwork for an unbiased version of the ethod. The non-distinction between a master surface and a slave one will allow the method to be more generic and directly applicable to the self-contact problem. The restrictive framework of small strain allowed us to obtain theoretical results on the consistency and convergence of the method. Then, we present the extension of the Nitsche method to the large strain case more relevant for industrial applications and situations of self-contact. This Nitsche’s method is formulated for an hyper-elastic material and declines in the two versions: biased and unbiased. We describe a class of methods through a generalisation parameter theta . Particular variants have different properties from a numerical point of view, in terms of accuracy and robustness. To prove the accuracy of the method for large deformations, we provide several academic and industrial tests. We also study the influence of numerical quadrature on the accuarcy and convergence of the method. This study covers a comparison of several integration rules proposed in the literature for other integral methods.
|
7 |
Oscilace mechanických systémů s implicitními konstitutivními vztahy / Oscillations in mechanical systems with implicit constitutive relations.Babováková, Jana January 2012 (has links)
We study a system of differential-algebraic equations, describing motions of a mass-spring-dashpot oscillator by three different forms of implicit constitu- tive relations. For some problems with fully implicit but linear constitutive laws for combined force, we find conditions for solution stability. Assuming monotone relationship between the displacement, velocity and the respective forces, we prove global existence of the solutions. For a linear spring and a dashpot with maximal monotone relationship between the damping force and the velocity, we prove the global existence and uniqueness result. We also solve this problem numerically for Coulomb-like damping term.
|
8 |
Numerical methods for dynamic contact and fracture problemsDoyen, David 02 December 2010 (has links) (PDF)
The present work deals with the numerical solution of dynamic contact and fracture problems. The contact problem is a Signorini problem with or without Coulomb friction. The fracture problem uses a cohesive zone model with a prescribed crack path. These problems are characterized by a non-regular boundary condition and can be formulated with evolutionary variational inequations or differential inclusions. For the numerical solution, we combine, as usual in solid dynamics, a finite element discretization in space and time-integration schemes. For the contact problem, we begin by comparing the main methods proposed in the literature. We then focus on the so-called modified mass method recently introduced by H. Khenous, P. Laborde et Y. Renard, for which we propose a semi-explicit variant. In addition, we prove a convergence result of the space semi-discrete solutions to a continuous solution in the frictionless viscoelastic case. We also analyze the space semi-discrete and fully discrete problems in the friction Coulomb case. For the dynamic fracture problem, using a fully explicit scheme is impossible or not robust enough. Therefore, we propose time-integration schemes where the boundary condition is treated in an implicit way. Finally, we present and analyze augmented Lagrangian methods for static fracture problems
|
9 |
Dynamic Stability Analysis Of Modular, Self-reconfigurable Robotic SystemsBoke, Tevfik Ali 01 May 2005 (has links) (PDF)
In this study, an efficient algorithm has been developed for the dynamic stability analysis of self-reconfigurable, modular robots. Such an algorithm is essential for the motion planning of self-reconfigurable robotic systems. The building block of the algorithm is the determination of the stability of a rigid body in contact with the ground when there exists Coulomb friction between the two bodies. This problem is linearized by approximating the friction cone with a pyramid and then solved, efficiently, using linear programming. The effects of changing the number of faces of the pyramid and the number of contact points are investigated. A novel definition of stability, called percentage stability, is introduced to counteract the adverse effects of the static indeterminacy problem between two contacting bodies.
The algorithm developed for the dynamic stability analysis, is illustrated via various case studies using the recently introduced self-reconfigurable robotic system, called I-Cubes.
|
10 |
Numerical methods for dynamic contact and fracture problems / Méthodes numériques pour des problèmes dynamiques de contact et de fissurationDoyen, David 02 December 2010 (has links)
On s'intéresse à la résolution numérique de problèmes de contact et de fissuration en dynamique. Le problème de contact envisagé est le problème de Signorini avec ou sans frottement de Coulomb. Quant au problème de fissuration, il s'agit d'un modèle de zone cohésive avec trajet de fissuration pré-défini. Ces problèmes se caractérisent par la présence d'une condition aux limites non-régulière et se formulent comme des inéquations variationnelles d'évolution ou des inclusions différentielles. Pour les résoudre numériquement, nous combinons, comme il est courant en dynamique des solides, une discrétisation en espace par éléments finis et des schémas d'intégration en temps (de types différences finies). Pour le problème de contact, nous commençons par comparer les principales méthodes proposées dans la littérature. Nous étudions ensuite plus particulièrement la méthode dite de masse modifiée récemment introduite par H. Khenous, P. Laborde et Y. Renard. Nous en proposons une variante semi-explicite. Par ailleurs, nous prouvons un résultat de convergence des solutions semi-discrètes en espace vers une solution continue dans le cas d'un problème de Signorini sans frottement et d'un matériau viscoélastique. Nous analysons également les methodes semi-discrètes en espace et totalement discrètes dans le cas d'un problème de Signorini avec frottement de Coulomb. Pour le problème de fissuration dynamique, la non-régularité de la condition aux limites rend impossible ou peu robuste l'utilisation de schémas totalement explicites. Nous proposons donc des schémas où cette condition aux limites est traitée de façon implicite. Enfin, nous présentons et analysons des méthodes de lagrangien augmenté pour la résolution numérique du problème de fissuration en statique / The present work deals with the numerical solution of dynamic contact and fracture problems. The contact problem is a Signorini problem with or without Coulomb friction. The fracture problem uses a cohesive zone model with a prescribed crack path. These problems are characterized by a non-regular boundary condition and can be formulated with evolutionary variational inequations or differential inclusions. For the numerical solution, we combine, as usual in solid dynamics, a finite element discretization in space and time-integration schemes. For the contact problem, we begin by comparing the main methods proposed in the literature. We then focus on the so-called modified mass method recently introduced by H. Khenous, P. Laborde et Y. Renard, for which we propose a semi-explicit variant. In addition, we prove a convergence result of the space semi-discrete solutions to a continuous solution in the frictionless viscoelastic case. We also analyze the space semi-discrete and fully discrete problems in the friction Coulomb case. For the dynamic fracture problem, using a fully explicit scheme is impossible or not robust enough. Therefore, we propose time-integration schemes where the boundary condition is treated in an implicit way. Finally, we present and analyze augmented Lagrangian methods for static fracture problems
|
Page generated in 0.1585 seconds